人教版九年级数学教案 人教版九年级上数学教案(通用13篇)

格式:DOC 上传日期:2023-11-05 08:44:02
人教版九年级数学教案 人教版九年级上数学教案(通用13篇)
时间:2023-11-05 08:44:02     小编:雨中梧

作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?这里我给大家分享一些最新的教案范文,方便大家学习。

人教版九年级数学教案篇一

本学期我担任九年级(1)(2)两个班的数学教学工作、针对九年级学生的特点及九年级的特殊性现计划如下:

一、认真钻研教材,精益求精

九年级上学期是一个特殊的学习阶段,为了有充分应战中考的准备,上学期应基本结束全年的课程、面对这种特殊情况,作为教师,首先应在教学进度上做到心中有数;其次就是熟悉全册教材内容,认真钻研教材,抓住重点,突破难点,每一节课既要做到精讲精练,又要在此基础上让学生得到能力的提升。

二、了解学生学情,做到心中有数

上学期期末测试学生数学平均分为70分,成绩一般、优秀率在25%左右、全年级满分人数不少,但20分以下的人数也不是一个小数目、从总体上看已经出现了两极分化的现象、所以升入九年级后,应更重视尖子生的培养,让他们吃饱,偏差生适当降低难度,给他们定低目标,以不至于使差生落伍、另外在能力的训练方面,学生的推理训练和计算能力需进一步提高,做到速度快、正确率高、推理严密。

三、抓住机会,帮学生树立信心

本学期教材第一章为“二次根式”学生在七年级已有了一定的基础,学生学起来比较容易、可以抓住这个机会举行小型测验,给学生信心、并且在计算方面使其养成细心、认真的习惯、另外在有难度的章节中可通过竞赛的方式提高学生的竞争意识,培养学生的合作交流能力,达到方法互补。

四、有选择的拓宽知识面

在掌握教材知识的基础上,鼓励学生购买与版本相符的资料、如《少年智力开发报》《点拨》《典中点》等、教师对学生手里有什么样的资料,资料中题什么该做,什么该删,应该了如指掌,有准备的应对学生突如其来的问题,不让学生绕远儿。

人教版九年级数学教案篇二

教学内容:左右

教学要求:

1、在生活中看关于“左右”的真实情境激发学生的学习兴趣。

2、能初步运用“左右”的数学知识解决实际问题。

3、认识“左右”的位置关系,体会其相对性。

教学重点:认识“左右”的位置关系,正确确定“左右”。

教学难点:“左右”的相对性。

教学准备:动物头饰笔橡皮尺子文具盒小刀

教学过程:

一、通过左手、右手的活动,感知自身的左与右。

师:小朋友们,今天谁有信心上好这节课?请举起你的小手。

1、感知左手和右手

师:看看你举起的这只手,是你的----右手?

再看看你的另一只手,是你的----左手?

师:大家说说,我们常常用右手(或左手)做哪些事?

(学生自由发言)

师:左、右手要多锻炼,特别是左手,多锻炼会使我们的小脑袋越变越聪明。

2、体验自身的“左与右”

(学生自由回答)

3、小游戏听口令做动作(由慢到快)

伸出你的左手,伸出你的右手

拍拍你的左肩,拍拍你的右肩

拍拍你的左腿,拍拍你的右腿

左手摸左耳,右手摸右耳

左手抓右耳,右手抓左耳

4、揭示课题

师:小朋友们刚才已经熟悉了自己身体的“左”和“右”,其实生活中的“左”和“右”还有许许多多,今天我们就来确定一下“左”和“右”。

(板书课题:左右)

师:请小朋友们记住,“左”字下边是个“工”字,“右”字下边是个“口”字。

5、做“左右”操

拍拍我的左肩,拍拍拍;

拍拍我的右肩,拍拍拍;

拉拉我的左耳,拉拉拉;

拉拉我的右耳,拉拉拉;

这是我的左边,嘿嘿嘿;

这是我的右边,嘿嘿嘿;

这是我的左脚,跺跺脚;

这是我的右脚,跺跺脚。

二、玩学具,理解左边和右边

1、摆一摆

师:同桌合作,像老师一样的顺序摆放好事先准备好的学习用品。

(按顺序摆好:铅笔橡皮尺子文具盒小刀五样学具)

师:大家先来确定一下,摆在最左边的是什么?摆在最右边的是什么?

2、数一数

师:按左右的顺序来数一数。(点着学具来数,数好后请学生回答,从而完成黑板上的填空题)

从右数橡皮是第个

从左数橡皮是第个

师:同样的东西,按不同的方向去数,顺序也不同。

3、说一说

尺子的左边是什么?右边呢?

(1)启发、引导学生观察图说出左边有什么?右边有什么?

(2)说出尺子的左边或右边各有哪二样学具?

6、想怎么摆就怎么摆,然后同桌互说

三、体验“相对”,加强理解

师:老师现在要请两个小朋友上讲台来?(每个小朋友拿一束花排成一队,然后听口令做动作,复习左右,最后让小朋友面对面站着,再来一次,让学生知道“相对”)

(学生讨论)

小结:我们面对面地站着,因为方向相对,举的手就会刚好相反。

练习:老师和学生一同举左手体验。

四、解决问题,增强应用意识

1、说一说:你相邻的同桌都有谁?

问:相邻是什么意思?

面对黑板说说你相邻的同学有谁?

背对黑板说说你相邻的同学有谁?

侧转身再说说你相邻的同学有谁?

师:每转一次前、后、左、右的人都发生了变化,但相邻的同学总是这几个。

2、口述同学们上下楼梯的情景

问:我们平时都是靠右边上下楼梯的(学生讨论,也可以让学生试着走一走,体会一下)

小结:方向不同,左右不同,判断时以走路的人为标准。平时我们上下楼梯时要有秩序地走,不会相撞,保证安全。

3、摆一摆

老师说,学生摆

把本子放在书的下面

把尺子放在书的左面

把铅笔放在书的右面

五、总结

我们学习了什么?(左右)对!是表示方向的左和右。在生活中,我们一定要分清左和右,特别是行走时,人注意靠右走。

板书设计:左右

人教版九年级数学教案篇三

本节内容是上一节课在学习余角补角基础上学习的,学生有了一定的基础,为以后学__面直角坐标系的学习做好准备。

学情分析

本节课对于学生来说学习起来并不太难,在小学阶段学生已经接触过方位角的内容,而且本节课内容和生活中的方向联系紧密,故学生比较有兴趣。

教学目标

理解方位角的意义,掌握方位角的判别和应用,通过现实情境,充分利用学生的生活经验去体会方位角的意义。

教学重点和难点

重点:方位角的判别与应用

难点:方位角的画法及变式题

教学过程(本文来自优秀教育资源网斐.斐.课.件.园)

教学环节教师活动预设学生行为设计意图

一、创设情境,导入新课

二、讲授新课

三、巩固练习

四、课时小结五、布置作业由四面八方这个成语引出学生对八个方位的理解

1.先以一个具体图形告诉学生基本知识点,方位角一般是以正南正北为基准,然后向东或西旋转所成的角的始边方向。

2.师示范方位角的画法

3.出示补充例题,引对学生通过小组合作完成。思考并回答老师提出的问题

生观察图并理解老师的讲解。

生观察并独立完成书中的例题

生先独立思考然后与同学合作完成。激发学生的学习兴趣

通辽具体图形使学生初步认识方位角的表示方法。

使学生通辽具体操作掌握画方位角的方法

进一步掌握方位角的有关知识,达到知识提升。

板书设计

4.3.3余角和补角(二)——方位角

学生学习活动评价设计

我先将学生按人数分成若干小组,在课前先给学生发放导学单,课上先给学生充分的讨论时间后学生由小组推荐代表发言,累积分数,每个小组轮流回答一次,学生代表回答完毕后,其它同学补充纠错,然后从知识点是否准确,语言是否流利,思维是否创新,逻辑是否合理严密等方面来做出评价,然后给出相应分数。累积到小组积分中课上知识回答后在练习部分,设计抢答题,小组抢答完成。最后计算出总分评出本节课小组及个人奖,给予口头表扬。

教学反思

本节课是在上节课余角和补角的基础上学习的,而且在小学阶段也已经接触过这部分知识了,基于这个特点,在课堂上我主要采取了自主学习的方式,学生接受的不错,本节课的知识虽然简单但很重要是为以后学__面直角坐标系做准备的。出现的问题是有个别同学对于a看b是北偏东30度,则b看a是什么方向不太清楚,我采取的措施是让明白的同学讲给不明白的同学听,指导其主要从哪方面入手解决此类问题,还有一点,学生在画图后容易忽略写结论,应强调。以前在上本节课时,我是采取的讲授法,感觉学生不是很爱听,后来一想,知道了是因为小学时他们已经接触了这部分知识,所以不爱听,针对于这种情况,这次我采用了自主学习的方式感觉学生的积极性上来了,一节课气氛很好,相信效果也不错。以后再讲这节课我将继续采用这种方式,在此基础上使其更加完善。

人教版九年级数学教案篇四

1.使学生学会圆环面积的计算方法,以及圆形与矩形混合图形的相关计算方法。

2.学会利用已有的知识,运用数学思想方法,推导出圆环面积计算公式,有关于圆形与正方形应用的解答方法。

3.培养学生观察、分析、推理和概括的能力,发展学生的空间概念。

教学重难点

1 教学重点

会利用圆和其他已学的相关知识解决实际问题。

2 教学难点

圆与其他图形计算公式的混合使用。

教学工具

ppt 卡片

教学过程

1 复习巩固上节知识,导入新课

2 新知探究

2.1 圆环面积

一、问题引入

同学们知道光盘可以用来做什么吗?谁能来描述一下光盘的外观。

回答(略)。

今天我们就来做一做与光盘相关的数学问题。

二、圆环面积求解

步骤:

师:求圆环面积需要先求什么?

生:内圆和外圆的面积

师:同学们可以自己做一做,分组交流一下自己的解法。

师:给出计算过程与结果:

三、知识应用

做一做第2题:

师:这是一道典型的圆环面积应用题。通过直径得到半径,代入圆环面积公式,很简单。

2.2 圆与正方形

一、问题引入

师:同学们知道苏州的园林吧。大家有没有观察过园林建筑的窗户?它有很多很漂亮的设计,也有很多很常见的图形,比如五边形、六边形、八边形等等。其中外圆内方或者外方内圆是一种很常见的设计。

师:不仅是在园林中,事实上在中国的建筑和其他的设计中都经常能见到“外圆内方”和“外方内圆”,比如这座沈阳的方圆大厦、商标等等。下面我们来认识一下这种圆形与正方形结合起来构成的图形。

二、知识点

例3:图中的两个圆半径是1m,你能求出正方形和圆之间部分的面积吗?

步骤:

师:题目中都告诉了我们什么?

师:分别要求的是什么?

生:一个求正方形比圆多的面积,一个求圆比正方形多的面积。

师:应该怎么计算呢?

归纳总结

如果两个圆的半径都是r,结果又是怎样的呢?

当r=1时,与前面的结果完全一致。

四、知识应用

70页做一做:

师:同学们用我们刚刚学过的知识来解答一下这道题目吧。

解:铜镜的半径是300px

5.3 随堂练习

若还有足够时间,课堂练习练习十五第5/6/7题。

(可以邀请同学板书解题过程)

6 小结

1. 今天我们共同研究了什么?

今天我们在已知圆和正方形的面积公式的前提下,探索了圆环和“外圆内方”“外方内圆”图形的面积计算方法。这不是要求同学们记住这些推导出来的公式,而是希望同学们能过明白推导的方法,以后遇到类似的问题可以自己运用学过的知识来解决问题。

2. 在日常生活中经常需要去求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化的吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子、车轮为什么要做成圆形的?大家需要多看多想!

7 板书

人教版九年级数学教案篇五

证明(二)

判定定理及相关结论的证明,利用尺规作已知角的平分线

判定定理及相关结论的证明

知识点

1、三角形相关定理

推论两角及其中一角的对边对应相等的两个三角形全等.(aas)

定理等腰三角形的两个底角相等.(等边对等角)

推论等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(三线合一)

定理有两个角相等的三角形是等腰三角形.(等角对等边)

定理有一个角等于60º的等腰三角形是等边三角形.

2、直角三角形

定理在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半.

角三角形,其中一个锐角等于30º,这它所对的直角边必然等于斜边的一半.)

定理直角三角形两条直角边的平方和等于斜边的平方.(勾股定理)

定理如果三角形两边的平方和等于第三方的平方,那么这个三角形是直角三角形.

互逆命题逆命题互逆定理逆定理

定理斜边和一条直角边对应的两个直角三角形全等.(hl)

3、线段的垂直平分线直线与射线有垂线,但无垂直平分线

定理线段垂直平分线上的点到这条线段两个端点的距离相等。

定理到一条线段两端点距离相等的点,在这条线段的垂直平分线上。(线段垂直平分线逆定理)

定理三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。(如图1所示,ao=bo=co)

cc

e图1图2

4、角平分线

定理角平分线上的点到这个角的两边的距离相等。(角平分线是到角的两边距离相等的所有点的集合。)定理在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。(角平分线逆定理)

定理三角形的三条角平分线相交于一点,并且这个点到三边距离相等.(交点为三角形的内心.如图2,od=oe=of)

人教版九年级数学教案篇六

1、等底等高的圆柱与圆锥体积之间有怎样的关系?

2、圆锥的'体积怎样计算?

二、基本练习

1、填空

(1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。

(4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的高是()厘米。

(5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。

2、判断。

(1)圆锥的底面半径扩大3倍,体积也扩大3倍。()

(2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的3倍。()

(3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()

三、综合应用

1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?

2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?

第八课时教学反思

教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。

教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。

教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。

[再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。

人教版九年级数学教案篇七

教学内容:

教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。

教学目标:

1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的`实际问题。

3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。

重点难点:

掌握圆柱体积公式的推导过程。

教学资源:

ppt课件圆柱等分模型

教学过程:

人教版九年级数学教案篇八

(一)内容

位似图形的概念,位似图形的性质,位似图形的画法.

(二)内容解析

位似是在学生已经掌握了相似的相关知识,积累了一定的图形研究方法的基础上,进行探究的.位似就是具有特殊位置关系的相似,是对相似的纵深挖掘与提升,可以让学生进一步体会相似的应用价值和丰富内涵.

根据给出的一系列图形,引导学生观察这些图形的共同特点,从而归纳出位似图形的概念和性质.通过归纳给出图形的共同特点,得出位似图形的概念,体现了研究几何问题的一般方法.对于图形的概念学习,尤其要注重概念的生成过程和基本含义.而利用作位似图形的方法,将一个图形放大或缩小,本质上是位似图形性质的应用,它也是一个集动手与动脑于一体的活动.

二、目标和目标解析

(一)教学目标

1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.

2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.

(二)目标解析

2.学生通过对作图方法的模仿和归纳,总结出作位似图形的方法和步骤,并能够利用作位似图形的方法将一个图形放大或缩小.

三、教学问题诊断分析

位似是相似的延续,学生已经学习了相似的相关知识,对图形已经有了丰富的认知基础,教学中通过实际生活中的图形引入,对位似图形有一个直观的认识,同时也体现了位似知识存在的必要性,增强学习的兴趣和信念.本节教学中应该注重学生自我动手操作能力的培养,使学生重视作图的准确性和规范性.

在形成位似图形的概念,探索位似图形的性质过程中,强调讨论和探究,提高学生分析问题、解决问题、发现和创新的能力,对初三学生是必须的,也是适可的.

本课的教学重点是位似图形的概念,位似图形的作图,以及位似与相似的关系.

教学难点是位似图形的准确作图,动手能力的落实.

四、教学过程设计

(一)创设情境,引入新知

位似图形的概念

问题1在日常生活中,我们经常见到下面所给的这样一类相似的图形,他们有什么特征?

师生活动: 教师展示图片,提出问题.学生观察、欣赏图形.

设计意图:教师通过展示的图片调动学生的注意力,激发起好奇心和求知欲.使学生充分感知位似,欣赏位似图形.

师生活动: 学生从相似图形的对应顶点、对应边、对应角出发,通过观察了解到有一类相似图形,除具备相似的所有性质外,还有其特性,学生思考,并总结位似图形的概念.

教师加以归纳,得到位似图形的定义:如果两个图形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.

设计意图:通过几个图形的观察,使学生初步意识到位似的特征:对应点连线交于一点.

(二)巩固提高,运用新知

问题1 判断下列各对图形是不是位似图形?

(1)正五边形abcde与正五边形a′b′c′d′e′;

(2)等边三角形abc与等边三角形a′b′c′.

设计意图:通过辨别位似图形,巩固位似图形的概念,让学生理解位似图形必须满足的条件:(1)两个图形是相似图形;(2)两个相似图形每对对应点所在直线都经过同一点.

问题2 是否相似图形都是位似图形?举例说明.

问题3 位似图形与相似图形有什么区别和联系?

师生活动:学生举例说明相似图形不一定是位似图形,并总结出位似图形具备相似的所有性质,除此之外,还有其特性,所以位似图形是特殊的相似图形.

设计意图:通过思考位似图形和相似图形的联系与区别,让学生进一步理解位似图形的概念.

位似图形的性质

问题4观察几组位似图形,猜想对应边之间有什么位置关系?

师生活动:学生通过观察,猜想位似图形对应边是互相平行或者重合的.教师通过多媒体演示,让学生直观的感受到位似图形对应边平行或重合.

问题5已知问题1中的图形,思考对应点到位似中心的距离之比与相似比之间的关系.

师生活动:学生通过观察图形的特点,教师引导学生运用相似的知识证明对应点到位似中心的距离之比与相似比的关系.最终总结出位似图形的性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比.

设计意图:位似的性质通过讨论、对比、证明自然得到,能使学生比较牢固地掌握,比直接给出效果要好,同时让学生意识到数学知识之间的联系性,把新知识转化为旧知识。

人教版九年级数学教案篇九

1.小数的意义。

预设

生1:半个可以用0.5来表示,一米半可以用1.5来表示。

生2:把整数“1”平均分成10份、100份、1000份……这样的几份是十分之几、百分之几、千分之几……可以用小数来表示。

2.小数的数位顺序表。

师:小数的数位顺序表是怎样的?谁能把整数、小数的数位顺序表补充完整?

(课件出示数位顺序表,小数部分留白。指名回答,师填充)

3.小数的读法和写法。

(1)师:怎样读小数?怎样写小数?

预设

生1:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分按从左到右的顺序顺次读出每一个数位上的数字。

生2:写小数的时候,整数部分按照整数的写法写,小数点写在个位的右下角,小数部分顺次写出每一个数位上的数字。

(2)写小数时需要注意什么?

(空位用“0”补足)

4.小数的分类。

(1)谁知道根据小数部分的位数是否有限,小数可以分成哪几类?

预设

生:根据小数部分的位数是否有限,小数可以分成“有限小数”和“无限小数”两类。

(2)谁能举例说明什么是有限小数?什么是无限小数?

预设

生1:小数部分的位数是有限的小数,叫做有限小数。例如:21.7,35.3,0.13都是有限小数。

生2:小数部分的位数是无限的小数,叫做无限小数。例如:8.33…,3.1415926…都是无限小数。

(3)无限小数还可以再细分吗?如果细分,那么可以分成哪几类?

预设

生:无限小数可以分为无限不循环小数和循环小数。

(4)关于无限不循环小数和循环小数,你都了解哪些知识?

预设

生3:一个循环小数的小数部分依次不断重复出现的数字叫做这个循环小数的循环节。

例如:3.99…的循环节是“9”,0.5454…的循环节是“54”。

5.小数的性质。

(1)师:谁能说说小数有怎样的性质?

预设

生:在小数的末尾添上0或者去掉0,小数的大小不变。

(2)理解小数的性质时,应该注意什么?

(提示:要注意是“小数的末尾”,而不是“小数点的后面”)

6.小数点位置的变化。

人教版九年级数学教案篇十

(第一课时)

了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.

从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.

(第二课时)

了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.

(第三课时)教案

1.了解圆周角的概念.

2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.

4.熟练掌握圆周角的定理及其推理的灵活运用.

人教版九年级数学教案篇十一

14.(曲靖中考)将如图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()

a.主视图相同 b.左视图相同

c.俯视图相同 d.三种视图都不相同

15.一位美术老师在课堂上进行立体模型素描教学 时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体 的三视 图(从正面、左面、上面看得到的视图).

16.一种机器上有一个进行转动的零件叫燕尾槽(如图),为了准确做出这个零件,请画出它的三视图.

综合题

人教版九年级数学教案篇十二

1.描述统计。

通过调查、试验获得大量数据,用归组、制表、绘图等统计方法对其进行归纳、整理,以直观形象的形式反映其分布特征的方法,如:小学数学中的制表、条形统计图、折线统计图、扇形统计图等都是描述统计。另外计算集中量所反映的一组数据的集中趋势,如算术平均数、中位数、总数、加权算术平均数等,也属于描述统计的范围。其目的是将大量零散的、杂乱无序的数字资料进行整理、归纳、简缩、概括,使事物的全貌及其分布特征清晰、明确地显现出来。

2.概率的统计定义。

人们在抛掷一枚硬币时,究竟会出现什么样的结果事先是不能确定的,但是当我们在相同的条件下,大量重复地抛掷同一枚均匀硬币时,就会发现“出现正面”或“出现反面”的次数大约各占总抛掷次数的:左右。这里的“大量重复”是指多少次呢?历史上不少统计学家,例如皮尔逊等人作过成千上万次抛掷硬币的试验,其试验记录如下:

可以看出,随着试验次数的增加,出现正面的频率波动越来越小,频率在0.5这个定值附近摆动的性质是出现正面这一现象的内在必然性规律的表现,0.5恰恰就是刻画出现正面可能性大小的数值,0.5就是抛掷硬币时出现正面的概率。这就是概率统计定义的思想,这一思想也给出了在实际问题中估算概率的`近似值的方法,当试验次数足够大时,可将频率作为概率的近似值。

例如100粒种子平均来说大约有90粒种子发芽,则我们说种子的发芽率为90%;

因为前30年出现晴天的频率为0.83,所以概率大约是0.83。

3.概率的古典定义

人教版九年级数学教案篇十三

一、自主探究(看书理解、记忆,把重点知识句划在书上,并把课后简单练习完成在书上)

1.回顾: 叫正投影.

2.当我们从某一个角度观察一个物体时, 叫做物体的一个视图.视图也可以看做 .其中正对着我们的叫做 ,正面下方的叫做 ,右边的叫做 .

3.一个物体在三个投影面内同时进行正投影, ,叫做主视图; 叫做俯视图; 叫做左视图.

4.将三个投影面展开在一个平面内,得到这一物体的一张三视图.

注意:(1)主视图反映的是物体的长和高;俯视图反映的是物体的长和宽;左视图反映的是物体的宽和高. 因此,在画三种视图时,主视图与俯视图要长对正,主视图与左视图要高平齐,俯视图与左视图要宽相等.

(2)三视图与投影密切相关,某些物体的三视图实际上是该物体在一定条件下所形成的平行投影,某些物体的主视图、俯视图、左视图可以看成在一束平行光线分别从物体的正面,上面,左面照射下,在垂直于这一方向的平面上所形成的投影.

二、合作探究(自主学习时完成,课上交流展示)

1. 小明从正面观察如图1所示的两个物体,看到的是()

2. 如图2,水杯的俯视图是()

3. 我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图3,从图的左面看这个几何体的所得左视图是()

三、探究应用(课上完成并交流展示)

例1. 画出右图所示的一些基本几何体的三视图.

解:

例2. 画出如图所示的支架(一种小零件)的三视图.支架的两个台阶的高度和宽度都是同一长度出它的三视图.

解:

(补充)例. 右图是一根钢管的直观图,画出它的三视图.

解:

总结:基本几何体包括圆柱、圆锥、球、直棱柱、圆台,它们的三视图是画复杂几何体三视图的基础.基本几何体的三视图:

(1)正方体的三视图都是正方形.

(2)圆柱的三视图中有两个是长方形,另一个是圆.

(3)圆锥的三视图中有两个是三角形,另一个是圆和一个点.

(4)四棱锥的三视图中有两个是三角形,另一个是矩形和它的对角线.

(5)球体的三视图都是圆形.

四、巩固再现:p97 练习

五、能力提升:

1. 右图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( )

2. 如图所示,画出该物体的三视图.

六、探究小结:

1.你学会了什么?

【本文地址:http://www.xuefen.com.cn/zuowen/7772648.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档