沪科版七年级数学教案(优质16篇)

格式:DOC 上传日期:2023-11-12 09:33:26
沪科版七年级数学教案(优质16篇)
时间:2023-11-12 09:33:26     小编:ZS文王

教案要根据学生的学习特点和认知规律来设计,做到因材施教。教案中应该如何选择合适的教学方法和教学资源?以下是小编为大家收集的优秀教案范文,供广大教师参考借鉴。

沪科版七年级数学教案篇一

从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题

在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

情感态度与价值观

在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。

创设情境,切入标题

请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

请各小组分别派一名代表,看哪组能转出红色。

结果,8小组有6组转出了红色。

为什么会出现这样的结果呢?

因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

大家同意这种看法吗?下面我们亲自动手感受一下。

学生按照题目要求进行实验。

请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。

根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

在小组内实验结果不明显,实验次数越多越能说明问题。

通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

同学们说出很多种方法,不一一列举。

“平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

如果将这个实验继续做下去,卡片上所有数的平均数会增大。

同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

以下过程同教学设计,略去。

指导学生完成教材第206页习题。

学生可从各个方面加以小结。 布置作业

仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。

沪科版七年级数学教案篇二

1、导致全球变暖的主要原因是气体的排放。

2、全球变暖对人类的不利影响主要是:的,对动植物的影响,对农业的影响和对人类的影响等。

3、缺水已是一个世界性的普遍现象,我国属于(缺水国或严重缺水国)。水资源,是地球上每一个人义不容辞的责任。

4、面对严重的缺水、水污染问题,我们应该采取的措施有:采取、、等,合理利用和保护水资源。

沪科版七年级数学教案篇三

1、教学方法:引导发现法、探究法、讲练法、

(一)重点

准确掌握积的乘方的运算性质、

(二)难点

用数学语言概括运算性质、

(三)解决办法

增强对三种运算性质的理解,并运用对比的方法强化训练以达到准确地区分、

一课时、

投影仪或电脑、自制胶片、

3、通过举例来说明积的乘方性质应如何正确使用,师生共练以达到熟练掌握、

4、多种题型的设计,让学生能从不同的角度全面准确地理解和运用该性质、

(一)明确目标

本节课重点学习积的乘方的运算性质及其较灵活地运用、

(二)整体感知

(三)教学过程

1、创设情境,复习导入

前面我们学习了同底数幂的乘法、幂的乘方这两个寨的运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:

填空:

沪科版七年级数学教案篇四

1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。

2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。

重点、难点。

重点:工程中的工作量、工作的效率和工作时间的关系。

难点:把全部工作量看作“1”。

教学过程。

一、复习提问。

1.一件工作,如果甲单独做2小时完成,那么甲独做i小时完成全。

部工作量的多少?

2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成。

全部工作量的多少?

3.工作量、工作效率、工作时间之间有怎样的关系?

二、新授。

阅读教科书第18页中的问题6。

分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么?已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。

2.怎样用列方程解决这个问题?本题中的等量关系是什么?

[等量关系是:师傅做的工作量+徒弟做的工作量=1)。

[先要求出师傅与徒弟各完成的工作量是多少?]。

师傅完成的工作量为=,徒弟完成的工作量为=。

所以他们两人完成的工作量相同,因此每人各得225元。

三、巩固练习。

一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现。

由甲独做10小时;。

请你提出问题,并加以解答。

例如(1)剩下的乙独做要几小时完成?

(2)剩下的由甲、乙合作,还需多少小时完成?

(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?

四、小结。

1.本节课主要分析了工作问题中工作量、工作效率和工作时间之。

间的关系,即工作量=工作效率×工作时间。

工作效率=工作时间=。

2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。

五、作业。

教科书习题6.3.3第1、2题。

沪科版七年级数学教案篇五

教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。

非常高兴,能有机会和同学们共同学习

昨天,老师在七年级三班上课时,把他们分成七个小组,每个小组回答问题的情况以抢答赛的形式记分。你们看(出示投影)这是七年级三班七个小组回答问题的表现情况。答对一题得一分,记作+1分;答错一题扣一分,记作1分。第几组最棒?老师还没来得及计算出每个小组的最后得分,咱们班哪位同学能帮老师算出最后结果?(学生在教师引导下回答)

我们已得出了每个小组的最后分数,那么哪个小组是优胜小组?(第一小组),回去以后,老师就把小奖品发给他们,相信他们一定会很高兴。

同学们,这节课你们愿不愿意也分成几个小组,看一看那个小组的同学表现得最出色?(原意)那么老师就按座次给同学们分组,每一竖排为一组。老师把组号写在黑板上,以便记分。

希望各组同学积极思考、踊跃发言。同学们有没有信心得到老师的小奖品?(有)同学们加油!

我们已得到了这7个小组的最后得分,那位同学能试着用算式表示?(学生在教师指导下列算式)

以上这些算是都是什么运算?(加法),两个加数都是什么数?(有理数),这就是我们这节课要学习的有理数的加法(板书课题)。

刚才老师说要给七年级三班的优胜组发奖品,老师手里有12本作业本,优胜组共6人,老师将送出的作业本数占总数的几分之几?(二分之一)分数最低的一组共7人,他们每人交给老师一个作业本,占总数的几分之几?(十二分之七)如果,老师得到的作业本记为正数,送出的作业本记为负数,则老师手里的作业本增加或减少几分之几?同学们能列出算式吗?(学生列式)对于这个算式,同学们还能轻易的感知出结果吗?(不能)

对于有理数的加法,有的同学们能直接感知得到结果,有的靠感知是不够的,这就需要我们共同探索规律!(出示投影),观察这7个算式,每一个算式都是怎样的两个有理数相加?(引导学生回答)你们还能举出不同以上情况的算式吗?(不能),这说明这几个算式概括了有理数加法的不同情况。

前两个算式的加数在符号上有什么共同点?(相同),那么我们就可以说这是什么样的两数相加?(同号两数相加)同学们还能观察出那几个算式可归为一类吗?(3、4、5、异号两数相加,6、7一个数同0相加)

同学们已把这7个算式分成了三种情况,下面我们分别探讨规律。

(2) 异号两数相加,其和有何规律呢?大家观察这三个式子回答问题。(引导学生分成两类,容易得到绝对值相同情况的结论。再引导学生观察绝对值不相同的情况,回答问题)哪位同学能概括一下这个规律?(引导学生得出)

(3) 一个数同0相加,其和有什么规律呢?(易得出结论)

同学们经过积极思考,探索出了解决有理数加法的规律,顾一下(出哪位同学能带领大家共同回顾一下?(出示投影,学生大声朗读)我们把这个规律称为有理数的加法法则。

同学们都很聪明,积极参与探索规律,每个组都有不错的成绩。个别落后的组不要气馁,继续努力,下面老师就给大家一个得分的机会,看哪一组能[出题制胜]!(出示)

(活动过程1后评价、加分;教师以其中一题为例,讲解题格式及过程;活动过程2后:让每组第三排同学评价加分)

同学们已经基本掌握了有理数的加法法则,并会运用它,但七年级三班有几位同学对这一内容掌握的不是太好,以致在作业中出了毛病,他们为此很苦恼。希望咱们同学能帮帮他们,看哪位同学能像妙手回春的神医华佗一样药到病 除!(师生共同治病)

看来同学们对有理数的加法已经掌握得很好了,大家还记得前面那个难倒我们的有理数的加法题呢?那位同学能解决这个问题呢?(学生口述 师板书)。在大家的努力下,我们终于攻破了这个难关。

通过这节课的学习,大家有什么收获?(学生回答)同学们都有很多收获,老师认为收获最多的是优胜组的同学,因为他们能得到老师的小奖品,大家赶紧看看那一组获胜?欢迎优胜组上台领奖,大家掌声鼓励!

同学们,希望你们在未来的学习和生活中都能积极进取,获得一个又一个的胜利。

沪科版七年级数学教案篇六

2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)。

3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

教学难点深化对正负数概念的理解。

知识重点正确理解和表示向指定方向变化的量。

教学过程(师生活动)设计理念。

问题1:有没有一种既不是正数又不是负数的数呢?

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分。

界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)。

零上7℃,最低温度是零下5℃时,就应该表示为+7℃。

和-5℃,这里+7℃和-5℃就分别称为正数和负数.

负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。

可,不必深究.

分析问题。

解决问题问题3:教科书第6页例题。

说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).

类似的例子很多,如:

水位上升-3m,实际表示什么意思呢?

收人增加-10%,实际表示什么意思呢?

等等。

可视教学中的实际情况进行补充.

不必向学生提出.

巩固练习教科书第6页练习。

阅读思考。

教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流。

小结与作业。

课堂小结以问题的形式,要求学生思考交流:

1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

2,怎样用正负数表示具有相反意义的量?

(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)。

本课作业1,必做题:教科书第7页习题1.1第3,6,7,8题。

2,选做题:教师自行安排。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指。

定方向变化的量。

2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.

3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.

4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.

沪科版七年级数学教案篇七

2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;。

3.使学生初步理解数形结合的思想方法.

教学重点和难点。

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.

难点:正确理解有理数与数轴上点的对应关系.

课堂教学过程设计。

一、从学生原有认知结构提出问题。

1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.

二、讲授新课。

让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)。

在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.

通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.

三、运用举例变式练习。

例1画一个数轴,并在数轴上画出表示下列各数的点:

例2指出数轴上a,b,c,d,e各点分别表示什么数.

课堂练习。

示出来.

2.说出下面数轴上a,b,c,d,o,m各点表示什么数?

最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.

四、小结。

指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.

本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.

五、作业。

1.在下面数轴上:

(1)分别指出表示-2,3,-4,0,1各数的点.

(2)a,h,d,e,o各点分别表示什么数?

2.在下面数轴上,a,b,c,d各点分别表示什么数?

3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};。

课堂教学设计说明。

从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.

沪科版七年级数学教案篇八

本节教学的重点是掌握解一元一次不等式的步骤.难点是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.掌握一元一次不等式的解法是进一步学习一元一次方程组的解法以及一元二次不等式的解法的重要基础.

1、一元一次不等式和一元一次方程概念的异同点

相同点:二者都是只含有一个未知数,未知数的次数都是1,左、右两边都是整式.

不同点:一元一次不等式表示不等关系,一元一次方程表示相等关系.

(3)同方程类似,我们把或叫做一元一次不等式的标准形式.

2、一元一次不等式和一元一次方程解法的异同点

相同点:步骤相同,二者都是经过变形,把左边变成,右边变为一个常数.

注意:(1)解方程的移项法则对解不等式同样适用.

三、教法建议

沪科版七年级数学教案篇九

教学内容:

第87页例1、例2,88页课堂活动第1、2题,练习二十二第1~4题。

教学目标:

1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。

2.会正确地读、写正、负数,知道0既不是正数,也不是负数。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。

教学重点:

负数的意义和负数的读法与写法。

教学难点:

理解0既不是正数,也不是负数。

教具准备:

多媒体课件。

教学方法:

教师讲授、合作交流。

教学过程:

一、复习导入。

提出问题:举例说明我们学过了哪些数?

教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。

提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?

二、创设情境、学习新知。

1.教学例1。

(1)出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……”

为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?

这里有零下6℃、零上6℃,都记作6℃行吗?

你有什么简洁的方法来表示他们的不同呢?

教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。

(2)巩固练习。

同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。

学生独立完成第87页下图的练习。

教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。

2.自主学习例2。(进一步认识正数和负数)。

教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。

引导学生交流:珠穆朗玛峰比海平面高8844.43米。

引导学生交流:吐鲁番盆地比海平面低155米。

学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)。

教师追问:你是怎么想到用这种方法来记录的呢?

最后教师将数字改动成:海拔+8844.43米或8844.43米;海拔-155米。

教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。

(2)巩固练习:教科书第88页试一试。

3.小组讨论,归纳正数和负数。

提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。

小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)。

通常正号可以省略不写。负号可以省略不写吗?为什么?

最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)。

三、运用新知,课堂作业。

1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。

2.课堂活动第2题。同桌先讨论,然后反馈。

四、小结。

同学们,今天我们认识了负数。你有什么收获?

五、课堂作业。

练习二十二第1、4题。

家庭作业:练习二十二第2、3题。

板书设计:

负数的初步认识。

正数:20、22、14、+8844.43…。

0:既不是正数也不是负数。

负数:-2、-30、-10、-15、-155…。

沪科版七年级数学教案篇十

重点:列代数式。

难点:弄清楚语句中各数量的意义及相互关系。

本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。

列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。

如:用代数式表示:比的2倍大2的数。

分析本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2+2.

(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。

(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。

(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。

(4)在代数式中出现除法时,用分数线表示。

列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。

沪科版七年级数学教案篇十一

指导思想:

执教七年级数学有3人(七年级有6个班,一人带两个班),为了充分发挥集体的智慧,加强教师间的合作与交流,提高课堂教学效率,特制订此计划。

一、集体备课的目标任务。

1.通过备课活动,努力提高自身业务素质和教学水平。

2.优化教学过程,引导学生积极参与,训练学生的思维品质。

3.提高教育教学质量,培养学生的探索能力和创新能力。

4.在教学中推进“先学后教”课堂教学模式。

二、加大集体备课力度。

1.定时间、定地点。根据学校安排每周星期三下午为集体备课时间,地点在小会议室。

2.定内容。每次讨论的中心问题是下一周的新授课。

3.定中心发言人。期初将本期讲授内容分配到本组各位教师,每位教师只备他分配到的内容,形成讲学稿,这位教师就是下一次集体备课的中心发言人。

4.集体讨论形成最终教案。(注:每个人也可以根椐自己的特点增补内容,形成个性化教案。)。

5.具体安排。

全期任课教师集体备课任务如下:

三、加强教学研究。

1.进一步探究“先学后教”课堂教学模式的实施方法,结合我校实际初步形成科学高效的数学课堂教学模式.

2.继承我校教学优良传统即严谨教风,课堂上追求大容量高思维量,备课时特别重视精选习题,平时多测精讲,要把这一思想渗透到七年级每一位数学教师心中,在常规教学中有意识去执行。

3.扩大教师中的交流。一是多向本校名师学习,多听他们的课;二是走出去,向外校名师学习,领略外校名师风采,让每位教师努力有方向;三是老师之间互相听课,取长补短。

4.有目的地组织一些示范课、研究课,探讨不同类型课如何讲授效果最佳,最后归结成模式,加以推广。

四、要求教师加大学习的力度。

1.学业务知识、学专业知识,提升自己的水平,做到教学游刃有余。有计划地做中考题,提升自己解题水平。

2.熟练新教学手段在教学中的应用。

总之,提高课堂教学效益,需要教师认真备好每节课,上好每节课,全身心地投入到教书育人的事业中。

沪科版七年级数学教案篇十二

2?培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

重点和难点:正确地求出代数式的值。

一、从学生原有的认识结构提出问题。

1?用代数式表示:(投影)。

(1)a与b的和的平方;(2)a,b两数的平方和;。

(3)a与b的和的50%?

2?用语言叙述代数式2n+10的意义?

3?对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)。

若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

二、师生共同研究代数式的值的意义。

2?结合上述例题,提出如下几个问题:

(1)求代数式2x+10的值,必须给出什么条件?

(2)代数式的值是由什么值的确定而确定的?

(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

下面教师结合例题来引导学生归纳,概括出上述问题的答案?(教师板书例题时,应注意格式规范化)。

例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值?

解:当x=7,y=4,z=0时,

x(2x-y+3z)=7×(2×7-4+3×0)。

=7×(14-4)。

=70?

注意:如果代数式中省略乘号,代入后需添上乘号。

沪科版七年级数学教案篇十三

1.了解正数和负数在实际生活中的应用。

2.深刻理解正数和负数是反映客观世界中具有相反意义的理。

3.进一步理解0的特殊意义。

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量。

2.熟练地用正、负数表示具有相反意义的量。

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:能用正、负数表示具有相反意义的量。

教学难点:进一步理解负数、数0表示的量的意义。

教学方法:小组合作、师生互动。

教学过程:

创设问题情境,引入新课:分小组派代表,注意数学语言规范。

1.认真想一想,你能用学过的知识解决下列问题吗?

某零件的直径在图纸上注明是,单位是毫米,这样标注表示零件直径的标准尺寸是毫米,加工要求直径可以是毫米,最小可以是毫米。

2.下列说法中正确的()

a、带有“一”的数是负数;b、0℃表示没有温度;

c、0既可以看作是正数,也可以看作是负数。

d、0既不是正数,也不是负数。

[师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。

讲授新课:

例1.仔细找一找,找了具有相反意义的量:

甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。

(2)20xx年下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,法国减少2.4%,

英国减少3.5%,意大利增长0.2%,中国增长7.5%。

写出这些国家20xx年商品进出口总额的增长率。

复习巩固:练习:课本p6练习

课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本p7习题1.1的第3、6、7、8题。

活动与探究:

沪科版七年级数学教案篇十四

苏教版二年级下册第64--66页例题及想想做做相关内容。

1.知识目标:结合具体生活情境认识角,能正确找出(指出)物体表面或平面图形中的角,知道角的各部分名称,会用不同的方法和材料来做角。

2.能力目标:操作活动中感知角有大小。

3.情感目标:创造性使用工具和材料来制作一个角和比较角的大小的过程中,体验解决问题策略的多样性,培养学生的动手实践能力和创新意识。

在直观感知中抽象出角的形状,知道角的各部分名称。

体验理解角的大小与两边开叉的程度有关。

实物投影仪、ppt、小棒、线、纸片、三角尺等。

(二)利用学生已有认知经验,导入新课。

1.从生活中的角引入数学图形中的角。

师:板书“角”字。

谈话:看到这个字你能想到些什么?

今天这节课我们来研究数学图形中的角。

2.揭示并板书课题:认识角。

(三)引导探究角。

(3)联系实际,感知角的特征。

谈话:角是个调皮的娃娃,特别喜欢玩捉迷藏,你能在这些物体的面上找到角吗?

出示扇子、三角尺、钟面、剪刀的图片。

同桌一起找一找。

汇报交流,总结。

(二)抽象图形,形成表象。

1.抽象出图形。

谈话:让我们把角从物体中请出来。

说一说,他们有什么相同的特征?

引导说出:尖尖的,直直的。

2.摸角,感受角的特征,明确各部分名称。

谈话:请同学们拿出三角尺。

为什么把它叫做三角尺?

你能指出三角尺上的各个角吗?

摸一摸三角尺上有角的地方,在手心轻轻按一下,看看留下了什么?

再摸一摸尖尖地方的两旁,有什么感觉?

尖尖的地方是角的一个组成部分,叫顶点。

直直的两条线是角的边。

3.画角。

边画边讲解画角的步骤。

4.快速说出屏幕上角的各部分名称。

5.清晰角的表象。

师:请同学们闭上眼睛回忆一下我们刚刚认识的角是什么样的,把它记在心里。

6.根据学习经验,准确辨认角。

这些图形,哪些是角,哪些不是角?

学生做出判断,并说出判断的理由。

7.数出平面图形中的角。

谈话:看同学们学的这么认真,图形朋友们也想考考大家,想接受挑战吗?

出示图形,数出每个图形里各有几个角。

学生汇报结果,并指出每个图形里的角。

8.寻找生活中的角。

(1)谈话:小朋友们已经认识了角,能够准确辨认角,还能数出图形里到底有几个角,真了不起!

其实我们的身边到处都藏有角,仔细观察,你还能在哪些物体的面上找到角?

(2)同桌互相指。

(3)汇报交流,规范指角的方法。

(三)动手操作,体会角的特征。

1.创造角。

(1)明确要求。

每种材料只做一个角。

小组合作,比比哪个组的小朋友手最巧,变出的角最多。

(2)动手创造。

学生分组活动,教师巡视,了解情况。

(1)展示成果。

谈话:哪位同学能勇敢地来展示自己的作品,并说给大家听听你是怎样做的?

学生阐述自己做角的过程,并指出所做角的各部分名称。

(4)小结:小朋友们真能干,用自己的双手做出这么多的角,真了不起。

2.比较角的大小,感受角的大小与两边叉开的程度有关,与边的长短无关。

(1)活动角游戏。

谈话:这位同学做的角真有趣,还可以自由活动呢,我们可以把它叫做活动角。

其他小朋友有做了活动角的吗?

我们一起来做个小游戏吧。

3.感受叉开程度与角大小的关系。

谈话:你是怎样把角变小的?

你是怎样把角变大的?

学生汇报自己的发现,总结。

4.感受边的长短与角的大小无关。

谈话:角变大和变小的时候,边的长短改变了吗?

5.比较角的大小。

(1)出示习题。

(2)独立思考,汇报结果。

三、巩固深化,再创造。

1.出示正方形。

谈话:如果把正方形纸沿一条边剪去一个角后,还剩几个角?

2.猜想一下,并动手验证你的猜想。

同桌合作,动手操作。

3.汇报交流。

4.演示,总结。

四、欣赏角的美丽身影,总结全课。

1.欣赏。

(1)谈话:角的世界就是这样变化多端而又奥妙无穷,需要我们不断去探索。因为角的存在,我们的生活也变得更加多姿多彩。让我们一起来欣赏生活中角的美丽身影吧。

(2)课件一次出现金字塔、五角大楼、乡村木屋等图片,教师介绍,学生欣赏。

2.总结全课。

师:今天这节课,我们认识了新朋友——角。

你们对自己这节课上的表现满意吗?

用一个手势来表示自己的心情吧。

看到角了吗?

请同学们课后继续探索角的奥秘!

沪科版七年级数学教案篇十五

第1教案。

教学目标。

1.能结合实例,了解一元一次不等式组的相关概念。

2.让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。

3.提高分析问题的能力,增强数学应用意识,体会数学应用价值。

教学重、难点。

1..不等式组的解集的概念。

2.根据实际问题列不等式组。

教学方法。

探索方法,合作交流。

教学过程。

一、引入课题:

1.估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。

2.由许多问题受到多种条件的限制引入本章。

二、探索新知:

自主探索、解决第2页“动脑筋”中的问题,完成书中填空。

分别解出两个不等式。

把两个不等式解集在同一数轴上表示出来。

找出本题的答案。

三、抽象:

教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)。

沪科版七年级数学教案篇十六

学习目标:

1.会用正.负数表示具有相反意义的量.

2.通过正.负数学习,培养学生应用数学知识的意识.

3.通过探究,渗透对立统一的辨证思想。

学习重点:

用正.负数表示具有相反意义的量。

学习难点:

实际问题中的数量关系。

教学方法:

讲练相结合。

教学过程。

一.学前准备。

通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

问题1:“零”为什么即不是正数也不是负数呢?

引导学生思考讨论,借助举例说明.

参考例子:温度表示中的零上,零下和零度.

二.探究理解解决问题。

问题2:(教科书第4页例题)。

先引导学生分析,再让学生独立完成。

(2)20xx年下列国家的商品进出口总额比上一年的变化情况是:

美国减少6.4%,德国增长1.3%,

法国减少2.4%,英国减少3.5%,

意大利增长0.2%,中国增长7.5%.

写出这些国家20xx年商品进出口总额的增长率.

解:(1)这个月小明体重增长2kg,小华体重增长―1kg,小强体重增长0kg.

(2)六个国家20xx年商品进出口总额的增长率:

美国―6.4%,德国1.3%,

法国―2.4%,英国―3.5%,

意大利0.2%,中国7.5%.

三.巩固练习。

从0表示一个也没有,是正数和负数的分界的角度引导学生理解.

在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.

在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.

通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

四.阅读思考1页。

(教科书第8页)用正负数表示加工允许误差.

问题:1.直径为30.032mm和直径为29.97的零件是否合格?

2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.

五.小结。

1.本节课你有那些收获?

2.还有没解决的问题吗?

六.应用与拓展。

1.必做题:

教科书5页习题4.5.:6.7.8题。

2.选做题。

1).甲冷库的温度是―12°c,乙冷库的温度比甲冷酷低5°c,则乙冷库的温度是.

【本文地址:http://www.xuefen.com.cn/zuowen/11143006.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档