2023年有关运算定律教学反思简短(4篇)

格式:DOC 上传日期:2023-02-06 06:09:31
2023年有关运算定律教学反思简短(4篇)
时间:2023-02-06 06:09:31     小编:zdfb

在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。

有关运算定律教学反思简短篇一

英国教育家斯宾塞说过:“应引导学生进行探寻,自己去推论,对他们讲的应该尽量少一些,而引导让他们说出自己的发现应该尽量多一些。”

在初步认识了28+17=17+28这样的等式以后,我问:这样的等式你还能举些例子吗?(学生争先恐后地回答)。接着,我启发道:这样的等式有很多,你可以用你们喜欢的方式来表示。这一开放性问题的出现,学生兴趣盎然,课堂气氛十分的活跃。经过一番合作,学生的探究结果出来了,主要有这样几种:甲数+乙数=乙数+甲数;△+○=○+△;a+b=b+a等等。我追问,如果一直这样说下去,能说完吗?(学生马上回答我:不能。)这时我又让他们用文字叙述这一规律。然后我小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算定律。你能给它起个名字吗?然后指着板书,有学生说叫“加法交换律”。我追问道:为什么?(生答:因为这是两个数相加,只交换位置)。

接着,让学生用同样的方法探究加法结合律。 整个过程教师都是教学的组织者和引导者,这样的设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。

在加法结合律的教学过程中,教师在教学的时候延续了加法交换律的教学方式,通过实际问题的解决,得出等式;再给出两组式子,通过计算得到也能用等于号连接;然后学生自己举例。这样的教学让学生感受加法结合律的特点:加数位置没有改变,运算顺序改变了,和没变。这样的教学显得顺畅,但是新意不够,学生投入的激情不够。

有关运算定律教学反思简短篇二

计算能力是学生在小学阶段必须掌握的一项很重要的基本技能,也是学生后续学习的基础。计算教学不仅要使小学生能够正确的进行四则运算,还要求小学生能够根据数据的特点,恰当地运用运算定律和运算性质,选择合理的灵活的计算方法和计算过程使计算简便。在这样的计算过程中,既要培养小学生的观察能力,注意力和记忆力,也要注意发展小学生思维的灵敏性和灵活性。同时计算也有利于培养小学生的学习专心,严格细致的学习态度,善于独立思考的学习能力,计算仔细,书写工整和自觉检查的学习习惯。计算教学直接关系着小学生对数学基础知识与基本技能的掌握,关系着小学生观察,记忆,注意,思维等能力的发展,关系着小学生的学习习惯,情感,意志等非智力因素的培养。因此,小学阶段的计算教学就显得异常重要。然而,在平时的教学中老师们往往就感到很困惑,觉得非常简单的知识小学生学起来却感到很困难,总是没能达到老师自己想要的效果。

小学生的计算离不开数学概念,运算定律、运算性质、运算法则和计算公式等内容,而掌握概念是学好数学的基础。

1、乘法分配律与结合律易混淆

为了计算简便,解题中要训练学生合理运用运算定律,灵活解题。而在运算定律中,乘法分配律与乘法结合律非常相似,所以导致学生很容易混淆。如:25×7×4时,小学生总是把它当成分配律来计算,变成25×7+25×4或者25×7×25×4,不能理解概念。结合律的概念是,先把前两个数相乘,或者先把后两个数相乘,积不变。对概念理解不到位,导致在做题目时,老是出现错误。尤其乘法分配律是一个特别难理解的一个定律,比较抽象,而对于四年级的小学生来说,他们正处于具体形象思维向抽象逻辑思维的一个过渡时期,因此他们对概念的理解有点困难,总是会忘了后一个数也要和那个数相乘。如:(125+8)×4,他们总是会变成125×4+8。并且特别容易把它与乘法结合律混淆,所以导致教学比较的难。

2、运算中添括号与去括号时,运算符号的改变与不改变分辨不清

如讲括号的作用时,难点是添括号、去括号时括号里边运算符号的变化规律。如:15-4-2=15-(4+2)与20÷4÷5=20÷(4+5),但是很多学生觉得因15+4+2=15+(4+2),所以应该15-4-2=15-(4+2),因为20×4×5=20×(4×5),所以应该20÷4÷5=20÷(4÷5)。这就需要让小学生在充分的计算实践的基础上,自己归纳应该怎样变化,并且知道为什么?因为定律是建立在法则的基础上的。加不加括号,用不用运算定律,最后的计算结果是一样的。这条原则是不变的。只有小学生在熟练应用运算定律、括号后,积累了大量计算经验(如:4×25=100)的基础上再教简算才会显的自然、简单。简算是有效利用运算定律,括号使计算变的简单的一种计算技能,有时可直接口算,而不会改变计算结果,运用简算可提高计算速度。简算不单是在做简算题时才用,是可以随时使用的,这一点也应让小学生清楚。

3、运用乘法分配律逆运算易出错

为了计算简便,要灵活运用定律,而乘法分配律的逆运算却是一个难点,小学生难以理解。如计算3.4×0.125+4×0.125,本来小学生一眼就能看出运用乘法分配律可以得出,可是小学生很容易出现错误,(3.4+4.6)×0.125×0.125或者是直接计算,不会灵活运用乘法分配律的逆运算。但是有些学生学得比较快,所以在教学时,教师可以出一些不同等级的题目,可进一步深化,挖掘学生的潜能,可以让学得快的同学拓展思维依次出示:1.25×0.34+4.6+0.125和3.4÷8+4.6×0.125这样,就不会让学得快的学生觉得无聊。还有在教学中要尽量减少学生计算的错误,提高计算的正确率,应根据学生的实际情况,因材施教,因人施教,采取相应的对策,才能提高学生计算的能力。

小学生都认为:我知道按顺序做是比较方便的,但这样就没有运用运算定律,就不是简便计算!也有的小学生:“我根本没仔细看过题目,因为是简便计算嘛,所以拿上来就运用运算定律。”这种错误是由于小学生不正确的简便意识所造成的,他们认为:简便计算一定要运用运算定律,否则就不是简便计算!

由于不看题,本来直接算括号时,算式会更加的简便,但是有些小学生却认为要用运算定律,式子才会简便。因此利用乘法的分配率,虽然最终答案是正确的,但是导致算式多走了弯路,反而不简便了。

我们在学习简便计算的一个很明显的标志就是“凑整思想”。“凑整”就是利用运算定律凑成整十整百,从而达到使计算简便的效果。但“凑整”必须建立在正确并熟练运用运算定律的基础上,不能盲目地追求“凑整”,一看到可以合成起来凑成整十整百的,就不顾算式的特性,强制性的“凑整”,变成了为“凑整”而“凑整”,造成知识学习的机械性。有些题,由于受数字的干扰,小学生容易出现违背运算法则的思想错误,盲目追求“凑整”。

在教学的过程中,运算定律教学这一部分,教材在编排上安排的课时较短,内容既少又简单,题也典型,教材只是告诉你教什么内容,并提供范例,发挥都在于教师,所以教师在教学时,要一步一步的来,一条一条的说明。所以,在上课时,检查教学效果发现小学生都掌握的不错,都会运用,可是一到他们自己课外去做时,就不会运用了,因为在前面他们学习了四则运算,从而形成了思维定势,一下子比较难改变过来,还停留在前面的学习当中,在上课时,由于老师一直在强调所以才会运用,而到了课后没有人跟他们说,就不知道怎么使用了。如:56×37+56×63,他们只会按照以前所学的从左到右的计算顺序去计算,不知道使用简便计算,灵活的运用到课堂中来。小学生很难转变所学的知识,所以导致在教学时比较困难。

有关运算定律教学反思简短篇三

加法运算定律和乘法运算定律。加法运算定律包括加法交换律和加法结合律;乘法运算定律包括乘法交换律、乘法结合律和乘法分配律。

学生对于加法运算定律和乘法的交换律掌握较好,可运用这两个定律对一步加法和乘法进行验算,基本能够灵活运用。然而对于乘法结合律则运用不是很好,乘法分配律则更为糟糕。

第一,学生现在只是能够初步认识,弄明白这三个乘法运算定律,还不明白这几个运算定律的作用和意义。

第二,学生不能正确的分析算式并正确的运用运算定律,尤其是乘法分配律,它是乘法和加法的运算定律,学生忽视运算符号,极易把乘法分配律和乘法结合律混淆。

第三,对于乘法分配律,有的学生甚至运用运算定律折腾了一番又回到了原来的算式,不会灵活处理。

总之,学生并没有深刻体会到运算定律带来的方便,解决办法只能是多讲多练,不断的培养学生的数感,在不断的重复练习过程中,体会应该如何运用运算定律,也就是如何做题。等待讲解了下节内容简便运算之后,我想学生会得到一个明确地感悟到原来在计算的过程中运用运算定律可以使运算过程变得简单,这样,学生在计算的时候,自然就会去运用了,而且会十分的感兴趣。

有关运算定律教学反思简短篇四

最近,有幸听了东洲小学青年教师基本功比赛选手俞老师执教的数学人教版教材《加法运算定律》,听后深受启发,东小数学课堂教学真正在贯彻新课程标准的理念。

课的一开始用讲故事形式导入,既吸引学生又激发学生思考,同时又直接切入教学内容。故事为:猴妈妈给小猴子吃桃,规定早上吃4个,晚上吃3个,小猴子感觉这样吃少了。猴妈妈改变成早上吃3个,晚上吃4个,小猴子感到很高兴。老师问:小猴子占到便宜了吗?这个问题一提出,学生马上明确了第一种分法是3+4,第二种分法是4+3,实际上是一样多的,从而引出生活中经常接触到如7+8和8+7许多这样的例子,其结果是一样的,自然而然地引导学生并要归纳这些数学现象,并且明白这个现象的实质就是交换两个加数的位置,和不变。

教学加法结合律时出示学校三个班参加冬季三项比赛的人数,让学生提出问题,教师根据学生提出的许多问题中选择一个对本节课需要引入新知研究的问题“三个班一共多少人参加比赛怎样计算?”让学生进行计算,根据学生多种计算算式中列出28+17+23和28+(17+23)、23+28+17和23+(28+17)等,让学生观察这两个算式的相同和不同之处,学生的新知研究从根据相同和不同之处迈向概括出了加法结合律。接着又通过一组题组让学生分组练习,通过分组练习学生体会到加法结合律的存在对计算时的简便之处,教师的教学设计目的从让学生个别现象类推到引导到概括出加法结合定律,教会了学生的认知方法。题组为:(69+172)+28、(207+155)+145,69+(172+28)、207+(155+145)。

本节课的教学目标预设为通过现实生活中的问题解决,引导学生抽象概括并理解加法交换律、结合律,感知加法交换律、结合律对于计算的简便之处。如何让学生感知?执教者通过对填空题的抢答:204+57=57+□、(45+36)+64=45+(□+□)、57+65+135=57+(□+□)、23+46+77+54=(□+□)+(□+□)及对题目74+102+98你认为怎样计算方便,把学生引入了如何运用加法结合律进行简便计算的领域,这个引入不是强制的,而是学生自觉获得的需要,也是对新知学习价值的创生。

【本文地址:http://www.xuefen.com.cn/zuowen/1267895.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档