反比例函数教案(模板18篇)

格式:DOC 上传日期:2023-11-11 12:24:19
反比例函数教案(模板18篇)
时间:2023-11-11 12:24:19     小编:雅蕊

教案的编写要细致入微,合理安排时间,保证课堂教学的高效性。教案需要注重激发学生的学习兴趣和培养创新思维。导入部分是课堂教学的重要环节,下面是几个比较好的导入方式,希望对老师们有所帮助。

反比例函数教案篇一

本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

知识与技能。

1.能灵活列反比例函数表达式解决一些实际问题。

2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。

过程与方法。

1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

情感态度与价值观。

体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

反比例函数教案篇二

这节课是在学生掌握了反比例函数的概念及其图像与性质的基础之上而学习的,并且上学学习了正比例函数和一次函数,因此学生已经有了一定的知识准备,但是由于学生的知识所限,对于例题中的信息并不了解,这样容易造成学生在了解上的困难,所以在教学时我选用了学生所熟悉的实例进行教学。使学生从身边事物入手,真正体会到数学知识来源于生活,有一种亲切感,另外对于本节的问题,文字多,阅读量大,所以我应用幻灯片的形式展现,效果要好,注意要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来活动,不断引导学生利用数学知识解决实际问题,本节课效果较好。

反比例函数教案篇三

教学目标:

2、培养学生的逻辑思维能力。

3、感知生活中的数学知识。

重点难点1.通过具体问题认识反比例的量。

2、掌握成反比例的量的变化规律及其特征。

教学难点:

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教学过程:

一、课前预习。

预习24---26页内容。

1、什么是成反比例的量?你是怎么理解的?

2、情境一中的两个表中量变化关系相同吗?

3、三个情境中的两个量哪些是成反比例的量?为什么?

二、展示与交流。

利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。

情境(一)。

认识加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

情境(二)。

让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每。

两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。

同桌交流,用自己的语言表达。

写出关系式:速度×时间=路程(一定)。

观察思考并用自己的语言描述变化关系乘积(路程)一定。

情境(三)。

写出关系式:每杯果汁量×杯数=果汗总量(一定)。

5、以上两个情境中有什么共同点?

引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

活动四:想一想。

二、反馈与检测。

1、判断下面每题是否成反比例。

(1)出油率一定,香油的质量与芝麻的质量。

(2)三角形的面积一定,它的底与高。

(3)一个数和它的倒数。

(4)一捆100米电线,用去长度与剩下长度。

(5)圆柱体的体积一定,底面积和高。

(6)小林做10道数学题,已做的题和没有做的题。

(7)长方形的长一定,面积和宽。

(8)平行四边形面积一定,底和高。

2、教材“练一练”p33第1题。

3、教材“练一练”p33第2题。

4、找一找生活中成反比例的例子,并与同伴交流。

反比例函数教案篇四

1、本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

2、对教材的分析。

(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

(3)难点:探索并掌握反比例函数的主要性质。

1、提问:

(1)=4/x是什么函数?你会作反比例函数的图象吗?

(2)作图的步骤是怎样的。

(3)填写电脑上的表格,开始在坐标纸上描点连线。

2、按照上述方法作=—4/x的图象。

3、对照你所作的两个函数图象,找一下它们的相同点和不同点。

1、让学生观察函数=/x的图象,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。

2、演示反比例函数中心对称的性质以及轴对称性质,显示反比例函数的两条对称轴。

3、让学生观察函数=/x的图象,观察过反比例函数上任意一点作x轴和轴的垂线,观察其围成矩形的面积变化情况。

(1)拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出结论。

(2)拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。

1、给出两个反比例函数的图象,判断哪一个是=2/x和=—2/x的图象。

2、判断一位同学画的反比例函数的图象是否正确。

:课本137页第1题、141页第2题。

反比例函数教案篇五

本节课的教学,我本意是通过反比例函数及其图像相关问题的复习,引出本节课所要讨论的问题反比例函数的应用,而后通过对问题1的讨论切入正题,重点研究“数”与“形”的互相渗透,并通过这节课的学习让学生体会“数形结合”的数学思想,利用函数图像来解决应用题。在教学中,我发现这种教学设计出现了以下几个问题。

首先,目标教学的第一环节,前测激趣,但没有达到激趣的目的,这种引课方式,在课堂反映出来显得非常平淡,没有新意,没能引起学生的认知发生冲突,激发学生的求知欲。

其次,在导探激励环节中,问题设计较好,但问题的处理上操之过急,没能让学生切实做出函数图像,通过问题迫使学生利用函数图像来解决问题,达到真正看图说话,因此就数形的内在联系学生体会不是很深刻。

为了一开始就能充分调动学生的情商,激发他们的学习动机和好奇心,激发他们的求知欲,使他们的思维进入最佳状态,我就上面存在的问题作如下改进。

在整个题目的处理过程,鼓励学生画出函数图像,更好的认识整个过程自变量和应变量变化的整体情况,处理好题目中的量与自变量和应变量的关系。

作以上改进,可以很好地让学生体会到“数”与“形”之间的联系,并且会根据反比例函数求应用题。

反比例函数教案篇六

3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;

4、体会数学从实践中来又到实际中去的研究、应用过程;

5、培养学生的观察能力,及数学地发现问题,解决问题的能力。

直尺。

教学方法:小组合作、探究式。

我们在小学学过反比例关系。例如:当路程s一定时,时间t与速度v成反比例。

即vt=;。

当矩形面积s一定时,长a与宽b成反比例,即ab=。

从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:

(s是常数)。

(s是常数)。

一般地,函数(k是常数)叫做反比例函数。

如上例,当路程s是常数时,时间t就是v的反比例函数。当矩形面积s是常数时,长a是宽b的反比例函数。

在现实生活中,也有许多反比例关系的例子。可以组织学生进行讨论。下面的例子仅供。

解:列表。

一般地反比例函数(k是常数,)的图象由两条曲线组成,叫做双曲线。

3、观察图象,归纳、总结出反比例函数的性质。

前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习。

显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证。(下列答案仅供参考)。

(1)的图象在第一、三象限。可以扩展到k0时的情形,即k0时,双曲线两支各在第一和第三象限。从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限。

的讨论与此类似。

抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法。体现了由特殊到一般的研究过程。

(2)函数的图象,在每一个象限内,y随x的增大而减小;

从图象中可以看出,当x从左向右变化时,图象呈下坡趋势。从列表中也可以看出这样的变化趋势。有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小。由此可归纳出,当k0时,函数的图象,在每一个象限内,y随x的增大而减小。

同样可以推出的图象的性质。

(3)函数的图象不经过原点,且不与x轴、y轴交。从解析式中也可以看出,.如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零。因此,呈现的是双曲线的样子。同理,抽象出图象的性质。

函数的图象性质的讨论与次类似。

4、小结:

本节课我们学习了反比例函数的概念及其图象的性质。大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识。数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释。即数学是世界的一个部分,同时又隐藏在世界中。

反比例函数教案篇七

教学目标:使学生对反比例函数和反比例函数的图象意义加深理解。

教学程序:

一、新授:

1、实例1:(1)用含s的代数式表示p,p是s的反比例函数吗?为什么?

答:p=600,p是s的反比例函数。

(2)、当木板面积为0.2m2时,压强是多少?

答:p=3000pa。

(3)、如果要求压强不超过6000pa,木板的面积至少要多少?

答:2。

(4)、在直角坐标系中,作出相应的函数图象。

(5)、请利用图象(2)和(3)作出直观解释,并与同伴进行交流。

二、做一做。

1、(1)蓄电池的电压为定值,使用此电源时,电流i(a)与电阻r之间的函数关系如图5-8所示。

(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?

电压u=36v,i=60k。

r()345678910。

i(a)。

3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k的图象相交于a、b两点,其中点a的坐标为(3,23)。

(1)分别写出这两个函数的表达式;。

(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流;。

随堂练习:

p145~1461、2、3、4、5。

作业:p146习题5.41、2。

反比例函数教案篇八

备课过程,我认真研读教材,认为本节课重点和难点就是掌握反比例函数的概念,以及如何与一次函数及一次函数中的正比例函数的区别。所以,我在讲授新课前安排了对“函数”、“一次函数”及“正比例函数”概念及“一次函数”和“正比例函数”一般式的复习。

为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。

情境设置:

汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的变化而变化。

(1)你能用含v的代数式来表示t吗?

(2)时间t是速度v的函数吗?

设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同。从而自然地引入“反比例函数”概念。

为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。

一般式变形:(其中k均不为0)。

通过对一般式的变形,让学生从“形”上掌握“反比例函数”的概念,在结合“思考”的几个问题,让学生从“神”神上体验“反比例函数”。

为加深难度,我又补充了几个练习:

2是的反比例函数,是的正比例函数,则与成什么关系?

关于课堂。

教学。

由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。

在复习“函数”这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到如何表达。我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。一路走来,非常轻松。

对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的题型,班级中成绩偏下的同学也能很好的掌握。

而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。

经验感想:

1、课前认真准备,对授课效果的影响是不容忽视的。

2、教师的精神状态直接影响学生的精神状态。

3、数学教学一定要重概念,抓本质。

4、课堂上要注重学生情感,表情,可适当调整教学深度。

反比例函数教案篇九

1.能运用反比例函数的相关知识分析和解决一些简单的实际问题。

2.在解决实际问题的过程中,进一步体会和认识反比例函数是刻。

画现实世界中数量关系的一种数学模型。

反比例函数在生活、生产实际中也有着广泛的应用。

例如:在矩形中s一定,a和b之间的关系?你能举例吗?

例1、见课本73页。

例2、见课本74页。

(1)写出这个函数解析式。

(2)当气球的体积为0.8m3时,气球的气压是多少千帕?

反比例函数教案篇十

2、能根据实际问题中的条件确定反比例函数的解析式。

3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。

重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题。

难点:根据实际问题中的条件确定反比例函数的解析式。

为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量(g)与时间x(in)成正比例。药物燃烧后,与x成反比例(如图所示),现测得药物8in燃毕,此时室内空气中每立方米的含药量为6g,请根据题中所提供的信息,解答下列问题:

(1)药物燃烧时,关于x的函数关系式为:________,自变量x的取值范围是:_______,药物燃烧后关于x的函数关系式为_______.

(1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?

(2)录入文字的速度v(字/in)与完成录入的时间t(in)有怎样的函数关系?

(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?

例2某自来水公司计划新建一个容积为的长方形蓄水池。

(1)蓄水池的底部s与其深度有怎样的函数关系?

(2)如果蓄水池的深度设计为5,那么蓄水池的底面积应为多少平方米?

(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100和60,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)。

1、一定质量的氧气,它的密度(g/3)是它的体积v(3)的反比例函数,当v=103时,=1.43g/3.(1)求与v的函数关系式;(2)求当v=23时求氧气的密度。

2、某地上年度电价为0.8元&nt/&nt度,年用电量为1亿度。本年度计划将电价调至0.55元至0.75元之间。经测算,若电价调至x元,则本年度新增用电量(亿度)与(x-0.4)(元)成反比例,当x=0.65时,=-0.8。

(1)求与x之间的函数关系式;

3、如图,矩形abcd中,ab=6,ad=8,点p在bc边上移动(不与点b、c重合),设pa=x,点d到pa的距离de=.求与x之间的函数关系式及自变量x的取值范围。

30.3——1、2、3。

反比例函数教案篇十一

(一)教材地位:

本小节属于《全日制义务教育数学课程标准实验稿》中“数与代数”领域,是我们在。

学习了平面直角坐标系和一次函数的基础上,再一次进入函数领域,通过本小节的学习,让学生感受到函数是反映现实生活的一种有效模型,同时,本小节的学习内容,直接关系到后续内容的学习,也可以说是后续内容的基础。

(二)教学重点:

2、能根据问题中的已知条件确定反比例函数解析式;

3、能判断一个函数是否为反比例函数及比例系数;

4、培养学生的观察、比较、概括能力。

(三)教学重学:

2、能根据已知条件确定反比例函数解析式。

(四)教学难点:

2、能根据已知条件确定反比例函数解析式。

二、分析教法与学法:

(一)教法:

(二)学法:

通过观察、比较、发现、概括的方法来学习新知识。

三、分析教学过程。

(一)创设情境:教育大全。

1、由于学生所学过的反比例关系,一次函数等概念时间已较长,所以在创设情境时对这些知识加以复习,以换取学生以以有知识的记忆。

2、在情境中,列举大量实例,让学生装根据已知条件,列出一次函数、正比例函数、反比例函数为学生的探险索创造条件。

(二)探索过程。

1、学生的探索能力不是很强,因此在列出的'大量函数中,教师发挥主导作用,启发学生思考。

2、通过一系列的探索,让学生概括出反比例函数的共同特征,从而给出概念。

3、在学生得出反比例函数后,再进行深化,给出比例系数为负数或分。

(三)小结和作业:

在学生的自我小结中教师加以完善,对反比例函数有一定程度上的掌握。

反比例函数教案篇十二

具体分析本节课,首先简单的用几分钟时间回顾一下反比例函数的基本理论,“学习理论是为了服务于实践”的一句话,打开了本节课的课题,过渡自然。本节课用函数的观点处理实际问题,主要围绕着路程、工程这样的实际问题,通过在速度一定的条件下路程与时间的关系,认识到反比例函数与实际问题的关系,在讲解这几个例子的时候,创设了学生熟悉的情境,简单的一句话引出问题,这样更能引起学生的兴趣,使学生更积极地参与到教学中来,因为情境熟悉,也能快速地与学生产生共鸣。

创设了轻松和谐的教学环境与氛围,师生互动较好,这样能使学生主动开动思维,利用已有的知识顺利的解决这几个问题。在讲解例题的同时,试着让学生利用图象解决问题,培养学生数形结合的思想,并提示学生注意自变量在实际情境中的取值范围问题。而后,给学生几分钟的思考时间,让他们通过平时对生活的细心观察,生活中有关反比例函数的有价值的问题,说出来与全班共同分享。这一环节的设置,不仅体现新教改的合作交流的思想,更主要的培养他们与人协作的能力。更好的发展了学生的主体性,让他们也做了一回小老师,展示他们的个性,这样有益于他们健康的人格的成长。最后在总结中让学生体会到利用反比例函数解决实际问题,关键在于建立数学函数模型,并布置了作业。从总体看整个教学环节也比较完整。

反比例函数教案篇十三

(二)对反比例函数的三种表示方法进行巩固和熟悉。

例题非常简单,在例题的处理上我注重了学生解题步骤的培养,同时通过两次变式进一步巩固解法,并拓宽了学生的思路。在变式训练之后,我又补充了一个综合性题目的例题,(在上学期曾有过类似问题的,由于时间的久远学生不是很熟悉)但在补充例题的处理上点拨不到位,导致这个问题的解决有点走弯路。

题组(三)在本节既是知识的巩固又是知识的检测,通过这组题目的处理,发现学生对本节知识的掌握还可以。从整体来看,时间有点紧张,小结很是仓促,而且是由老师代劳了,没有让学生来谈收获,在这点有些包办的趋势。

虽然在题目的设计和教学设计上我注重了由浅入深的梯度,但有些问题的处理方式不是恰到好处,有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性。总之,我会在以后的教学中注意细节问题的。

还希望数学组的老题多提宝贵的意见。谢谢了!

反比例函数教案篇十四

1.能运用反比例函数的相关知识分析和解决一些简单的实际问题。

2.在解决实际问题的过程中,进一步体会和认识反比例函数是刻

画现实世界中数量关系的一种数学模型。

运用反比例函数解决实际问题

运用反比例函数解决实际问题

一、情景创设

反比例函数在生活、生产实际中也有着广泛的应用。

例如:在矩形中s一定,a和b之间的关系?你能举例吗?

二、例题精析

例1、见课本73页

例2、见课本74页

四、课堂练习课本p74练习1、2题

五、课堂小结反比例函数的应用

六、课堂作业课本p75习题9.3第1、2题

七、教学反思

更多初二数学教案,请点击

反比例函数教案篇十五

本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

1.能灵活列反比例函数表达式解决一些实际问题。

2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。

1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

情感态度与价值观。

体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

启发引导、合作探究。

(一)创设问题情境,引入新课。

[生]是为了应用。

[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。

问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。

反比例函数教案篇十六

1、借助正比例的意义理解反比例的意义,能根据反比例的意义正确判断两种量是否成反比例。

2、在小组合作学习过程中,掌握合作学习技能,体验合作学习的快乐。

一、创设情境,明确问题

同学们,昨天老师去幼儿园接小朋友,看见幼儿园的老师正在给小朋友们分饼干,想知道他们是怎么分的吗?我们一起去看一看:

人数(人)



1



2



3



4



5



块数(块)



3



6



9



12



15



每人分的块数(块)



3



3



3



3



3



仔细观察,从这个表中,你知道了什么?你知道表中的哪两种量成正比例吗?(说明理由)

说一说成正比例的两个量的变化规律。

师小明的妈妈要去银行换一些零钱,请你帮忙算一算,各换多少张:

面值(元)



1



2



5



10



20



张数(张)





20





总钱数(元)








1、独立思考:出示表格,让学生自己观察,提出问题并解决问题。

2、小组合作,交流探讨问题。

要求:认真听取别人的意见,详细说明自己的'观点,如果有不懂的地方要虚心求助,最重要的是要控制好自己的言行,小组长要协调好本组的合作过程。

3、汇报交流,发现规律。

4、教师小结,明确概念,呈现课题。

5、在理解概念的基础上增加记忆。

1、给车棚的地面铺上水泥砖,每块水泥砖的面积与所需数量如下:

没块水泥砖的面积(平方厘米)


500


400


300


数量(块)


600


750


1000


每块水泥砖的面积与所需数量是否成反比例?为什么?

2、下表中x和y两个量成反比例,请把表格填写完整。

x


2




40



y


5



0.1




3、判断下面每题中的两种量是否成反比例,并说明理由。

(1)全班的人数一定,每组的人数和组数。

(2)圆柱的体积一定,圆柱的底面积和高。

(3)书的总页数一定,已经看的页数和未看的页数。

(4)圆柱的侧面积一定,它的底面周长和高。

(5)、六(1)班学生的出席人数与缺席人数。

4、下面各题中的两种量是不是成比例?如果成比 例,成什么比例?

(1)、订阅《小学生天地》的份数和总钱数。

(2)、小新跳高的高度与他的身高。

(3)、平行四边形的面积一定,底和高。

(4)、正方行的边长与它的周长。

(5)、三角形的面积一定,底和高。

5、生活中还有哪些成反比例关系的量?

1、这节课学会了什么知识?反比例的意义是什么?

2、这节课你与小组同学合作的怎么样?以后应该怎么做?

反比例函数教案篇十七

1、经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。

2、理解反比例函数的概念,会列出实际问题的反比例函数关系式。

4、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。

1、使学生了解反比例函数的表达式,会画反比例函数图象。

1、列函数表达式。

一、作业检查与讲评。

二、复习导入。

我们知道当。

(1)当路程s一定,时间t与速度v成反比例,即vt=当矩形面积一定时,长a和宽b成反比例,即ab=,求另一边的长y(米)与x的函数关系式。

分析根据矩形面积可知。

xy=24,即。

从这个关系中发现:

2、自变量的取值是x0.

反比例函数教案篇十八

1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题。

2、能根据实际问题中的条件确定反比例函数的解析式。

3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。

重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题。

难点:根据实际问题中的条件确定反比例函数的解析式。

为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg,请根据题中所提供的信息,解答下列问题:。

(1)药物燃烧时,y关于x的函数关系式为:________,自变量x的取值范围是:_______,药物燃烧后y关于x的函数关系式为_______。

(1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?

(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?

例2某自来水公司计划新建一个容积为的长方形蓄水池。

(1)蓄水池的底部s与其深度有怎样的函数关系?

(2)如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?

(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100m和60m,那么蓄水池的.深度至少达到多少才能满足要求?(保留两位小数)。

1、一定质量的氧气,它的密度(kg/m3)是它的体积v(m3)的反比例函数,当v=10m3时,=1.43kg/m3.(1)求与v的函数关系式;(2)求当v=2m3时求氧气的密度。

2、某地上年度电价为0.8元度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)(元)成反比例,当x=0.65时,y=-0.8。

(1)求y与x之间的函数关系式;

3、如图,矩形abcd中,ab=6,ad=8,点p在bc边上移动(不与点b、c重合),设pa=x,点d到pa的距离de=y.求y与x之间的函数关系式及自变量x的取值范围。

【本文地址:http://www.xuefen.com.cn/zuowen/10716658.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档