教案是教师对课程内容、教学目标和教学方法的思考和整理。编写教案时,要合理选取教学方法和教学手段,灵活运用多种教学资源。通过学习这些教案范例,可以帮助教师更好地了解和把握教学要点。
二元一次方程教案篇一
看一看:课本99页探究2。
问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?
2、“甲、乙两种作物的总产量比为3:4”是什么意思?
3、本题中有哪些等量关系?
提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?
思考:这块地还可以怎样分?
练一练。
一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:
农作物品种每公顷需劳动力每公顷需投入奖金。
水稻4人1万元。
棉花8人1万元。
蔬菜5人2万元。
问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?
二元一次方程教案篇二
(学生活动)解下列方程:
(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)。
(学生活动)请同学们口答下面各题。
(老师提问)(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解。
因此,上面两个方程都可以写成:
(1)x(2x+1)=0(2)3x(x+2)=0。
(2)3x=0或x+2=0,所以x1=0,x2=-2(以上解法是如何实现降次的?)。
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法。
例1解方程:
思考:使用因式分解法解一元二次方程的条件是什么?
解:略(方程一边为0,另一边可分解为两个一次因式乘积)。
练习:下面一元二次方程解法中,正确的是()。
c.(x+2)2+4x=0,∴x1=2,x2=-2。
d.x2=x,两边同除以x,得x=1。
教材第14页练习1,2。
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用。
教材第17页习题6,8,10,11。
二元一次方程教案篇三
(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.
数形结合和数学转化的思想意识.
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)。
内容:1.方程x+y=5的解有多少个?是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?
3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?
由此得到本节课的第一个知识点:
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;。
(2)一次函数图像上的点的坐标都适合相应的二元一次方程.
第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)。
内容:1.解方程组。
2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像.
(1)求二元一次方程组的.解可以转化为求两条直线的交点的横纵坐标;。
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.
(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.
第三环节典型例题(10分钟,学生独立解决)。
探究方程与函数的相互转化。
内容:例1用作图像的方法解方程组。
例2如图,直线与的交点坐标是.
第四环节反馈练习(10分钟,学生解决全班交流)。
内容:1.已知一次函数与的图像的交点为,则.
2.已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为().
(a)4(b)5(c)6(d)7。
3.求两条直线与和轴所围成的三角形面积.
4.如图,两条直线与的交点坐标可以看作哪个方程组的解?
第五环节课堂小结(5分钟,师生共同总结)。
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;。
(2)一次函数图像上的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
(1)方程组的解是对应的两条直线的交点坐标;。
(2)两条直线的交点坐标是对应的方程组的解;。
(1)代入消元法;。
(2)加减消元法;。
(3)图像法.要强调的是由于作图的不准确性,由图像法求得的解是近似解.
第六环节作业布置。
习题7.7a组(优等生)1、2、3b组(中等生)1、2c组1、2。
附:板书设计。
六、教学反思。
二元一次方程教案篇四
(北师大版新课标实验教材八年级上册)。
一、教学目标。
1、知识与技能。
2、过程与方法。
运用代入消元法解二元一次方程;了解解二元一次方程时的“消元”思想,初步体会“化未知为已知”的化归思想。
3、情感、态度、价值观。
在学生了解解二元一次方程时的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想。感受学习数学的乐趣,提高学习数学的热情;培养学生合作交流,自主探究的好习惯。
二、教学重、难点。
1、教学重点。
2、教学难点。
“消元”的思想;“化未知为已知”的化归思想。
三、教学设计。
1、复习,引入新课。
上次课我们学习了二元一次方程、二元一次方程组,以及二元一次方程、二元一次方程组的解的定义。下面请同学们回忆一下它们分别是怎样定义的?(同学们说,说不完的教师利用ppt进行展示)。
2、新课讲解。
(1)来看我们课本上的例子:
上次课我们设老牛驮了x包,小马驮了y包,并建立如下的方程组。
现在要求老牛和小马到底各驮几个包裹?就需要我们求出该方程组的解对吧?我们前面已经学习了怎样求解一元一次方程,下面请同学们讨论怎样通过已学的知识解这个方程组?(学生讨论,教师巡视指导)。
通过同学们的讨论我们已经有了解题思想。首先,由方程(1)将x视为已知数解出y=x-2,由于方程组中相同的字母表示同一未知数,所以可以用x-2代替方程(2)中的y,即将y=x-2代入方程(2)。这样就可以把方程化为我们所熟悉的一元一次方程,进而求解这个一元一次方程得到y的值,带回方程组求出x的'值,方程组的解就求出来了。
好!下面我们一起来解这个方程组(学生说,教师板书)。
(1)?x?y?1?(2)?x?1?2(y?1)。
解:由(1),得y=x-2(3)。
x+1=2[(x-2)-1]。
解得,x=7。
把x=代入方程(3)得y=5。
x7所以,方程组的解为:
y5。
因此,就求出了老牛驮了7个包裹,小马驮了5个包裹。
来看我们的解题过程,首先将其中一个方程中的一个未知数用含有另一个未知数的代数式表示出来,再把得到的代数式代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程进行形求解。这种求解二元一次方程组的方法称为代入消元法。
解题基本思路:消元,化未知为已知。(边说边板书)。
(2)下面再来看一个例子:
(1)?2x?3y?16..........?..(2)?x?4y?13......
解:由(2),得x=13-4y(4)。
将(3)代入(1),得2(13-4y)+3y=16。
26-8y+3y=16。
-5y=-10。
y=2。
将y=2代入(3),得x=5。
x5所以原方程的解为y2。
3、课堂练习。
下面请同学们自己解下列方程组:
(1)?1)1)?x?y?11....(?3x?2y?9....((2)?(2)?x?y?7......?x?2y?3......(2)。
解答(略)。
(让两位同学上黑板做,教师巡视、指导。做完后评讲,给出解题过程)。
4、小结复习。
这节课主要学习了用代入消元法解二元一次方程组,其本思想是消元,将未知转化为已知。主要步骤为将其中一个方程中的一个未知数用含有另一个未知数的代数式表示出来,再把得到的代数式代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程进行求解。
5、布置作业。
课本习题7.2的1、2题。
四、板书设计。
五、教学反思。
进行教学实践后在进行总结、反思、改进。
二元一次方程教案篇五
1、使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2、通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。
难点:正确发找出问题中的两个等量关系。
一、复习。
列方程解应用题的步骤是什么?
审题、设未知数、列方程、解方程、检验并答。
新课:
看一看课本99页探究1。
问题:
1题中有哪些已知量?哪些未知量?
2题中等量关系有哪些?
3如何解这个应用题?
本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg。
(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940。
练一练:
二元一次方程教案篇六
(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力。
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。
数形结合和数学转化的思想意识。
教具:多媒体课件、三角板。
学具:铅笔、直尺、练习本、坐标纸。
第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)。
内容:1.方程x+y=5的解有多少个?是这个方程的解吗?
2、点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?
3、在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?
4、以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?
由此得到本节课的第一个知识点:
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程。
第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)。
内容:
1、解方程组。
2、上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。
(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。
(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。
二元一次方程教案篇七
4进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力。
难点:正确发找出问题中的两个等量关系。
课前自主学习。
1.列方程组解应用题是把未知转化为已知的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的()。
2.一般来说,有几个未知量就必须列几个方程,所列方程必须满足:
(1)方程两边表示的是()量。
(2)同类量的单位要()。
(3)方程两边的数值要相符。
3.列方程组解应用题要注意检验和作答,检验不仅要求所得的解是否(),更重要的是要检验所求得的结果是否()。
4.一个笼中装有鸡兔若干只,从上面看共42个头,从下面看共有132只脚,则鸡有(),兔有()。
新课探究。
看一看。
课本113页探究1。
问题:
1题中有哪些已知量?哪些未知量?
2题中等量关系有哪些?
3如何解这个应用题?
本题的等量关系是(1)()。
(2)()。
解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg。
根据题意列方程,得。
答:每只母牛和每只小牛1天各需用饲料为()和(),饲料员李大叔估计每天母牛需用饲料1820千克,每只小牛一天需用7到8千克与计算()出入。(有或没有)。
练一练:
小结。
用方程组解应用题的一般步骤是什么?
二元一次方程教案篇八
1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)。
2、教材内容简要分析。
教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。
3、学习内容分析表:
知识点。
重点。
难点。
编号。
内容。
1
2
代入消元法。
代入消元法的具体解法。
3
以实际例题列出方程并解答。
未知数的假设以及运用已知条件列出正确方程。
本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。
1、教学顺序。
(1)复习已学过的一元一次方程知识引入开篇实例。
(3)以二元一次方程的方法建立方程,进而介绍二元一次方程组的定义及特点并巩固。
(5)介绍二元一次方程组消元法的运用,并进行随堂练习以及随堂解答。
(6)在确定学生掌握消元法后进入二元一次方程组的实例运用讲解以及随堂练习。
(7)复习、回忆、巩固本次课程的主要内容,介绍课外延伸内容。
2、教学活动程序。
(1)引起注意。
以“上课”号令以及播放ppt唤起学习者的注意。
(2)告诉学习者目标。
以ppt的播放以及言语刺激,明确告诉学习者本次课的内容是学习二元一次方程组,本次学习的目标是掌握二元一次方程组的消元法以及二元一次方程的实例运用。
(3)刺激对先前知识的回忆。
回忆之前学过的一元一次方程的主要内容(定义、解法、实际运用),以实例进行先前内容的回忆并且充分利用原有的认知结构中关于一元一次方程的列式观念来与新学的二元一次方程产生共鸣。
(4)呈现刺激材料。
在讲解过程中伴随着ppt的播放,并在关键需要注意的部分进行板书强调,在语调上有所突出。
(5)提供学习指导。
以教材内容为指导,以及教师的提示语和示范性行为等进行引导。
(6)诱导行为。
在重点部分题型注意,进行随堂练习,分为详细解答和对答案两种方式。在详细解答时要求同学与老师一同进行,必要时提问同学,让学习者参与进来,更好的理解信息并掌握学习内容。
(7)提供反馈。
在学习者作出反应、表现出行为之后,及时让学习者知道学习结果,从而使学习者能肯定自己的理解与行为正确与否,以便及时更正。
(8)评定行为。
以随堂测验的方式进行随堂评定,并且在课后布置习题让同学们课后完成,再由教师进行评定。
(9)增强记忆与促进迁移。
设置教学活动(见附录),强化刺激,为学习者加深印象,并且促使其发散思维,将学习的知识广泛运用。
3、教学组织形式。
本次教学中选择运用了以下几种教学组织形式。
(1)讲解的形式。
以教师的说明和解释为主,向学生传输新信息,是本次教学主要形式,因本次教学内容的特征,这种形式能够全面详细的解释本次教学内容,并能充分发挥教师的引导作用。
(2)提问的形式。
这一形式能够在教学过程中起到刺激课堂,引起学习者注意的作用,并且是对学习者某一知识学习情况的抽样调查,由教师找出学习者存在的问题进行解决。
(3)师生共同解答的形式。
采用这个形式能够在师生之间产生共鸣,提起课堂气氛,产生共鸣,引起注意,使大部分学习者都参与进来,也是一个小型头脑风暴过程,在学习者之间互相影响,从而对知识得到正确理解。
4、教学方法的选择。
本次课程选择运用了讲授法、演示法、练习法的教学方法。
(1)语言的方法—讲授法,主要是根据教学目标和教学任务,数学这门学科的解释性强的特点以及这个学习阶段的学习者的自学能力不够然而接受能力很强的特点而选择的。
(2)直观的方法—演示法,顺应时代的发展,教学中出现了利用新媒体的需要,并且,对于这个阶段的学习者,在课程开展中利用ppt来进行演示可以更加有效的刺激学习者感官,并且配合适当的板书,对于这个年龄段的学习者更加容易接受,同时也由于我们已经具备了采用新媒体的条件。在课后,会以电子杂志的形式形成重点复习资料留给学习者课后复习。
(3)实践的方法—练习法,包括了口头练习和书面练习。口头练习是这个年龄段学习者心理特征的需要,因为他们独立性还不够强,在进行口头练习的时候,比较能够跟上大多数人的思维,产生共鸣。书面练习是这个学科特征的需要,必须进行书面练习才能让同学们更好的掌握所学知识,随堂练习能及时反映出当场学习的状况。
二元一次方程教案篇九
学生的知识技能基础:七年级时,学生已经学习了一元一次方程及其应用。本章中,学生又学习了二元一次方程、二元一次方程组、列二元一次方程组解应用题等,能熟练地解二元一次方程组,已初步具备了用方程组刻画实际问题的经验和基础,能正确地分析和理解题意,寻求题中的各种数量关系,具备了继续学习本节内容的知识和能力。
学生的活动经验基础:在相关知识的学习过程中,学生已经经历了一些编题活动,同时也具备了一些生活经验,知道列方程解应用题的一些规律、特点和方法,具备了一些解决实际问题的经验和能力。在以前的数学学习中,学生已经经历很多合作学习的过程,具备了一定的'合作学习经验,具备了一定的合作与交流的能力。
地位和作用:本节内容是在学生学习了二元一次方程组的解法和部分二元一次方程组的应用后,紧接着学习的有关数字问题的应用题。这部分内容的学习,有助于加深学生对数字问题的理解,进一步掌握列方程组解应用题的方法(相等关系),提高学生解决实际问题的能力。本节课的教学目标为:
2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型。
3.在解决问题过程中,学会借助图表分析问题,感受化归思想。
4.让学生体验把复杂问题化为简单问题策略的同时,培养学生克服困难的意志和勇气。
本节课的重点是教学生会用图表分析数字问题。难点是将实际问题转化成二元一次方程组的数学模型;设间接未知数转化解决实际问题。
教学准备。
flah播放器;若flash不能播放,请按绝对路径重新插入后播放。
本课设计了六个教学环节:第一环节:知识回顾;第二环节:情境引入,新课讲解;第三环节:练习提高;第四环节:合作学习;第五环节:学习反思;第六环节:布置作业。
1.一个两位数的十位数字是x,个位数字是y,则这个两位数可表示为:10x+y.
2.一个三位数,若百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c.
3.一个两位数,十位数字为a,个位数字为b,若在这两位数中间加一个0,得到一个三位数,则这个三位数可表示为:100a+b.
4.a为两位数,b是一个三位数,若把a放在b的左边得到一个五位数,则这个五位数可表示为:
1000a+b.
设计意图:通过复习,为本节课的继续学习做好铺垫。
实际效果:提问学生,教师加以点评,这样经过知识的回顾,学生基本能熟练地用代数式表示有关数字问题。
动画,情景展示。
12:00是一个两位数,它的两个数字之和为7;。
13:00十位与个位数字与12:00所看到的正好颠倒了;
14:00比12:00时看到的两位数中间多了个0.
小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数。小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”
那么,你能回答以下问题吗?
(1)他们取出的两张卡片上的数字分别是几?
(2)第一次,他们拼出的两位数是多少?
(3)第二次,他们拼成的两位数又是多少呢?请你好好动动脑筋哟!
二元一次方程教案篇十
知识目标:了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
能力目标:通过讨论和练习,进一步培养学生的观察、比较、分析的能力。
情感目标:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。
一、引入、实物投影。
2、请每个学习小组讨论(讨论2分钟,然后发言)。
这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)。
师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少?(含有两个未知数,并且所含未知数项的次数是1)。
师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程。
二元一次方程教案篇十一
1.知识与能力目标。
(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。
2.情感态度价值观目标。
通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。
教材分析。
前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。
教学重点。
2、能根据一次函数的图象求二元一次方程组的近似解。
教学难点。
方程和函数之间的对应关系即数形结合的意识和能力。
教学方法。
学生操作------自主探索的方法。
二元一次方程教案篇十二
3、培养分析问题、解决问题的能力,进一步体会二元一次方程组的应用价值。
借助列表分问题中所蕴含的数量关系。
用列表的方式分析题目中的各个量的关系。
(师生活动)设计理念。
创设情境最近几年,全国各地普遍出现了夏季用电紧张的局面,为疏导电价矛盾,促进居民节约用电、合理用电,各地出台了峰谷电价试点方案。
学生独立思考,容易解答,以一道生活热点问题引入,具有现实意义,激发学生学习兴趣,同时培养学生节约、合理用电的意识。
理解题意是关健,通过该题,旨在培养学生的读题能力和收集信息能力。
(图见教材115页,图8.3-2)。
学生自主探索、合作交流。
设问1.如何设未知数?
销售款与产品数量有关,原料费与原料数量有关,而公路运费和铁路运费与产品数量和原料数量都有关,因此设产品重x吨,原料重y吨。
设问2.如何确定题中数量关系?
列表分析。
产品x吨。
原料y吨。
合计。
公路运费(元)。
铁路运费(元)。
价值(元)。
由上表可列方程组。
解这个方程组,得。
因为毛利润-销售款-原料费-运输费。
所以这批产品的销售款比原料费与运输的和多1887800元。
引导学生讨论以上列方程组解决实际问题的。
学生讨论、分析:合理设定未知数,找出相等关系。本例所涉及的数据较多,数量关系较为复杂,具有一定挑战性,能激发学生探索的热情。
通过讨论让学生认识到合理设定未知数的愈义。
借助表格辅助分析题中较复杂的数量关系,不失为一种好方法。
课堂练习。
购到这种水果140吨,准备加工后上市销售,该公司的加工能力是:每天可以精加工6吨或者粗加工16吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须将这批水果全部销售或加工完毕,为此公司研制二种可行的方案:
方案一:将这批水果全部进行粗加工;
方案二:尽可能多对水果进行精加工,没来得及加工的水果在市场上销售;
方案三:将部分水果进行精加工,其余进行粗加工,并恰好15天完成。
你认为选择哪种方案获利最多?为什么?
学生合作讨论完成。
选择经济领城问题让学生展开讨论,增强市场经济意识和决策能力,同时巩固二元一次方程组的应用。
小结与作业。
小结提高。
2、小组讨论,试用框图概括“用一元一次方程组分析和解决实际问题”的基本过程。
学生思考、讨论、整理。
这是第一次比较完整地用框图反映实际问题与二元一次方程组的关系。
让学生结合自己的解题过。
程概括整理,帮助理解,培养模。
型化的思想和应用数学于现实。
生活的意识。
布置作业16、必做题:教科书116页习题8.3第2、6题。
17、选做题:教科书117页习题8.3第9题。
18、备19、选题:
(1)一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车,已知过去两次租用这两种货车的记录如下表所示。
甲种货车(辆)乙种货车(辆)总量(吨)。
第1次。
4528.5。
第2次。
3627。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
本课探究的问题信息量大,数量关系复杂,未知数不容易设定,对学生来说是一种挑战,因此安排学生合作学习,学生先独立思考,自主探索,然后在小组讨论中合理设定未知数,借助表格分析题中的数量关系,列出方程组求得问题的解,在本节的小结中,让学生结合自己的解题过程概括整理实际问题与二元一次方程组的关系,并比较完整地用框图反映,培养模型化的思想。
同时本节向学生提供了社会热点问题、经济问题等现实、具有挑战性的、富有数学意义的学习素材,让学生展开数学探究,合作交流,树立数学服务于生活、应用于生活的意识。
二元一次方程教案篇十三
3、培养分析问题、解决问题的能力,进一步体会二元一次方程组的应用价值.
借助列表分问题中所蕴含的数量关系。
用列表的方式分析题目中的各个量的关系。
(师生活动)设计理念
创设情境最近几年,全国各地普遍出现了夏季用电紧张的局面,为疏导电价矛盾,促进居民节约用电、合理用电,各地出台了峰谷电价试点方案.
学生独立思考,容易解答.以一道生活热点问题引入,具有现实意义.激发学生学习兴趣,同时培养学生节约、合理用电的意识.
理解题意是关健.通过该题,旨在培养学生的读题能力和收集信息能力.
(图见教材115页,图8.3-2)
学生自主探索、合作交流.
设问1.如何设未知数?
销售款与产品数量有关,原料费与原料数量有关,而公路运费和铁路运费与产品数量和原料数量都有关.因此设产品重x吨,原料重y吨.
设问2.如何确定题中数量关系?
列表分析
产品x吨
原料y吨
合计
公路运费(元)
铁路运费(元)
价值(元)
由上表可列方程组
解这个方程组,得
因为毛利润-销售款-原料费-运输费
所以这批产品的销售款比原料费与运输的和多1887800元.
引导学生讨论以上列方程组解决实际问题的
学生讨论、分析:合理设定未知数,找出相等关系。本例所涉及的数据较多,数量关系较为复杂,具有一定挑战性,能激发学生探索的热情.
通过讨论让学生认识到合理设定未知数的愈义.
借助表格辅助分析题中较复杂的数量关系,不失为一种好方法.
课堂练习
购到这种水果140吨,准备加工后上市销售.该公司的加工能力是:每天可以精加工6吨或者粗加工16吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须将这批水果全部销售或加工完毕,为此公司研制二种可行的方案:
方案一:将这批水果全部进行粗加工;
方案二:尽可能多对水果进行精加工,没来得及加工的水果在市场上销售;
方案三:将部分水果进行精加工,其余进行粗加工,并恰好15天完成.
你认为选择哪种方案获利最多?为什么?
学生合作讨论完成
选择经济领城问题让学生展开讨论,增强市场经济意识和决策能力,同时巩固二元一次方程组的应用.
小结与作业
2、小组讨论,试用框图概括“用一元一次方程组分析和解决实际问题”的基本过程.
学生思考、讨论、整理.
这是第一次比较完整地用框图反映实际问题与二元一次方程组的关系.
让学生结合自己的解题过
程概括整理,帮助理解,培养模
型化的思想和应用数学于现实
生活的意识.
布置作业16、必做题:教科书116页习题8.3第2、6题。
17、选做题:教科书117页习题8.3第9题。
18、备19、选题:
(1)一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车.已知过去两次租用这两种货车的记录如下表所示.
甲种货车(辆)乙种货车(辆)总量(吨)
第1次
4528.5
第2次
3627
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本课探究的问题信息量大,数量关系复杂,未知数不容易设定,对学生来说是一种挑战,因此安排学生合作学习.学生先独立思考,自主探索,然后在小组讨论中合理设定未知数,借助表格分析题中的数量关系,列出方程组求得问题的解.在本节的小结中,让学生结合自己的解题过程概括整理实际问题与二元一次方程组的关系,并比较完整地用框图反映,培养模型化的思想.
同时本节向学生提供了社会热点问题、经济问题等现实、具有挑战性的、富有数学意义的学习素材,让学生展开数学探究,合作交流,树立数学服务于生活、应用于生活的意识.
二元一次方程教案篇十四
(2)掌握二元一次方程组和对应的两条直线之间的关系;
(3)掌握二元一次方程组的图像解法。
(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力。
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。
(1)二元一次方程和一次函数的关系;
(2)二元一次方程组和对应的两条直线的关系。
数形结合和数学转化的思想意识。
教具:多媒体课件、三角板。
学具:铅笔、直尺、练习本、坐标纸。
第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)
内容:
1.方程x+y=5的解有多少个?是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?
3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?
由此得到本节课的第一个知识点:
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程。
第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)
内容:
1.解方程组
2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。
(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。
(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。
第三环节典型例题(10分钟,学生独立解决)
探究方程与函数的相互转化
内容:例1用作图像的方法解方程组
例2如图,直线与的交点坐标是。
第四环节反馈练习(10分钟,学生解决全班交流)
内容:
1.已知一次函数与的图像的交点为,则。
2.已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为()
(a)4(b)5(c)6(d)7
3.求两条直线与和轴所围成的三角形面积。
4.如图,两条直线与的交点坐标可以看作哪个方程组的解?
第五环节课堂小结(5分钟,师生共同总结)
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
1.二元一次方程和一次函数的图像的关系;
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程。
2.方程组和对应的两条直线的关系:
(1)方程组的解是对应的两条直线的交点坐标;
(2)两条直线的交点坐标是对应的方程组的解;
3.解二元一次方程组的方法有3种:
(1)代入消元法;
(2)加减消元法;
(3)图像法,要强调的是由于作图的不准确性,由图像法求得的解是近似解。
第六环节作业布置
习题7.7a组(优等生)1、2、3b组(中等生)1、2c组1、2
附:板书设计
六、教学反思
二元一次方程教案篇十五
1.会列二元一次方程组解简单的应用题并能检验结果的合理性。
2.提高分析问题、解决问题的能力。
3.体会数学的应用价值。
1.找实际问题中的相等关系。
2.彻底理解题意。
本节课我们继续学习用二元一次方程组解决简单实际问题。
探究:1.你能画线段表示本题的数量关系吗?
2.填空:(用含s、v的代数式表示)。
设小琴速度是v千米/时,她家与外祖母家相距s千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米20xx年-20xx学年七年级数学下册全册教案(人教版)教案。
3.列方程组。
4.解方程组。
5.检验写出答案。
讨论:本题是否还有其它解法?
1.建立方程模型。
2.p38练习第2题。
3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。
本节课你有何收获?
二元一次方程教案篇十六
开始引入了名人迪卡儿的数学思想,学生崇拜名人相信名人于是以名人名言给这节课定了基调,那就是数学与实际有密切的关系以及用方程思想解决实际问题的总方针。结合现实生活中的身边事例篮球赛为引例巧妙引导到新课。其中张老师设计了学生用原来解二元一次方程组的方法解时太麻烦,不好解,产生了困惑,学生自然而然就会想到有没有解决问题的好方法的猜想。这样就让学生产生了认知上的冲突,从而激发了学生的好奇心和求知欲,提高了学生的热情和兴趣,学生就会拼命地去探究科学奥秘。此时张老师抓住时机引导学生要探究好方法首先要有预备知识,抛出一个量来表示另一个量的探究内容。给学生指明了方向,使学生不至于太漫无边际的探究。也为接下来的自学铺平了道路。紧接着出示自学目标和指导。
二、师生活动融为一体民主气氛浓。
自学指导学生自主探究,先个人独立思考后合作交流展示汇报。老师巡视,指导学困生,积极组织学生活动并参与其中,及时评价学生,关注每个学生的发展。这个过程学生提高了合作、交流能力,也展示了学生的表现能力,并锻炼了学生归纳总结能力,培养学生会听取别人的意见及看法,并给予承认、表扬和鼓励的情感意识,课堂上的掌声不由自主的响起,提升了个人的思想品质和为人素养,思想性很强,情感意识很浓。
三、技能训练及时跟上。
学生一旦获得了探究的新知,马上进行训练和提高,练习中有生趣,有关注学生的严密细致的科学态度,学生练的热情高。其中有一个学生的不同解法,张老师利用的惟妙惟肖,有效地开发和利用了课堂的生成性资源,启迪了学生的智慧,激励了他们的发散思维,培养了他们的创新能力,肯定了学生的一题多解,举一反三的学法,使我们的课堂异彩纷呈。
四、消元思想,代入消元,化归思想,让学生充分体会到化归思想的神奇魅力,从而把数学思想贯穿在教学中,让学生能力得到提高,以后可持续发展自己,一生有用。
总之本节课清晰明了,行如流水,结构严谨,一环扣一环,步步深入。板书设计精细,清晰,具有高度的概括性和逻辑性,学生好记,印象深。学生学习既紧张又活泼,既有常规思维又有创造思维,既学得了知识,又锻炼了各种能力,还随时培养了学生的好习惯。整个课堂始终以学生为主,老师为辅,老师的引导恰如其分,很好的组织了课堂,激发了学生,把时间和空间还给了学生,体现了教育教学的新理念,传播了数学思想和方法,是一堂意味深长的好课,值得研究。不过教学的探究是无止境的,有些地方可以探讨和提升,现在在这里不细说了,以后再个别交流。
二元一次方程教案篇十七
分析:本题可以用一元一次方程解得,等量关系是:一等奖学金+二等奖学金=20xx元,据此列方程求解.
解答:解:设获一等奖学金的x名学生.
则200x+50(22-x)=20xx。
解得x=6。
答:该校获得一等奖的学生有6人.
点评:解题关键是要读懂题目的意思,找出合适的等量关系:一等奖学金+二等奖学金=20xx元.列出方程,再求解.
二元一次方程教案篇十八
1.会用加减法解一般地二元一次方程组。
2.进一步理解解方程组的消元思想,渗透转化思想。
3.增强克服困难的勇力,提高学习兴趣。
把方程组变形后用加减法消元。
根据方程组特点对方程组变形。
用加减消元法解方程组。
1.思考如何解方程组(用加减法)。
先观察方程组中每个方程x的系数,y的系数,是否有一个相等。或互为相反数?
能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。
学生解方程组。
2.例1.解方程组
思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?
学生讨论,小组合作解方程组。
提问:用加减消元法解方程组有哪些基本步骤?
1.p40练习题(3)、(5)、(6)。
2.分别用加减法,代入法解方程组。
解二元一次方程组的加减法,代入法有何异同?
p33.习题2.2a组第2题(3)~(6)。
b组第1题。
选作:阅读信息时代小窗口,高斯消去法。
后记:
2.3二元一次方程组的应用(1)
二元一次方程教案篇十九
1.认知目标:
1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2.能力目标:
1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3.情感目标:
1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
重点:二元一次方程组及其解的概念
难点:用列表尝试的方法求出方程组的解。
(一)创设情景,引入课题
1.本班共有40人,请问能确定男女各几人吗?为什么?
(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)
(2)这是什么方程?根据什么?
2.男生比女生多了2人。设男生x人,女生y人.方程如何表示?x,y的值是多少?
两个方程中的x表示什么?类似的两个方程中的y都表示?
象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4.点明课题:二元一次方程组。
[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]
(二)探究新知,练习巩固
1.二元一次方程组的概念
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解.]
(2)练习:判断下列是不是二元一次方程组:
x+y=3,x+y=200,
2x-3=7,3x+4y=3
y+z=5,x=y+10,
2y+1=5,4x-y2=2
学生作出判断并要说明理由。
2.二元一次方程组的解的概念
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
x=1;x=-2;x=;-x=
y=0;y=2;y=1;y=
方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。
2x+3y=2
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。
y=0.55x+2a=2y
(三)合作探索,尝试求解
现在我们一起来探索如何寻找方程组的解呢?
1.已知两个整数x,y,试找出方程组3x+y=8的解.
2x+3y=10
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
提炼方法:列表尝试法。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.
2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
(四)课堂小结,布置作业
1.这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)
2.你还有什么问题或想法需要和大家交流?
3.作业本。
1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3.本课在设计时对教材也进行了适当改动。例题方面考虑到数女生时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
二元一次方程教案篇二十
掌握二元一次方程和二元一次方程组及它们的解的概念,会用消元法解方程组。
过程与方法。
能根据方程组的特点选择合适的方法解方程组;并能把相应问题转化为解方程组。
情感、态度与价值观。
培养学生分析问题,解决问题的能力,体验学习数学的快乐。
掌握二元一次方程和二元一次方程组及它们的解的概念,会用消元法解方程组。
选择合适的方法解方程组;并能把相应问题转化为解方程组。
多媒体,小组评比。
设计意图:知识回顾,掌握知识要点,为顺利完成练习打下基础。
教学手段与方法:每小组必答题,答对为小组的一分,调动学习的积极性。
基础知识达标训练。
教学手段与方法:
毎小组选代表讲解为小组加分,充分调动学生的积极性。学生讲解不到位的老师补充。
【本文地址:http://www.xuefen.com.cn/zuowen/11142114.html】