九年级数学概率教案(通用17篇)

格式:DOC 上传日期:2023-11-17 08:19:14
九年级数学概率教案(通用17篇)
时间:2023-11-17 08:19:14     小编:笔舞

教案是教师在备课时准备的一种详细记录,它可以帮助教师有条不紊地组织教学活动。教案的编写需要充分考虑学生的学习兴趣和能力水平。以下教案范例展示了不同学科、不同年级的教学内容和教学步骤,希望能够给大家带来启示和灵感。

九年级数学概率教案篇一

1.当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,我们一般还要通过统计频率来估计概率.

在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.

疑难分析:

1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.

2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件a出现的频率,稳定地在某个数值p附近摆动.这个稳定值p,叫做随机事件a的概率,并记为p(a)=p.

九年级数学概率教案篇二

2、掌握用树状图和列表法计算涉及两步实验的随机事件发生的概率。

3、通过实验提高学生学习数学的兴趣,让学生积极参与数学活动,在活动中发展学生的合作交流意识和能力。

进一步经历用树状图、列表法计算随机事件发生的概率。

正确地利用列表法计算随机事件发生的概率。

生:由几名学生动手摸一摸。

(教师准备一个不透明的小袋子,里面装有3个黑围棋和2个白围棋)。

师:在数学中,我们把事件发生的可能性的大小称为事件发生的概率,如果事件发生的各种可能结果的可能性相同,结果总数为n(事件a发生的可能的结果总数为m),事件a发生的概率为。

如图,三色转盘,每个扇形的`圆心角度数相等,让转盘自由转。

动一次,“指针落在黄色区域”的概率是多少?

师:结合定义作详细分析,为两个例题教学做准备。

(分析:转盘中红、黄、蓝三种颜色所在的扇形面积相同,即指针落在各种颜色区域的可能性相同,所有可能的结果总数为,其中“指针落在黄色区域”的可能结果总数为。若记“指针落在黄色区域”为事件a,则。)。

设计说明:通过练习,让学生及时回味知识的形成过程,使学生在学会数学的过程中会学数学。

例一,有甲、乙两个相同的转盘。让两个转盘分别自由转动一次,当转盘停止转动,求。

(1)转盘转动后所有可能的结果;

(2)两个指针落在区域的颜色能配成紫色(红、蓝两色混合配成)的概率;

(3)两个指针落在区域的颜色能配成绿色(黄、蓝两色混合配成)或紫色的概率;

例题解析:

例1关键是让学生学会分步思考的方法。

教师分析并让学生学会画树状图(教师板演)。

任意抛掷两枚均匀硬币,硬币落地后,

(1)写出抛掷后所有可能的结果(用树状图表示)。

(2)一正一反的概率是多少?(指定一名学生板演)。

例2:一个盒子里装有4个只有颜色不同的球,其中3个红球,1个白球。从盒子里摸出一个球,记下颜色后放回,并搅匀,再摸出一个球。

(1)写出两次摸球的所有可能的结果;

(2)摸出一个红球,一个白球的概率;

(3)摸出2个红球的概率;

师:你能用列表法来解吗?

有没有更简单明了的方法?(学生应。

该有预习,能说出用列表法。)。

任意把骰子连续抛掷两次,

(1)写出抛掷后的所有可能的结果;

(2)朝上一面的点数一次为3,一次为4的概率。

(3)朝上一面的点数相同的概率。

(4)朝上一面的点数都为偶数的概率。

(5)两次朝上一面的点数的和为5的概率。

九年级数学概率教案篇三

一、选择题(共10小题,每小题3分,满分30分)。

1.下列说法中正确的是()。

a.“任意画出一个等边三角形,它是轴对称图形”是随机事件。

b.“任意画出一个平行四边形,它是中心对称图形”是必然事件。

c.“概率为0.0001的事件”是不可能事件。

d.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次。

【考点】随机事件.

【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.

【解答】解:a、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;。

b、“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;。

c、“概率为0.0001的事件”是随机事件,选项错误;。

d、任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误.

故选b.

【点评】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.

九年级数学概率教案篇四

解析:对众数的概念理解不清,会误认为这组数据中80出现了三次,所以这组数据的众数是80.根据众数的.意义可知,一组数据中出现次数最多的数据是这组数据的众数.而在数据中70也出现了三次,所以这组数据是众数有两个.

答案:这组数据的众数是70和80.

好题2.某班53名学生右眼视力(裸视)的检查结果如下表所示:

则该班学生右眼视力的中位数是_______.

解析:本题表面上看视力数据已经排序,可以求视力的中位数,有的同学会误认为:因为11个数据按照大小的顺序排列有:0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、1.0、1.2、1.5,则知排在第6个的数是0.6.但注意观察可以发现:题目中的视力数据实际是小组数据,小组的人数才是视力数据的真正个数.因此,不能直接求视力数据的中位数,而应先求出53名学生视力数据的中间数据,即第27名学生的视力就是本班学生右眼视力的中位数.

答案:(53+1)2=27,所以第27名学生的右眼视力为中位数,从表中人数栏数出第27名学生所对应的右眼视力为0.8,即该班学生右眼视力的中位数是0.8.

九年级数学概率教案篇五

1.用分式表示生活中的一些量.

2.分式的基本性质及分式的有关运算法则.

3.分式方程的概念及其解法.

4.列分式方程,建立现实情境中的数学模型.

(二)能力训练要求。

1.使学生有目的的梳理知识,形成这一章完整的知识体系.

2.进一步体验“类比”与“转化”在学习分式的基本性质、分式的运算法则及其分式方程解法过程中的重要作用.

3.提高学生的归纳和概括能力,形成反思自己学习过程的意识.

(三)情感与价值观要求。

使学生在总结学习经验和活动经验的过程中,体验因学习方法的大力改进而带来的快乐,成为一个乐于学习的人.

九年级数学概率教案篇六

教学目标。

1.用列举法(列表法)求简单随机事件的概率,进一步培养随机概念.

2.经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率,渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力.

3.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.

教学重点。

运用列表法求事件的概率.

教学难点。

如何使用列表法.

教学过程。

一、导入新课。

为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:a、b两个带指针的转盘分别被分成三个面积相等的扇形,转盘a上的数字分别是1,6,8,转盘b上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动a、b两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.

以贴近学生生活的联欢晚会为背景,创设转盘游戏引入,能在最短时间内激发学生的兴趣,引起学生高度的注意力,进入情境,导入新课的教学.

二、新课教学。

1.学生分组讨论,探索交流.

九年级数学概率教案篇七

1.了解必然发生的事件、不可能发生的事件、随机事件的特点.

2.能根据随机事件的特点,辨别哪些事件是随机事件.

3.有对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.

重点:对生活中的随机事件作出准确判断,对随机事件发生的可能性大小作定性分析.

难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性.

一、自学指导.(10分钟)。

自学:阅读教材p127~129.

归纳:在一定条件下必然发生的事件,叫做__必然事件__;在一定条件下不可能发生的事件,叫做__不可能事件__;在一定条件下可能发生也可能不发生的事件,叫做__随机事件__.

二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)。

1.下列问题哪些是必然发生的?哪些是不可能发生的?

(1)太阳从西边落下;。

(2)某人的体温是100℃;。

(3)a2+b2=-1(其中a,b都是实数);。

(4)自然条件下,水往低处流;。

(5)三个人性别各不相同;。

(6)一元二次方程x2+2x+3=0无实数解.

解:(1)(4)(6)是必然发生的;(2)(3)(5)是不可能发生的.

2.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中随机摸出1个小球,请你写出这个摸球活动中的一个随机事件:__摸出红球__.

3.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性____摸到j,q,k的可能性.(填“”“”或“=”)。

4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是(d)。

a.抽出一张红桃b.抽出一张红桃k。

c.抽出一张梅花jd.抽出一张不是q的牌。

5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a.抽到一名住宿女生;b.抽到一名住宿男生;c.抽到一名男生.其中可能性由大到小排列正确的是(a)。

点拨精讲:一般的,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。

九年级数学概率教案篇八

1.知道通过大量重复试验,可以用频率估计概率.

2.会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力.

3.让学生经历硬币实验和投图钉实验,对数据进行收集、整理、描述和分析,通过“猜想试验——收集数据——分析结果”的探索过程,体验频率的随机性与规律性,丰富对随机现象的体验,了解用频率估计概率的合理性和必要性,培养随机观念.

4.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.

5.在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.

教学重点。

对实验数据进行收集、整理、描述和分析.通过对事件发生的频率的分析来估计事件发生的概率.

教学难点。

2.对大量重复试验得到频率的稳定值的分析.

课时安排。

2课时.

第1课时。

教学内容。

1.知道通过大量重复试验,可以用频率估计概率.

2.让学生经历硬币实验和投图钉实验,对数据进行收集、整理、描述和分析,通过“猜想试验——收集数据——分析结果”的探索过程,体验频率的随机性与规律性,丰富对随机现象的体验,了解用频率估计概率的合理性和必要性,培养随机观念.

3.在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.

教学重点。

对实验数据进行收集、整理、描述和分析.

教学难点。

教学过程。

一、导入新课。

问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去,我很为难,真不知该把球给谁,请大家帮我想个办法来决定把球票给谁.

生:抓阄、抽签、猜拳、投硬币,……。

教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)。

追问,为什么要用抓阄、投硬币的方法呢?

学生讨论:这样做公平,能保证小强与小明得到球票的可能性一样大.

九年级数学概率教案篇九

2.?难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.

教学过程。

一、复习引入。

学生活动:请同学独立完成下列问题.

2

问题1.前面有关“执竿进屋”的问题中,我们列得方程x-8x+20=0。

列表:

问题2列表:

3

22。

果抛开实际问题,问题2中还有x=-11的解.

一元二次方程的解也叫做一元二次方程的根.

2

回过头来看:x-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.

2

例1.下面哪些数是方程2x+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.

分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.

2

解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x+10x+12=0的两根.

2

22。

练习:关于x的一元二次方程(a-1)x+x+a-1=0的一个根为0,则求a的值。

点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解.

例3.你能用以前所学的知识求出下列方程的根吗?

222。

(1)x-64=0(2)3x-6=0(3)x-3x=0。

三、巩固练习。

教材思考题练习1、2.

四、归纳小结(学生归纳,老师点评)本节课应掌握:

(1)一元二次方程根的概念;。

(2)要会判断一个数是否是一元二次方程的根;。

1.教材复习巩固3、4综合运用5、6、7拓广探索8、9.2.选用课时作业设计.

九年级数学概率教案篇十

1.掌握分式、有理式的概念。

2.掌握分式是否有意义、分式的值是否等于零的识别方法。

教学重点。

正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。

教学难点:

正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。

教学时间:一课时。

教学用具:投影仪等。

教学过程:

九年级数学概率教案篇十一

上学期学生已经学习了比较、分类,能正确地进行计数,所以填写统计表时不会感到太困难,其关键在于引导学生学会收集信息,整理数据,根据统计表解决问题。学生在生活中积累了较多的生活经验,能利用统计图表中的数据作出简单的分析,能和同伴交流自己的想法,体会统计的作用。本单元教材选择了与学生生活密切联系的生活场景,激发了学生的学习兴趣。如,学生的校服、讲故事比赛、春游的人数情况统计等,同时渗透一些生活基本常识,使学生明确统计的知识是为生活服务的。教学内容更加注重对统计数据的初步分析。在教学时,教师要注意让学生经历统计活动的全过程,要鼓励学生参与到活动之中,在活动中不断培养动手实践能力和独立思考能力,并加强与同伴的合作与交流。

九年级数学概率教案篇十二

一元二次方程根与系数的关系是重点,让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

九年级数学概率教案篇十三

知识技能:使学生经历数据的收集、整理、描述和分析的过程,能利用统计表的数据提出问题并回答问题。

数学思考:了解统计的意义,学会用简单的方法收集和整理数据。

问题解决:能根据统计图表中的数据提出并回答简单的问题,并能够进行简单的分析。

情感态度:通过对周围现实生活中有关事例的调查,激发学生的学习兴趣,培养学生的合作意识和创新精神。

教学重点:使学生初步认识简单的统计过程,能根据统计表中的数据提出问题、回答问题,同时能够进行简单的分析。

教学难点:使学生亲历统计的过程,在统计中发展数学思考,提高学生解决问题的能力。

九年级数学概率教案篇十四

引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)。

甲:9、10、10、13、7、13、10、8、11、8;。

乙:8、13、12、11、10、12、7、7、10、10;。

问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数:=)。

(2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了)。

归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别是。

我们用它们的平均数,表示这组数据的方差:即用来表示。

(一)例题讲解:

测试次数第1次第2次第3次第4次第5次。

段巍1314131213。

金志强1013161412。

给力提示:先求平均数,在利用公式求解方差。

(二)小试身手。

1、.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定。

去参加比赛。

1、求下列数据的众数:

(1)3,2,5,3,1,2,3(2)5,2,1,5,3,5,2,2。

九年级数学概率教案篇十五

乒乓球的标准直径为40mm,质检部门从a、b两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测。结果如下(单位:mm):

b厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.

你认为哪厂生产的乒乓球的直径与标准的误差更小呢?

(1)请你算一算它们的平均数和极差。

(2)是否由此就断定两厂生产的乒乓球直径同样标准?

今天我们一起来探索这个问题。

探索活动。

算一算。

把所有差相加,把所有差取绝对值相加,把这些差的平方相加。

想一想。

你认为哪种方法更能明显反映数据的波动情况?

九年级数学概率教案篇十六

通过上学期的努力,我班多数同学学习数学的兴趣渐浓,学习的自觉性明显提高,学习成绩在不断进步,但是由于我班一些学生数学基础太差,学生数学成绩两极分化的现象没有显着改观,给教学带来很大难度。设法关注每一个学生,重视学生的全面协调发展是教学的首要任务。本学期是初中学习的关键时期,教学任务非常艰巨。因此,要完成教学任务,必须紧扣教学目标,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。

二、教学目标和要求。

1、知识与能力目标知识技能目标。

理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,掌握锐角三角函数有关的计算方法。理解投影与视图在生活中的应用。

2、过程与方法目标。

通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

3、情感、态度与价值观目标。

(1)进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教。

(2)通过体验探索的成功与失败,培养学生克服困难的勇气。

(3)通过小组交流、讨论有关的数学知识,培养学生的合作意识和交流能力。

(4)通过对实际问题的分析和解决,让学生体会数学的价值,培养学生的应用意识和对数学的兴趣。

三、提高教学质量的主要措施。

1、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作考试试卷,也让学生学会认真学习。

2、兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家、数学史、介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流的氛围,分享快乐的学习课堂,让学生体会学习的快乐,享受学习。

4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

6、加强学生解题速度和准确度的培养训练,在新授课时,凡是能当堂完成的作业,要求学生比速度和准确度,谁先完成谁就先交给老师批改,凡是做的全对要给予奖励。

7、加强个别辅导,加强面批、面改,加强定时作业的训练。并进行作业展览,对作业书写的好又全部正确的贴在学习园地中。

8、积极主动的与其他教师协同配合,认真钻研教材,搞好集体备课,不断学习他人之长处。

以上内容来自京翰教育一对一辅导——针对全国中小学开设课外辅导班,辅导孩子提高学习成绩,帮助家长正确教育孩子成长,辅佐老师更好指导学生学习方法。

九年级数学概率教案篇十七

1、通过复习,加强统计观念的培养。

2、使学生能对数据进行简单分析,根据分析结果作出简单的判断与预测。

3、进一步理解平均数的意义,会求简单数据的平均数。

4、进一步体会小数的含义,掌握小数的读写法,并能进行简单的小数加、减法运算。

【本文地址:http://www.xuefen.com.cn/zuowen/12667156.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档