报告需要通过收集和分析数据来支持其结论和建议。报告的结构要清晰,包括引言、主体和结论等部分,每个部分的内容要有序、连贯,形成一个完整并具有说服力的论述。最后,祝愿大家在报告写作中取得好成绩,为自己的学习和工作生活增添新的里程碑。
大数据社会实践报告篇一
大数据中心,是指服务于大数据存储、挖掘、分析和应用的数据中心。大数据(bigdata,megadata),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。目前我国的数据中心总数已接近100万。
二、行业分布。
作为信息化建设的核心内容,数据中心始终是金融、政府、能源、交通等行业的投入重点;而伴随着电信行业的转型和移动互联网的发展,idc也成为电信行业重点投资领域。此外ipdc互联网数据中心成为市场的热点,互联网提供商大规模建设云数据中心。
三、发展前景。
十二五”规划中明确了战略新兴产业是国家未来重点扶持的对象,其中信息技术被确立为七大战略性新兴产业之一,将被重点推进。新一代信息技术分为六个方面,分别是下一代通信网络、物联网、三网融合、新型平板显示、高性能集成电路和以云计算为代表的高端软件。
四、选址要素。
1级别时,两路、或多路10kv进线应来自不同上级变电站,或同一变电站的不同的变压器。(目前,国内数据中心用户最多选用的一个电压等级。全国各个省市在具体设计和管理上略有不同。)。
c)35kv:不是所有地方都有该电压等级,在已有的可以选用的35kv用户站中,其每一路的容量一般不超过20mvad)110kv:当用户的单一回路用电负荷超过20mva级别时,需要考虑110kv变电站,或66kv变电站(在我国部分地区有分布)。监狱在中国采用大工业用电方式计费时,要按照变压器的装机容量记收基础电费(或按照最大装机容量记收基础电费),对于冗余度要求高的数据中心,如tire3或以上级别,需要双路市电供电,双路变压器设计的数据中心,过高的变压器装机量冗余度,将使得数据中心本身的基础电费成本过高,在单一回路市电需求功率30mva以上级别时,尽可能独立考虑独立的110kv变电站。
(备注:需要和当地国家电网规划和管理部门具体落实。)。
3.数据中心里大部分it和电气设备的耗电会转换为大量的热,所以需要一套有效的散热体系。通常情况下,数据中心更适合建设在室外环境温度常年比较低的区域;以便于数据中心的散热可以尽可能地使用自然冷源或延长使用自然冷源的时间,减少机械制冷的能耗。
6.数据中心建设目前还是一个高投入,高风险也是高产出的产业;对于选址方面,需要地方政府在政策上能够给予足够的扶持力度;包括:
2a)土地:地方政府在土地,位置、及土地性质继续协助安排;
b)电价:数据中心属于高能耗产业,由于本身对现场环境基本没有严重污染问题,相对其他高能耗产业,可以申请政府在电价上给予补贴;通常政府换届会影响,前期会有帮助,另外,对于项目后期的融资也会有影响。
d)科技补贴:地方政府可以针对技术含量比较高的数据中心行业,提供一定的科技补贴,以吸引投资。
g)bms自动化控制h)动力环境的监控i)网络。
j)it硬件服务,软件服务等一系列人才k)各主要设备供应商的技术支持人才。
目前在我国,这些专业的有经验的人才大部分聚集在一线城市里,最多可以布局的部分发达的二线城市;而我国能源充裕的地区,恰恰缺乏这方面的人才,是的在这些地区,数据中心交付时旺旺很难找齐合适人才来源,并在数据中心建设阶段,运维人员就应该陆续到岗,并需要跟进项目的建设,针对各专业系统,深入了解;在数据中心的测试验收阶段,需要基本全员到岗,并一同参与所有的测试,验收和接收工作;对于远离一线城市的偏远地区,如果不能落实人才问题,3数据中心的选址需要慎重考虑。
五、标准要求。
(一)自然地理环境1.避免地质灾害区域。
3.对空气污染的注意,尤其对于空气里的硫化物(如二氧化硫、硫化氢)含量污染。
5.远离危险品生产、储存、运输环境;(包括化工厂,炼油厂,加油站,储油罐,弹药库,烟花生产厂等)。
6.远离军事基地,演戏、实验基地。
9.避免在有民族矛盾、军事冲突、社会治安不稳定的地区及附近建设数据中心。
(二)配套设施。
数据中心的业务特点以及其质量和容量的要求,决定了数据中心对当地供电能力的要求,供电量必须保证充足和稳定。我们需要了解的因素包括:可用性——在了解当地电力供应情况的同时,我们需要权衡备选地点是否有多个成熟的电网;成本因素——我们还需要比较各种电力成本。也就是说,每千瓦时的动力源的成本应该足够低;具备替代的能源——决策管理层还需要考虑备选地点是否有诸如太阳能、风能、空气等可再生的能源,这将有助于企业打造更加绿色的企业形象。
双电源供电。
电对数据中心的重要性就像水对鱼儿的重要性一样,一旦数据中心发生断电情况,若没有很好的备份供电系统,诸多设备承载的业务就会发生中断,给数据中心带来严重损失。现在的数据中心供电都要考虑冗余,确保用电可靠性。
供电方案。
这是传统数据中心普遍采用的供电方案,数据中心采用两套供电输入系统,一套市电,一套备用电,备用电可以是蓄电池或柴油发电机组,市电是主用供电系统,当市电故障时,通过ats自动切换到备用电上,这样断电故障不会对后端设备产生影响。高精度的ups供电切换时间可以在30ms以下,可以满足绝大部分设备持续供电。
(三)成本因素。
对于一个建设项目来说,成本必然是一个必须反复权衡的因素。成本涉及到当地规划及土地价格、房屋建筑价格、租赁和物业价格、网络通讯费用、用电价格、5用水价格等多发因素。数据中心选址时,需要从通信基础设施的角度需要考虑各种因素。如:光纤主干线路及其距数据中心选址的距离。这将有助于衡量从光纤主干线路到数据中心选址所需投资的确切数据;光纤类型,这会影响传输速度;所在地通讯服务运营商的类型及其支持的服务模式;延迟因素,传输和交付延迟时间也将是一个重要的因素。
(四)政策环境。
良好的政策环境将有利于一个基地气候的形成,促进客户的选择和落户。需要考虑的因素包括:物业税、企业税和销售税。
(五)高科技人才环境。
人力资源主要包括:高校数据、it人员数量,其他科技教育机构数量。主要考察当地经济文化发展水平、科技教育环境、交通便利条件、人力资源供应及水平等方面,数据中心作为信息技术的集中体现,对各种社会资源的要求都非常高。
1、人员配置:
针对于不同的数据中心管理目标,相应的人员配置决策显然将会不同。对于c4的数据中心,要求运维人员做到全年7x24小时的值守。ui在美国的数据统计表明,全天候的值守可以将数据中心故障的发生率降低50%,对于提升整体数据中心的可用性有相当大的影响。为了实现全天候的值守,13个人的运维团队是最基本的配置,其中包括了数据中心机房经理1人,3名二线技术支持人员(覆盖电气、空调和弱电专业,可以在必要的时候顶替日常值班人员),1名运维主管以及8名一线的运维技术人员。8名一线的运维人员分为4个班组,采用8小时或者12小时一班进行轮值。在这8名运维人员中,每一班需要有至少一名资深人员,具备对于现场紧急情况进行快速处置的能力。当然,这13人的运维团队只是最基本的配置人数,随着数据中心功率和设备数量的增长,运维人员在各个专业也应该有相应人数的补充,从而与工作量相匹配。
2、组织结构。
组织结构通常包括两方面内容:一是对机房内所有活动的角色和他们的工作职责进行准确的定义;二是呈现各角色之间的汇报关系以及运维团队与建筑工程、it系统、安防系统之间的工作界面。对角色和职责的准确定义可以将工作6内容细分到每个人身上,做到责任到岗、责任到人;各级之间的汇报关系是处理数据中心事件,尤其是紧急事件的方式依据,对不同等级的事件要明确上报的途径和终点。
(六)社会及当地的人力资源条件。
主要考察当地经济文化发展水平、科技教育环境、交通便利条件、人力资源供应及水平等方面,数据中心作为信息技术的集中体现,对各种社会资源的要求都非常高。
六、区域发展倾向。
目前全国性的数据中心和灾难备份中心主要集中在北京、上海和广东这几个地区,北京是各行业主管机关的所在地,全国众多的主要金融机构总部所在地,因此也是多数总部级数据中心的天然所在地。上海目前已经成为全国银行业数据中心的集中地,广东作为中国经济最发达地区之一,也是数据中心/灾备中心的集聚地。
造成数据中心选址倾向性有几个原因:一个是总部所在地的原因。第二是银行数据中心选址,对其它行业有影响。第三,由于信息不对称,很多领导决策的时候没有充分地考虑很多问题,凭感觉或者经验就决定了。第四,我们比较缺乏系统的考察指标。
七、建设方式。
(一)企业自建数据中心。
很多大型企业都拥有自己的数据中心,然后通过租用运营商的广域网线路,实现多个内部数据中心的互联。比如:军网、公安网、平安工程、银行行业、石油行业等,这些专网使用的都是专有的数据中心,由各大政府部门、企业主导自行创建的。
优势:自建的数据中心,使用非常灵活,可以根据自己需求任意改动,灵活性高,尤其这种自建的数据中心安全度最高,信息泄露,受攻击的可能性大为减少。劣势:这种数据中心投入大,建设成本高,具有封闭性,专为单个企业或部门提供服务。由于建设数据中心要申请工业建筑用地、要得到供电部门、建设部门的同意,手续非常繁琐。而且建成后到投入使用,往往需要几年的时间,建设周期长。
(二)租用运营商数据中心。
运营商提供场地、机柜、网络带宽和供电,互联网企业直接将设备放入运营商网络中即可。
优势:一般只要一周就可以建设完一个数据中心并投入使用,速度非常快,这种方式在互联网企业中非常普遍,这样互联网企业只需要关注自己的应用设备(主要是网络设备和服务器)运行状况即可,不必关心机房环境、空调、供电等一系列问题。虽然要向运营商支付不菲的租用金额,但仍可为互联网企业节省了大量的人力和物力。互联网企业而且可以根据自己的业务实际情况,在运营商的各级省市都去租用数据中心机房,迅速部署业务。
劣势:使用仍有一些限制,比如机房环境的维护、设备出入管理都受到运营商的限制。租用期限、新增机房面积都要和运营商沟通,需要运营商的同意才能实施。这些互联网企业要想发展的好首先就要和这些运营商搞好关系。
(三)租用数据中心提供的服务。
通过直接租用大型数据中心的服务,就可以部署自己企业的业务。比如可以根据自己的业务需求,向阿里云租用100gt的硬盘和200g的内存,10g的带宽,对于中小企业,满足这些性能的物理硬件完全不可见。
优势:这样企业用户可以完全聚焦于自己的应用业务,不必关心数据中心底层实现,也为企业节省了人力。
劣势:
1、故障恢复性难度大。当然这样的形式使得企业的核心业务稳定性与租用的数据中心运行稳定性关系较大,有时出现故障,由于企业自身看不到数据中心底层实现,只能甘等业务恢复。
2、有时还会出现互相推诿的情况,而由于租用方处于技术弱势方,往往故障所带来的损失很难得到补偿。
3、安全性无保障。除了上层应用,数据中心底层实现都不受自己控制,受到攻击都没有任何手段,因此安全性完全取决于承租的数据中心。因此在选择租用数据中心服务时,要对其数据中心的安全性进行充分考量。现在提供数据中心应用服务的还比较少,只有几家,竞争还不充分,这给中小企业选择的余地较少。
8年实现500亿元产值,成为国家政务资源后台处理与备份中心和国家级大数据处理中心。目前引进了四大运营商,中国联通、中国电信、中国移动和陕西广电网络,以及一个国家部委国家计生委的灾备中心。通过大数据的引领发展,带动信息产业的发展,带动软件包括装备制造产业的发展。
(二)重庆西永微电子产业园区:园区于2005年8月正式设立,规划面积30平方公里,其中产业区20平方公里,配套服务区(西部新城的城市中心区)10平方公里。园区产业以集成电路产业和软件及信息服务产业为主导,着力打造集设计、研发、制造、封装测试、应用以及配套于一体的集成电路产业和软件与信息服务产业集群。
(三)天津市滨海新区:部署建设大数据产业园区。一期规划布局1个大数据产业示范基地和3个大数据产业园区。其中,开发区云计算产业基地作为大数据产业示范基地;保税区数字出版基地、高新区软件与服务外包基地、塘沽海洋高新区作为3个大数据产业园区,争取成为国家级大数据产业基地。
(四)中关村大数据产业园:设立中关村软件园和清华科技园两个分园,建筑面积2.5万余平方米,已吸引了10余家符合条件的企业入驻。
大数据社会实践报告篇二
(一)电子政务建设成效明显。我盟电子政务建设一直居于全国前列,电子政务专网上接自治区政府专网,带宽为155m,备用线路带宽为20m;向下已延伸至各旗县市区政府,带宽为100m,主要用于开展公文交换、会务管理、应急管理、政法法制、政务信息和督查以及各部门业务等应用。2003年,xxxx政务门户网站上线运营。2005年全国首家蒙文政府网站——xxxx蒙文政务门户网站正式开通。2007年,我盟对盟、旗县市(区)、苏木(乡镇)三级党委、人大、政府、政协机关,盟、旗县市(区)两级党委、政府直属部门及盟、旗两级部分事业进行了集中建站,建立起了全盟三级政府网站群体系架构,政务网站群实现了全覆盖。目前全盟纳入普查范围的各类政府网站共计519个。建立了盟、旗县市(区)、苏木(乡镇)、嘎查村“四级联动”行政审批服务体系,并全面开展电子效能监察工作,对进入盟旗两级政务服务中心的行政审批项目,全部实行了实时监察监控。
(二)社会管理领域取得实质性进展。建立智能在线全员人口信息综合业务应用平台,将全盟117.91万人口信息数据全部录入全员人口信息数据库,实现了全盟全员人口信息数据基本的全覆盖。建设“平安锡盟”社会治理数字化工程,以建设“三网三平台一张图”为基础,分别将社会公共监控资源、视频专网监控资源、公安内网视频监控资源进行整合,实现了社会治理事前预防控制、事中指挥调度以及事后研判应用。
xx浩特市积极推进网格化管理,将城区内45个社区合理划分为180个网格单元,以网格为单位进行社会管理和服务。整合“户籍、住房、计生、就业、社保、民政、党建、司法、流动人口”等各类基础信息,构建全市人口基础信息系统,初步实现人口信息从静态管控到动态管控,从单一管理到综合管理利用。xx浩特数字城市指挥中心利用地理信息系统、全球定位系统以及遥感技术等手段,建立起统一的城市数字化信息共享、协调处置、监督实施的指挥平台。通过群众拨打12319服务热线、网上举报等渠道,受理园林绿化、环境保护、环境卫生、市容市貌、给水排水、私搭乱建、公共设施、集中供热、交通治安、户外广告、市场建设等城市管理的多方面问题,共涉及锡市规划局、住建局、环保局、公安局、城管局等17个部门26个成员单位。
(三)民生服务领域发展步伐加快。积极推进教育、卫生、环保、农牧业等领域信息化平台建设工作。持续开展“三通两平台”工程,目前156所学校及相关教育部门共计200多个单位已实现互联互通;搭建了区域卫生信息协同平台,累计为全盟95万城乡居民建立了健康档案,为全盟37个苏木乡镇卫生院和10个社区卫生服务中心建立了医院信息管理系统,为242个嘎查村卫生室安装使用了嘎查村卫生室信息系统,实现了基本医疗、基本公共卫生和基本药物的电子化管理;建成了污染源在线监控平台、空气质量自动监测系统、重污染天气预报预警系统、机动车尾气检测机构在线监控平台,形成了对全盟重点污染源的在线监控;建立xxxx羊肉全产业链追溯体系综合服务平台,将肉羊养殖、屠宰加工、精加工、物流配送、销售五个环节信息集成,目前已累计为7413户牧户的161万只羔羊建立可追溯档案,基本实现了“来源可追溯、去向可查证、责任可追究”。
(四)经济运行管理领域发展初具规模。为更好地监管市场,食药工商局为107192户市场主体建立电子档案信息。建立企业信用公示平台,截至10月,全盟已对90591户企业信用信息进行备案,备案率为84.53%。建设xxxx盟金财一期工程,覆盖所有财政性资金,辐射各级财政部门和预算单位,进一步提高财政资金分配和使用的安全性、规范性和有效性。
(五)大数据应用初见端倪。建立中小企业公共服务平台,并实现与自治区枢纽平台的互联互通,目前,各旗县市(区)共有383户企业通过审核注册成功。建设xxxx盟蒙古文综合服务平台,蒙古族同胞可以利用手机查询国家政策、法规、综合新闻以及市场动态、农牧业补贴、气象、生活助手等内容。同时,由私人投资建设的“锡盟信息港”、“xx123信息网”、“上都在线”等公共咨询服务平台建成运行,主要发布招聘、出租、家政、出售等咨询信息。此外,全盟已有各类电子商务平台19个,包括大宗商品销售、农牧民赶集采购、团购、社区电商以及跨境电商等类别,特色鲜明,发展前景广阔。
二、存在问题。
(一)数据共享程度低。全盟大数据建设缺乏统一规划和有力的领导,各个委办局信息系统基本都属于独立纵向系统,数据平台并未实现横向互通;数据资源整合力度不够,共享程度低,政府部门间重复建设现象严重。
(二)建设缺乏统一标准。目前,各平台数据采集的基本要素、数据的来源、数据采集的方法及要求没有统一标准,导致产生“信息孤岛”。
(三)网络基础设施建设有待完善。我盟地域辽阔,牧区人口居住比较分散,现有宽带网络无法满足牧区信息化需求,全盟移动通讯信号以覆盖面积计算嘎查村覆盖率不足60%,宽带不足30%,宽带网络基础设施建设规模仍有待提高。
(四)专业队伍建设有待加强。现有人员年龄结构断层,知识结构不合理,严重缺乏专业技术人才,因此迫切建立一支稳定的高素质、专业化信息建设队伍。
三、下一步工作重点。
(一)高起点规划布局,建立我盟大数据中心。按照“顶层设计,分布实施”的原则,委托权威机构编制我盟大数据建设规划,对我盟大数据建设进行总体规划,并研究出台具体技术实施方案,明确工作内容、时间节点,促进大数据建设工作顺利推进。高标准规划大数据中心,涵盖数据整合、共享与分析、网络服务、数据存储及可视化运维等多方面内容,并在“两地三中心”进行容灾备份,保护数据的安全和业务连续性。逐步整合撤并各部门现有自建机房和设备,原则上各部门不再建设新的机房,实现资源集约化管理。
(二)推进数据信息资源共享,推动社会管理科学可控。在充分利用现有数据资源的基础上,进一步完善人口基础信息库、法人单位信息资源库、自然资源和空间地理信息库和宏观经济数据库等核心数据库,完成数据资源整合与共享,实现部门间信息互联互通。建立大数据交换与共享平台,实现对数据集约化采集、网络化汇聚及统一化管理,推动政府职能转变,提高政府服务效率。建立数据标准和统计标准体系,有计划、分层次地推进各领域的应用。
(三)做好商品追溯防伪系统平台项目。引进大连声鹭科技有限公司开发的商品追溯防伪系统平台建设项目,打造以“商品追溯防伪”为主题的互联网经济示范平台,并带动芯片封装和手持终端检测设备生产基地建设,逐步培养辐射全国的商品追踪防伪系统技术创新研发基地。成立创新研发中心,针对不同品类商品、不同包装方式、应用场景,推进相关芯片应用和标准体系建立,并率先对我盟原产地白酒、食用油、食用盐等品牌产品提供商品追踪防伪示范服务。
(四)推动智慧社区、智慧旅游、智慧农牧业项目建设。进一步推动社区网格化管理,加强社区周边服务资源的集中整合,大力建设覆盖社区管理、社区服务、社区安全、智慧家居、养老服务的智慧社区生活服务圈。结合我盟旅游产业发展现状,建立基于互联网的旅游信息服务体系、构建多部门信息共享、联动协调的智慧旅游管理体系、应用多种营销手段打造特色旅游品牌,全面推动旅游业向智能化转型提升。推行农牧业养殖过程中的自动化、集成化、网络化管理,加大特色农产品品牌营销力度,鼓励农牧业电子商务发展。
四、相关建议。
(一)加强组织领导、强化政策扶持。行署尽快成立由主要领导任组长,行署常务副盟长、分管副盟长任副组长,有关部门、单位为成员单位的大数据发展推进领导小组,领导小组下设办公室,并建议设在行业主管部门,保证工作有序推进。建立大数据建设发展专项资金,实行专款专用。
(二)依托智慧应用,加快产业发展。推动云计算、物联网、互联网与大数据等新一代信息技术产业集约集聚发展,加快新一代信息技术在政务、经济运行、社会管理和民生服务领域的深化应用、共享应用和融合应用,培育一批具有自主产权、自主品牌的智能项目和智慧服务,切实提高居民幸福指数。
(三)夯实基础设施、强化信息安全。光纤网络实现百兆入户、千兆到楼、t级出口。进一步实施“宽带锡盟”战略,加快推进光纤入户到企、进村入园,推动4g网络对城区的深度覆盖,并进一步提高农村牧区网络覆盖面。完善网路安全保障体系,进一步加强信息安全测评认证体系、网络信任体系、信息安全监控体系及容灾备份体系建设,建立网络和信息安全监控预警、应急响应联动机,增强信息采集、处理、传播和利用安全能力。
(四)加强人才引进、注重宣传推广。加快引进大数据领军人才、创业人才和掌握前沿技术的专业人才,落实好人才保障措施,推进大数据人才队伍建设。推进企业与高校、科研院所的合作,实现科技人才交流、科研成果共享。依托我盟高校、园区和企业,联合建立各类智慧人才教育培训基地,提供教育、培训和考试等服务。建立xxxx智慧城市创新体验中心,积极推广大数据发展成果,提升城市活力的同时成为我盟招商引资、引智窗口。
大数据社会实践报告篇三
有些人感觉身体不舒服,但到医院进行西医体检,各项指标都是正常。为此,很多人开始接受中医体检。昨天,南京市中西医结合医院在膏方文化节启动仪式上,发布南京首个中医体质检测大数据报告:在该院对1000名参与中医体检的市民中,比较健康的人群只占33%,其余67%市民都处于亚健康状态。据介绍,通俗来说,亚健康状态,就是身体出现了不适,但还未到某些诊断的标准,因此体检指标是正常的。
中医将身体状态分为9种体质。根据这份大数据报告,平和体质排在第一位,占比33%。平和体质也就是常说的健康状态。其余8种体质人群,按照从高到低的顺序排序依次为气虚体质(约占12.7%)、阴虚体质(约占10.8%)、气郁体质(约占9.3%)、阳虚体质(约占8.3%)、痰湿体质(约占8.1%)、湿热体质(约占7.6%)、血瘀体质(约占6%)和特禀体质(约占4.2%)。
从主要人群分布分析,没有明显的职业和学历差异,但是与测试者的生活习惯密切相关。比如,喜欢高热量高脂肪饮食的人群,在痰湿体质的人群占比中最高;喜欢熬夜的人群,在阴虚体质的人群中占比最高;不爱户外活动的人群,在气郁体质的人群中占比较高。
南京市中西医结合医院治未病中心夏公旭副主任中医师说,平和体质人群的总体特征是阴阳气血调和,体态适中、面色红润、精力充沛,这个样本的.数据主要以体检中心和治未病中心的数据为主,大部分参与测试的人群都不是患者,而是以体检为主的人群。但大部分没有因为疾病到医院就诊的人群中,接近七成的人都是亚健康人群。
在亚健康的8种体质中,气虚高居榜首。夏公旭说,气虚常常是身体出现问题的最开始预警信号,不良生活习惯易致亚健康。针对亚健康状态,选择膏方调理身体,越来越受到人们的欢迎。但是,膏方进补不能盲目,否则不仅不能达到调理身体的目标,甚至事与愿违。今年,针对开具膏方的人群,南京市中西医结合医院均免费提供价值120元一次的中医体质辨识检测,让市民根据不同体质有针对性地选择相应的膏方。
对照一下,你可能属于哪种体质?
为了让市民了解亚健康状态的8种体质,南京中西医结合医院进行了一些临床特征的总结,市民不妨自我对照一下。
气虚质。
性格内向,不喜冒险。不耐受风、寒、暑、湿邪。
阳虚质。
阳气不足,以畏寒怕冷、手足不温等虚寒表现为主要特征。耐夏不耐冬;易感风、寒、湿邪。
阴虚质。
阴液亏少,以口燥咽干、手足心热等虚热表现为主要特征。手足心热,口燥咽干,鼻微干,喜冷饮,大便干燥,舌红少津,脉细数。
痰湿质。
痰湿凝聚,以形体肥胖、腹部肥满、口黏苔腻等痰湿表现为主要特征。面部皮肤油脂较多,多汗且黏,胸闷,痰多,口黏腻或甜,喜食肥甘甜黏,苔腻,脉滑。
湿热质。
湿热内蕴,以面垢油光、口苦、苔黄腻等湿热表现为主要特征。面垢油光,易生痤疮,口苦口干,身重困倦,大便黏滞不畅或燥结,小便短黄,男性易阴囊潮湿,女性易带下增多,舌质偏红,苔黄腻,脉滑数。
血瘀质。
血行不畅,以肤色晦黯、舌质紫黯等血瘀表现为主要特征。肤色晦黯,色素沉着,容易出现瘀斑,口唇黯淡,舌黯或有瘀点,舌下络脉紫黯或增粗,脉涩。
气郁质。
气机郁滞,以神情抑郁、忧虑脆弱等气郁表现为主要特征。神情抑郁,情感脆弱,烦闷不乐,舌淡红,苔薄白,脉弦。
特禀质。
以过敏反应等为主要特征。常见哮喘、风疹、咽痒、鼻塞、喷嚏等。
大数据社会实践报告篇四
专业:
电气工程及其自动化
姓名:
学号:
20xx年5月24日
xx水电站
1。不乱碰电站设备,保证电站设备安全和人身安全:
2。认真听取电站工作人员的讲解,了解电站的运行方式和供电方向:
3。参观了解电站坝堤:
通过见习,把书本上的理论和现实中的技术结合起来,让我们对所学过的各种仪器设备有一个感性的直观认识,用所学过的知识去分析解决现实中的问题。除此外,见习还是我们在大学期间一门意义重大的必修课,是学院为培养高素质工程技术人才安排的一个重要实践性教学环节,是将学校教学与生产实际相结合,理论与实践相联系的重要途径。其目的是使我们通过见习在专业知识和人才素质两方面得到锻炼和培养,从而为毕业后去电力部门尽快熟悉工作,也开拓了我们的眼界。
xx年5月24日早晨,经过将近一个小时的车程,我们终于来到了贺州市桂东电力子公司----合面狮水电站。我们的车子一进入电站小区,就感到了一份浓浓的电气独有的气息。当车子开往坝堤的那一刻,不禁觉得有一种熟悉而又神秘之感。熟悉是因为我们是电气人,神秘是因为第一次接触实际的东西。车子继续前行,经过一条蒙阴道,而蒙阴道旁边就是奔涌的贺江,闻到的是一股清凉的河水味,是水电站流出来的味道。车子停了,原来我们已经到了坝底。
下车时,看到的是一些工作人员在修剪电站变电区的草坪,每个人都穿着工作服和安全帽。虽然不是道闸操作、检修操作,但是凡在现场环境下工作的,都必须按规章穿好工作服和戴上安全帽,这是一种原则,一种精神。同样也是我们以后工作之中必须注意的事项,严谨、严谨,再严谨。
下车之后一位主任从电站监控室里走了出来,微笑这迎接我们。他分别带领我们参观了蓄水堤坝、微机模拟控制屏、水轮机室和带负荷拉闸室。
我们分批进入水轮机室,作为后一批进入的我,首先参观了堤坝建设。我们一步一步往坝顶爬,慢慢体验这坝堤的高度。在坝顶,看着堤坝两边水面的高度差有40多米,可见这能量是有多大啊!再看看溢流孔涌出水势,叹为观止啊!
经过一天的见习,我更深入地了解了电气人员应该有的素质:认真、严谨、有极高的安全的意识。希望自己以后认真学习,提高能力,个人综合素质也要向上发展,尽管自己现在还存在着一些缺点和不足。在今后的学习中和毕业工作后,我还要更进一步严格要求自己,虚心向优秀的同学、同事学习,继续努力改正自己的缺点和不足,争取在思想、学习、工作和生活等方面有更大的进步。
大数据社会实践报告篇五
摘要:大数据时代的数据格式特性首先让我们先来了解一下大数据时代的数据格式特性。从it角度来看,信息结构类型大致经历了三次浪潮。必须注意这一点,新的浪潮并没取代旧浪潮,它们仍在不断发展,三种数据结构类型一直存在,只是其中一种结构类型往往主导于其他结构:结构化信息这种信息可以在关...根据idc的调查报告预测到2020年全球电子设备存储的数据将暴增30倍,达到35zb(相当于10亿块1tb的硬盘的容量)。大数据浪潮的到来也为企业带来了新一轮的挑战。对于有准备的企业来说这无疑是一座信息金矿,能够合理的将大数据转换为有价值信息成为未来企业的必备技能。恰逢此时,csdn专门针对企业相关人员进行了大规模问卷调研,并在数千份的调查报告中。
总结。
出现今企业大数据业务的现状。在此我们也将调研结果展示与此以供大家参考。
大数据时代的数据格式特性首先让我们先来了解一下大数据时代的数据格式特性。从it角度来看,信息结构类型大致经历了三次浪潮。必须注意这一点,新的浪潮并没取代旧浪潮,它们仍在不断发展,三种数据结构类型一直存在,只是其中一种结构类型往往主导于其他结构:
结构化信息——这种信息可以在关系数据库中找到,多年来一直主导着it应用。这是关键任务oltp系统业务所依赖的信息,另外,还可对结构数据库信息进行排序和查询;半结构化信息——这是it的第二次浪潮,包括电子邮件,文字处理文件以及大量保存和发布在网络上的信息。半结构化信息是以内容为基础,可以用于搜索,这也是谷歌存在的理由;非结构化信息——该信息在本质形式上可认为主要是位映射数据。数据必须处于一种可感知的形式中(诸如可在音频、视频和多媒体文件中被听或被看)。许多大数据都是非结构化的,其庞大规模和复杂性需要高级分析工具来创建或利用一种更易于人们感知和交互的结构。
企业内部大数据处理基础设施普遍落后。
从调查结果可以看出,接近50%的企业服务器数量在100台以内,而拥有100至500台占据了22%的比例。500至2000台服务器则占据剩下28.4%的比例。可以看出面对大数据现今大部分企业还没有完善其硬件基础架构设施。以现阶段企业内大数据处理基础设施的情况来看50%的企业面临大数据处理的问题(中小企业在面对大数据的解决之道应遵循采集、导入/处理、查询、挖掘的流程)。
但这只是暂时状况,“廉价”服务器设施会随着企业业务的发展逐渐被淘汰出历史的舞台,在未来企业基础架构体系的硬件选用上,多核多路处理器以及ssd等设备会成为企业的首选。facebook的opencomputeproject就在业界树立了榜样,opencomputeproject利用开源社区的理念改善服务器硬件以及机架的设计。其数据中心pue值也是领先与业内的其他对手。
而在具有大数据处理需求的企业中52.2%的日数据生成量在100gb以下,日数据生成量100gb到50tb占据了43.5%,而令人惊讶的是,日数据生成量50tb以上也有4.4%的份额。数据量持续的增长,公司将被迫增加基础设施的部署。专利费用将一直增加,而开源技术,则省了这笔一直持续的专利费。对于急需改变自己传统it架构的企业而言,传统的结构化数据与非结构化数据的融合,成了所有人关心的问题。
企业面对大数据处理的挑战与问题。
现今大数据呈现出“4v+1c”的特点。既variety:一般包括结构化、半结构化和非结构化等多类数据,而且它们处理和分析方式有区别;volume:通过各种设备产生了大量的数据,pb级别是常态;velocity:要求快速处理,存在时效性;vitality:分析和处理模型必须快速变化,因为需求在变;complexity:处理和分析的难度非常大。
从图中我们可以看出资源利用率低、扩展性差以及应用部署过于复杂是现今企业数据系统架构面临的主要问题。其实大数据的基础架构首要需要考虑就是前瞻性,随着数据的不断增长,用户需要从硬体、软件层面思考需要怎样的架构去实现。而具备资源高利用率、高扩展性并对文件存储友好的文件系统必将是未来的发展趋势。
应用部署过于复杂也催生了大数据处理系统管理员这一新兴职业,其主要负责日常hadoop集群正常运行。例如直接或间接的管理硬件,当需要添加硬件时需保证集群仍能够稳定运行。同时还要负责系统监控和配置,保证hadoop与其他系统的有机结合。
而多格式数据、读写速度(读写速度是指数据从端点移动到处理器和存储的速度)以及海量数据是企业面临大数据处理急需解决的技术挑战。众所周知随着大容量数据(tb级、pb级甚至eb级)的出现,业务数据对it系统带来了更大的挑战,数据的存储和安全以及在未来访问和使用这些数据已成为难点。同时大数据不只是关于数据量而已。大数据包括了越来越多不同格式的数据,这些不同格式的数据也需要不同的处理方法。充分利用有用的数据,废弃虚伪无用的数据,是数据挖掘技术的最重要的应用。
企业内部数据分析与挖掘工具应用现状。
云时代企业数据挖掘面临如下三点挑战。挖掘效率:进入云计算时代后,bi的思路发生了转换。以前是基于封闭的企业数据进行挖掘,而面对引入互联网应用后海量的异构数据时,目前并行挖掘算法的效率很低;多源数据:引入云计算后,企业数据的位置有可能在提供公有云服务的平台上,也可能在企业自建的私有云上,如何面对不同的数据源进行挖掘也是一个挑战;异构数据:web数据的最大特点就是半结构化,如文档、报表、网页、声音、图像、视频等,而云计算带来了大量的基于互联网模式提供的saas应用,如何梳理有效数据是一个挑战。抛去价格因素之外可以看出反应速度慢、操作不方便、数据不准确、分析不准确这四项是企业数据分析与数据挖掘面临的主要问题。商业化解决方案固然成熟,但成本也是显而易见的。而具备在开源平台之上处理分析大数据能力的数据科学家则成为另外的一种选择。数据科学家具备专业领域知识并具备研究利用相应算法分析对应问题的能力,可帮助创建推动业务发展的相应的大数据产品和大数据解决方案。
从调查结果中我们可以看出hadoop占据了半壁江山,而同为开源的hbase也有将近四分之一的占有率。而商业化的数据分析与挖掘平台(如teradata、netezza、greenplum等)总共只有13.9%的份额。短期来讲,开源分析将越来越广泛的使用,并且增长迅速。长期来看,混合技术的应用将在高度竞争的市场上出现,两者将同样有巨大的需求。可以预见的是,hadoop作为企业级数据仓库体系结构核心技术,在未来的10年中它将会保持增长。随着云时代的到来,企业面临的应用方式更加多元化,通过云的手段提供海量数据挖掘的方法,提高了挖掘的效率,增加了挖掘的精度,更利于挖掘应用的推广以及专业的行业知识库的构建。同时收集、存储庞大的新型数据充满了挑战,然而分析这些数据的新方法才是帮助最成功企业甩开竞争对手的利器。
大数据社会实践报告篇六
20xx春节就回家过年是每一个中国人的盼望,一年一度的春运也随之成了牵动全社会的民生大事。那么,20xx春运客流量多少?20xx春运送量怎样?20xx年春运人数一共多少人次?下面小编整理的20xx春运大数据报告,一起来看看吧。
2月16日,高德地图发布了20xx年春运大数据。数据显示,从春运1月13日开始截至2月11日元宵节,广东省深圳、东莞、中山、佛山、广州5座城市占据人口迁出比例最高城市top5,可见流动人口数量很大。安徽省4座城市跻身人口迁入比例最高城市top10,也是春节“返乡”大省。
春运期间拥堵缓解最多的5座城市分别为贵阳市、东莞市、广州市、哈尔滨市、北京市,拥堵加剧最多的5座城市分别为清远、南充、唐山、衡阳、三亚。
同时高德地图宣布,20xx年高德地图用户春运实际驾车导航次数同比20xx年春运增长283%,超过9亿次,实际驾车导航总里程达到130亿公里,相当于往返地球与太阳之间43次。春运期间,高德地图躲避拥堵功能为全国用户节省时间约等于3520xx年。
春运迁徙:广东人口流动大安徽返乡人流多。
高德地图定位大数据分析显示,春节迁出人口比例最高的城市中,北上广深四座一线城市均入榜,除深圳、广州外,广东省还有东莞市、中山市、佛山市三个城市上榜,占据前五,足以见得广东省流动人口数量很大,春节期间“空城率”最高。与之对应,春节迁入人口比例最高的城市中前两名也在广东省,分别是梅州市和茂名市。安徽省占据迁入人口比例最高城市top10中的四席,安庆、苏州、亳州、六安入榜,可见安徽人外出务工也较多。另外春节迁入比例最高的城市中,南方城市占据主要位置,与人们对南方人更愿意外出闯荡的印象相符。
通过分析跨省返乡比例,高德地图得出了春运乡愁最浓的省份,分别是江西省、广西壮族自治州和湖南省。从春运大军的出行方式来看,广东省由于人口流动最大,乘坐飞机、汽车、火车的人数均最多。
春节出行:西湖又登最热景区三亚爱下馆子爱购物。
20xx年春节出游,杭州西湖风景名胜区又成为最热门的自驾旅游目的地,热门自驾景区top10中位列其后是大理古城、南京夫子庙、北海银滩、湘西州凤凰古城景区、横店影视城、都江堰景区、毛泽东故居、清明上河园和乌镇风景区。
除了出游以外,春节期间吃喝娱乐也是主要活动。通过高德地图大数据显示,驾车用户春节期间爱下馆子吃年饭的城市为三亚市、大同市、哈尔滨市、厦门市和北京市。春节期间光顾电影院占比最高的城市是台州市、乌鲁木齐市、温州市、汕头市和哈尔滨市。此外,春运期间最爱采买的城市为三亚市、香港特别行政区、沈阳市、北京市和天津市。
然而,春节假期还有人在加班。政府行政、医疗卫生、购物等春节期间很多人驻守岗位,培训、教育和科研行业也入围春节加班前十名,可见过年学习、研究热情不减。生活服务、酒店服务、餐饮服务和银行职员加班也较多。
春运交通:初六最堵贵阳东莞拥堵缓解最大。
春运期间,人口迁出可使大城市交通有所缓解,也同样使一些中小城市交通拥堵加剧。根据高德地图交通大数据分析显示,通过春运期间白天6-22点交通拥堵指数与平时对比,春运期间拥堵缓解城市top5分别为贵阳市、东莞市、广州市、哈尔滨市、北京市,深圳、上海位列北京之后;春运期间加剧城市top5分别为清远市、南充市、唐山市、衡阳市、三亚市。
整体来看,高德地图交通大数据监测的全国100个主要城市中,只有9座城市较平时拥堵加剧,超九成城市春运期间拥堵缓解。
同时,春运会导致一些火车站和机场周边交通压力上升。春节前夕,全国周边拥堵指数最高的火车站为哈尔滨站、西安站和石家庄北站;周边拥堵指数最高的机场为湛江机场、青岛流亭国际机场、大连周水子国际机场。节后返程时,全国周边拥堵指数最高的火车站是济南站、哈尔滨站、西安站,周边拥堵指数最高的机场为三亚凤凰国际机场、长沙黄花国际机场、绵阳南郊机场。
春运期间,正月初六为交通最拥堵的一天,全国高速拥堵指数比平时高出153%。
高德地图为助力春运出行推出了多项创新举措。节前在公安部指导下,高德地图联合近50家地方交管部门发布《20xx年春节出行预测报告》,同时高德地图春运先知路况预测系统也帮助数千万民众出行;节中,高德地图联合14省交警向跨省出行用户发出春运出行平安信息推送,并长期不间断地向数十家城市的交通诱导屏输出实时路况数据,服务民众出行。
值得关注的是,高德地图今日宣布,截至元宵节,春运期间(1月13日春运开始至2月11日正月十五)用户实际驾车导航超过9亿次,实际驾车导航总里程130亿公里,相当于往返地球与太阳之间43次。高德地图城际交通实际导航超过千万次,其躲避拥堵功能在春运期间为全国用户节省时间约3520xx年。同比20xx年春运,高德地图实际驾车导航次数增长283%。同时,春运出行期间,用户使用高德地图报平安功能向亲友发起报平安近2千万次,用户在春节回馈用户线上活动中砸金蛋近5千万个。
大数据社会实践报告篇七
胡泽君审计长曾多次强调指出,要积极推进大数据审计,坚持科技强审,通过信息化、数字化,努力提高审计监督的质量和效率。新形势下,审计工作特别离不开大数据的支撑,利用大数据进行审计,或将成为审计机关应对复杂社会经济管理形势、提升审计工作质量的重要手段。以"金审工程"为基础的审计信息系统经过多年的建设发展,目前正逐步建立和完善。同时,在政府各部门中社会保障大数据既具有较高的完整性,也兼具较高的准确性。这些得天独厚的条件,不仅使审计对"大数据"监督管理成为可能,更为实施以"大数据"为基础的审计"全覆盖"奠定了基础。
一、大数据技术在财政审计方面的运用。
(一)运用大数据开展财政审计是时代发展的必然要求。大数据不仅是信息技术的重大进步,更是发展理念的重大创新,对经济社会发展起到重要作用,对与数据密切相关的审计工作也必将产生深刻影响。当前,财政、税务、人民银行等部门普遍进行信息系统建设,财政部门开展的"金财工程"覆盖财政收支管理的业务应用系统,涵盖了预算管理、国库集中收付等业务,对财政部门的审计单位信息化的发展,迫切要求运用大数据开展财政审计。
(二)运用大数据开展财政审计是推动完善国家治理的迫切需要。财政审计的范围突破了传统的财政收支概念,囊括了政府性收支的全部内容。全口径预算的审查监督付诸实施,如何在有限的时间内查找和发现问题,运用大数据开展财政审计成为推动完善国家治理的迫切需要。
(三)运用大数据开展财政审计是财政精细化管理的要求。在精细化管理要求之下,财政预算审查、预算执行差异分析、预算与决算的对比分析都是使用系统大数据来完成的。相应地,财政预算执行审计要实现全口径分析,必须使用系统数据。如利用国库支付系统的数据,通过对指标来源、资金性质、资金流向的跟踪分析,实现所有财政资金全过程跟踪审计。(四)大数据审计现在的运用情况。按照审计署的要求,建立了财政数据定期报送机制,每半年收集一次财政数据,并对收集的数据进行整理,生成审计人员可以使用的标准表。财政科联合信息科,对预算编报系统、预算指标系统、非税征管系统、决算编报系统等的财务和业务数据,集中进行多系统关联、大数据比对。将数据分析形成的审计中间表和疑点表作为重点进行审计,提高了效率和增强指导性。审计结束后,强化经验总结,形成数据采集转换指南,归集整理形成财政大数据审计模型方法体系表,为进一步深化大数据审计积累经验。
二、社保审计大数据信息管理现状。
(一)社保部门数据管理情况。一是社保业务实现网络化。随着金保工程的推进,社会保险"六险"统征已经实现,社会保障业务办理正逐步向社区(村)、单位及个人延伸,社会保障业务一体化架构正逐渐完善。二是社保资金使用服务实现规范化。卫生三级医疗服务网初步实现信息化,市级、县级医院、乡镇卫生院医疗业务管理系统已经平稳运行,乡村卫生管理一体化正逐步规范,居民人口及流动人口信息统计系统已趋于成熟。三是民政事业实现信息化。民政城乡居民低保、医疗救助及优抚等业务完成了由手工到信息化的转变,数据也由纸质向信息化转换。
(二)审计机关对社保数据的审计情况。审计机关在工作中采集了大量的财务数据和业务数据,但没有对这些数据进行统一和规范地管理,一般是保存在审计人员的电脑中,很难实现与局内其他审计人员和所属部门的数据共享,导致工作中出现重复采集数据的现象。由于大数据信息化环境下社保系统的特殊性,内部控制转变为对人和系统两方面的控制,而且多数情况是以计算机自动控制为主。数据网络安全存在隐患,大数据技术本身的技术架构,决定了采用"大数据"技术架构的系统安全防护的难度。
审计局在社保资金审计中,收集了医保、养老、低保、公积金等民生资金的业务数据,建立了审计数据库,信息技术人员和社保审计人员联合对各类数据进行了深入分析。在审计分析中,首先明确所面临问题的类型,然后根据类型的不同选择具体的处理方法。例如,在做参保对象的信用分析时,首先明确该问题类型属于分类,如果该问题类型无法用数据挖掘工具解决,那么就应当选择另外更加适合的方法来进行解决。建立审计方法,对采集的业务数据、财政财务数据以及相关外部数据进行综合分析,生成审计中间表和疑点分析数据,采取业务跟踪、内控测试、数据比对等方式,发现审计疑点并进行分析、筛查和分类。运用"互联网+"思维,注重外部数据的搜集和运用,包括企业登记信息、税务征缴信息、车辆信息、房产信息等与社保审计相关的数据。注重发票查询系统、企业信用公示系统等在公开资源的使用,积极挖掘和构建内、外部数据间潜在的关联,寻找相关的线索和突破口,搭建多维度、立体式审计工作大数据平台。(三)当前在社保审计中需解决的几个问题。一是解决数据价值认识和利用问题。在审计机关还存在着有些对于数据价值观念不强,不注重基础社保数据的积累和分类工作,对于历年的重要数据只是简单记录储存,从不进行仔细分析进而指导工作实践。对于多样复杂的大体量的社保数据,要么简要进行汇总统计,要么不知所措,甚至直接置之不理。就数据的分析方法而言,分析手段有限,专业性数据分析能力欠缺,不能够深度挖掘数据价值,加以充分吸收利用。二是解决架构模式改变问题。随着"大数据"、"云计算"在各行业的不断应用,数据架构与以往相比有了很大的变化,对数据的采集利用提出了新的、更高的要求。三是解决高端数据人才培养问题。多培养通晓相关专业知识和信息技术的复合型的人才,培养一批懂得大数据,收集大数据,并且善于研究大数据,深挖大数据的专家。加大对现有信息管理人员的大数据培训力度,掌握大数据相关技术。
三、
大数据审计发展方向面对大数据时代对审计工作带来的挑战,审计方式和途径将实现以下四个方面的转变。
(一)应用大数据分析技术,实现审计方法从数据验证性分析向数据挖掘性分析转变。
传统的计算机审计,是通过电子数据采集转换对数据进行验证,通过构建查询分析、多维分析等方法模型进行数据分析,而应用大数据分析技术,则能够使审计数据分析逐步由传统的验证性分析向挖掘性分析转变。挖掘性分析是指采用大数据处理技术,利用数据仓库、数据挖掘和模型预测工具进行审计分析,从大量数据中发现蕴涵的数据模式和规律。
(二)应用大数据分析模式,实现审计方式从发现问题向风险预警转变。
传统审计工作以发现问题为主,对经济形势进行预测分析,因而须等到相关事件发生并且形成一定规模后,再根据搜集到的足够数据进行分析研究,具有滞后性。而大数据技术可通过对跨领域的大规模经济、社会行为数据进行分析,对经济社会相关异常动态实现早期关注,利用其对异常数据的敏感性实现早期预警。审计可以运用大数据相关技术,对宏观经济社会风险问题展开初步分析。(三)应用大数据审计作业平台,实现单机审计向云审计转变。
以审计大数据为中心建设"云审计"平台,实现远程存储和移动计算,使审计机关能够通过网络接入"云"实施审计,利用大数据分析、人工智能等信息技术,解决数据采集分析和管理中存在的问题,实现审计成果共享。其次,应完善联网审计系统,逐步建立预算、执行、财政、地税、社会保障、医疗机构、公积金等重要行业和部门的审计实时监督系统。再次,应建设审计数据综合分析平台,运用大数据技术,加大业务数据与财务数据、单位数据与行业数据,以及跨行业、跨领域数据的综合比对和关联分析,提高运用信息化技术查核问题、评价判断、宏观分析的能力。最后,应推广"总体分析、发现疑点、分散核实、系统研究"的审计模式。
(四)构建专业的审计分析队伍,实现传统纸质账本审计向大数据审计转变。
审计工作应实现"六大转变",即由单点离散审计向多点联动审计转变、由局部审计向全覆盖审计转变、由静态审计向静态与动态审计相结合转变、由事后审计向事后与事中审计相结合转变、由现场审计向现场审计与非现场审计相结合转变、由微观审计向微观与宏观审计相结合转变。为此,需要在组织方式、人员结构、思维方式等方面与之相适应。在组织方式上,应尝试开展无项目审计,依托审计数据中心积累的数据资源,横向关联比对分析,纵向深入挖掘分析,从数据中发现审计疑点和线索。在人员结构上,应不断提升"四种能力",即大数据分析能力、综合研究能力、创新能力和跨领域知识运用能力,不断加强对大数据先进理念和前沿技术的学习,掌握大数据分析方法,提升审计人员综合素质。在思维方式上,应培养"数据先行"意识,以数据为核心,使数据分析在审计工作开展前先行实施,根据数据分析结果,有重点、有步骤、有深度地在审计实施过程中进行核查验证、追踪线索、发现问题,全面深化大数据技术在审计工作中的应用。
大数据社会实践报告篇八
12月8日消息,第一财经商业数据中心发布的《中国互联网消费生态大数据报告》显示,中国7.1亿网民将成为潜在的互联网消费者。
80后、90后消费观念大不同。
报告显示,80后与90后作为互联网消费领域的核心消费人群,90后在线上拥有鲜明消费特征,主要的标签是娱乐至上、爱新鲜和个性化。90后在玩乐方面的兴趣广泛,既表现出对桌游、美食、夜生活的喜爱,也对二次元、游戏等虚拟领域有着更高的付费意愿。
相比较下,80后则更顾家,在互联网理财、互联网地产、电商等消费领域有显著的消费特征,是互联网消费的主力人群。从阅读内容方面看,80后更加偏爱看健身、旅游、时尚、房产等话题的资讯;购物方面看,80后也更偏爱大家电、汽车用品、童装等居家物品,由此可以看出,80后互联网消费者特征的关键词是家庭化、品质和资讯控。
网红借力电商成“吸金王”
今年电商和社交的融合成为一个典型现象。数据显示,红人经济的发展使得红人店铺的浏览成交高于一般女装店铺,近50%的粉丝有重复购买的行为,并且规模大的红人店铺比一般红人店铺转化率高出57%。可以看出电商红人的店铺具有粉丝粘性高、高浏览高转化以及销售爆发力强的优势。
便捷和品质成互联网消费核心诉求。
移动互联网的渗透和众多新应用的兴起使得我国互联网消费生态不断孕育繁衍,消费者的需求也因此更加清晰细分,便捷与品质的诉求是两大明显特征。
报告提出,消费趋势的便捷主要体现在降低门槛、资源优化、服务整合和随时随地四个特性。以滴滴出行为例,滴滴优化夜间运力资源极大满足了人们夜间个性化出行的需求。数据显示,机场、火车站、餐饮等夜间交通资源不足的地方,使用滴滴出行的偏好度均呈现上升趋势,体现出网约车满足了消费者的`交通需求。
需求“品质化”则大大促进了商家运营发展轨迹的高端化、定制化、专业化和服务化。报告数据显示,从趋势上看,飞猪三年跟团游的增幅高于自由行的增幅,且跟团游中有近8成的订单数是当地游,可以看出组件式的“diy自由行”已成为了消费者旅游出行的新风尚,同时也反映了多元化的自由行产品为消费者提供了更丰富的定制体验。
大数据社会实践报告篇九
为全面贯彻落实党的十九大和习近平总书记来川视察重要讲话精神以及中央、省委、州委关于加强调查研究的决策部署,我单位在开展“大学习、大讨论、大调研”活动中,积极探讨全县大数据中心智慧城市建设及调研,现将具体调研情况做如下汇报:
一、全县交通运输概况。
截止目前,全县现有各级公路785.37公里,其中:国道213线128.21公里,省道301线35.64公里,县道266.62公里,乡道64.37公里,村道241.89公里,专用道41.81公里,隧道道路6.83公里,以县城为中心的公路路网基本形成,并实现了公路“三个100%”,即:100%的国省公路黑色化、100%的县乡道路硬化、100%的村道水泥硬化。全县共有客运班线14条、客运班车53辆,公交车20辆、出租车101辆、农村客运车辆105辆、目前通农村客运车辆建制村91个,乡镇15个。
二、目前交通运输困境。
近年来,我县的交通建设及道路运输虽然取得了一定成绩,公路通行及客货运周转能力得到大幅提升,广大群众的出行问题得到解决,但随着经济社会的发展和来松游客的大量增加,原有道路设施及运输承载能力已不能适应当今需求,仍面临着极大的困难:一是全县农村公路的“建、管、养、运”存在范围广、站线长、任务重等难题。二是全县农村客运存在辐射范围严重不足的情况。三是道路安全运输及日常出行存在严重的安全隐患。四是交通信息共享数据平台严重滞后。
二、下一步打算。
1/2。
下一步,我单位将积极开展交通大数据中心建设相关工作。一是及时将农村公路建设情况通过政府信息网站、部门微信进行实时政务公开,完善共享数据平台,提升行业内部信息公开化水平。二是积极开拓农村客运班线线路,建立客流量及班线数据共享平台,提升农村出行的便捷性及时效性。三是建设航线、铁路、公路、物流、营运车辆、从业人员、地理位置等共享基础数据库,以及行政许可、执法管理、信用评价、应急指挥等主题数据库,在合理控制权限的基础上向行业各级管理部门及社会公众提供综合信息查询、统计分析等信息共享服务。四是利用数据共享平台,对营运车辆驾驶人及车辆信息进行联网登记并公开,提升出行安全性,严厉打击非法营运车辆。
2/2。
大数据社会实践报告篇十
众所周知,铁路向来是春运客运量最高的交通工具。相比去年,由于春运火车票只能提前30天购买,火车票抢票形势更加严峻。
如图所示,2016年春节提前一个月,旅客进入购票高峰。去哪儿网大数据预测,春节将至,2016年12月15日将进入旅客春运抢票高峰,此轮去程购票高峰将和去年一样,一直持续到春节前结束。
2016年春运,互联网售票量占总售票量的64.6%,占比超过一半,其中手机app发售车票1.5亿张,售票总量比例由去年的15.7%上升至39%。去哪儿网预测,生长在互联网时代的90后将是20春运的主力军。
在火车用户画像中,选择乘坐火车回家的男女比例分别为52.5%、47.5%,其中90后人群占比高达43%,80后人群为27.8%,两者占比超过70%,成为绝对的中坚力量。
近年春运,铁路最热门的出发地集中在北京、上海、成都、重庆和杭州。这些城市多属于超一线和新一线城市,外来人口集中,也是多条铁路线路的起始地。
一个显著的变化是,购买快速铁路车票的用户比例不断增加,选择乘坐高铁的人数占比达到了41.5%,选择乘坐城际铁路的'人群比例也达到了10.3%,整体超过了总数的一半。
去哪儿网大数据预测显示,乘坐上海出发的高铁线路人数最多,杭州、长沙、北京、广州的票量紧随其后。
与热门出发地相对应的,重庆、上海、杭州、成都、郑州是往年国内最热门的目的地。这些城市周边铁路、公路、航空线路密集,以此作为中转目的地的旅客也不在少数,抢票难度成几何倍数增加。
非高铁、城际等高速列车的出发地,北京最为热门。不过与高速列车热门出发地不同,紧随其后的重庆、昆明、西安、郑州出发的票量与北京之间相差并不多。
二、最难买航线已经进入抢票模式多数航班恢复全价。
从2016年春运的大数据看,预定高峰期出现在距离春节20天,这一天的预订量创出近期以来的新高,与上个月同期环比增长100%。
大数据显示,2017年春运出发最集中的日期是2017年1月24日,已经进入了乘飞机回家旅客的人数峰值期,全国重要的机场将进入到繁忙状态。返程高峰则从大年初六即2017年2月2日开始。
三、85后成机票预订主力军天秤座成“空中飞人。
移动互联网时代来临,网上购票已经成为消费者最便捷的预订方式。来自去哪儿网大数据显示,选择乘坐飞机回家的旅客男女比例相近,天秤座在12星座中乘坐比例为9.8%,力压群雄。
家乡越北,越会提前购买回家的机票。去哪儿网机票专家分析,排名前十名的航线,以大机场往小机场飞为主,每天的航班数多在30班以内,是北京至广州这种热门航线航班数的三分之一。
根据去哪儿网大数据统计,北京至佳木斯的航线,在众多热门航线中并不起眼,但订票时间却比其他航线早得多,堪称最难买航线。在去哪儿网平台预订过年前三天回家的机票中,北京至佳木斯这条航线,用户平均会提前36天。从深圳回海口更早,一般提前43天。
四、十条热门空中回家路出炉平均飞行1416公里。
从热门航线看,北京-成都、深圳-重庆、上海-哈尔滨、北京-三亚、广州-重庆、深圳-成都、成都-北京、重庆-广州、北京-哈尔滨、上海-成都,这十条是往年最热门的空中回家路。
去哪儿网统计了往年春运返乡票量最高的50条航线,发现追逐梦想的人们,选择求业、求学城市距离家乡的平均飞行距离是1416.2公里,这几乎是从深圳到西安的里程。
通过去哪儿网平台订票的用户,大多选择在早上7点就坐上飞机,按照平均离家距离1416公里来计算,飞行时间近3个小时,98.8%的用户选择乘坐经济舱。
五、行李多礼物重专车成热门接送工具。
春运期间,95%的旅客会有行李箱、背包以及各种礼品出行,为了能够快速到达机场、火车站,专车接送机/站成为热门出行工具。
去哪儿大数据显示,北京、成都、深圳、上海、三亚、广州、昆明、西安、哈尔滨、厦门等10个城市成为去哪儿接送机使用率最高的城市。
其中,在预约时间上看,男性一般提前在出发前3.5天-4.1天预订接送机服务;女性用户明显准备更加充分,其预约时间在4.1天-5.6天。
从出行时段上看,4点-11点为旅客乘车去机场、火车站高峰。其中5-6点出发人群最高,高达6.9%;10-11点又会出现小的高峰,出行占比为5.1%。数据显示,使用接送机/站的用户平均行驶27.2公里,平均时长为36分钟。
大数据社会实践报告篇十一
国家大数据(贵州)综合试验区将围绕数据资源管理与共享开放、数据中心整合、数据资源应用、数据要素流通、大数据产业集聚、大数据国际合作、大数据制度创新等七大主要任务开展系统性试验,通过不断总结可借鉴、可复制、可推广的实践经验,最终形成试验区的辐射带动和示范引领效应。
贵州是我国首个大数据综合建设试验区,在数据资源的积累和应用上有了一定基础。自以来,贵州全面着手布局大数据产业,目标明确,就是要一步一步建成“中国数谷”。
贵州在大数据产业上的突破也得到来自国家层面的认可。6月17日,习近平总书记在考察贵阳大数据应用展示中心后表示:“贵州发展大数据确实有道理。”208月31日,国务院发布《促进大数据行动纲要》,将大数据产业上升至国家战略,明确提出要在贵州建设大数据综合试验区。1个月后,贵州启动全国首个大数据综合试验区建设工作。年11月,贵州省委十一届六次全会上,提出了“十三五”时期贵州经济社会发展的总体要求。其中除了政治建设和党的建设,只提了两大战略行动——大扶贫、大数据。
对大数据产业给予优厚政策的背后,是贵州省发展智能制造的需求。5年前,贵州拉开工业强省战略大序幕。“十二五”时期,全省规模以上工业企业由“十一五”末的2963家增加到20的3685家,实现总产值由4206亿元增加到9598亿元。2015年前三季度,全省规模以上工业增加值达到2621亿元。在大数据产业的背景下,“贵州智造”渐成气候。去年贵州工业规模翻番,增速居全国第一,产业结构一再优化,对国民经济的贡献率保持在32%以上,成为经济发展的主动力、财税增收的主渠道、带动就业改善民生的重要途径。
通过制定产业发展规划与优惠政策、建设基础设施与平台、开放数据、举办商业模式大赛等,逐步构建大数据产业发展理念、思路与路径,为企业落地发展与市场培育提供良好的土壤,贵州开始实现大数据产业的快速起步。
京津冀。
京津冀三地共同建设大数据综合试验区,将以大数据的思维、技术、模式、产品、服务等突破行政藩篱和区域界线,打造京津冀大数据综合试验区,将京津冀区域打造成为国家大数据产业创新中心、国家大数据应用先行区、国家大数据创新改革综合试验区、全球大数据产业创新高地。
京津冀将立足三地各自特色和比较优势,北京强化大数据创新和引导,天津侧重于设备制造与集成,强化带动和支撑,河北侧重于大数据存储,强化承接和转化,形成北京中关村+天津滨海新区、武清+河北张家口、廊坊、承德和秦皇岛“1+2+4”协同发展功能格局。不鼓励在北京建设数据中心,三地将进行数据中心整合利用试验探索,加快大容量骨干网络设施建设,扩大基础设施物联网覆盖,推动京津冀地区数据中心向张北等区域集中。”
在大数据的典型应用方面,三地将瞄准京津冀协同发展重大需求,推动开展大数据便民惠民服务,围绕科技冬奥、环保、交通、健康、旅游、教育等重点领域,探索大数据创新应用、一体化服务协同和产业集聚。京津冀还将开展大数据交易流通试验探索,以数据交易服务推动数据资源资产化,建立健全大数据交易制度,推动形成京津冀一体化数据资产交易市场。
近日发布的《北京市“十三五”时期软件和信息服务业发展规划》中指出,三地将强化数据资源的统筹管理和利用,建立京津冀政府数据资源目录体系,并进行公共数据开放共享试验探索,推进公共基础信息共建共享,建立统一的公共数据共享和开放平台体系。
珠三角。
根据广东省的数据机房建设情况估计,当前广东省数据存储量约为2300pb,成为了我国重要的大数据产业集聚区域,培育了一批实力较强的大数据创新企业,呈现出“广深引领、珠三角集聚、粤北东西紧随”的发展态势。珠江三角洲地区依托广州、深圳等地区的电子信息产业优势,发挥广州和深圳两个国家超级计算中心的集聚作用,在腾讯、华为、中兴等一批骨干企业的带动下,珠三角地区逐渐形成了大数据集聚发展的趋势。其中,广东粤数大数据有限公司深耕政府数据,正在建设立足广东辐射全国的大数据产业聚集区。
8月,广东开始研究制定珠三角国家大数据综合试验区推进方案,提出用5年左右時間,打造全国数据应用先导区和大数据创业创新集聚区,抢占数据产业高地,促进经济转型升级,完善社会治理,建设具有国际竞争力的国家大数据综合试验区。,并为国家大数据发展探索新路径、提供新经验。
上海。
上海有很好的信息化基础:正在编制大数据发展的实施意见,以对接国家发展战略;将发起和设立大数据产业投资基金,目前已集约10亿元资金;上海市政府数据服务网开放内容现已基本覆盖各市级政府部门主要业务,涵盖了12个重点领域,累计开放数据资源近900项。
上海市已经形成了由经信委、发改委、网信办、科委等四个部门组成的工作机制。
上海将围绕自贸区建设和科创中心的建设两大战略,在四大方面推动大数据发展,包括推动公共治理大数据的应用、推动大数据的科技创新和基础性治理的工作和研究、推动大数据与公共服务基层社会治理相结合、在大数据方面进一步加强与长三角地区和长江经济带城市的合作等。
河南。
《河南省国民经济和社会发展第十三个五年规划纲要》明确提出建设网络经济大省,实施大数据发展战略。河南省大数据基础支撑有力:人口、农业、交通、物流、经济、民生等领域数据资源丰富,互联网和移动互联网用户规模、移动互联网接入流量均居全国前列;郑州国家级互联网骨干直联点是全国十大骨干网互联枢纽之一;与阿里巴巴、腾讯、百度等互联网龙头企业积极开展战略合作,一批行业云及大数据平台正在加快建设。
河南省建设国家大数据综合试验区的总体考虑是:坚持改革创新和市场需求导向,以深化大数据应用为主线,重点在管理机制创新、数据汇聚共享、重点领域应用、产业集聚发展等四个方面先行先试,大力提升大数据在促进转型发展中的引领支撑作用,加快推动大数据与传统产业融合发展,不断提高政务民生大数据应用服务能力,探索形成一套适应大数据创新发展的管理机制和发展模式,为国家大数据战略实施提供实践经验和有益借鉴。河南省发改委将按照国家大数据综合试验区建设总体安排,抓紧编制建设实施方案,明确建设目标、建设重点、时间表和路线图,出台有针对性的政策措施,全面推进试验区建设。
重庆。
重庆建设国家大数据综合试验区的总体考虑是积极引领东部、中部、西部、东北等“四大板块”发展,更加注重数据资源统筹,加强大数据产业集聚,发挥辐射带动作用,促进区域协同发展,实现经济提质增效。
据悉,早在,重庆市就制定了《大数据行动计划》,提出要加快大数据产业布局,建设成为有国际影响力的大数据枢纽及产业基地。
为此,重庆进行了尝试:建设仙桃数据谷,培育发展先导性前沿科技产业,构建具有国际竞争力的创新生态圈,吸引了亿赞普、宏碁、钱宝、中兴等一批龙头企业入驻;“云端计划”顺利实施,云计算数据中心项目的建成投用为大数据资源库的形成创造了基础条件,引进的nec、神州数码、腾讯等一批云计算应用服务龙头企业将为大数据分析和应用积累良好的产业基础。其中,重庆九次方大数据科技有限公司、国久大数据有限公司都是大数据公司中的佼佼者。
到,大数据产业成为重庆市经济发展的重要增长极,在虚拟技术、云计算平台技术、海量数据存储、数据预处理、新型数据挖掘分析、信息安全技术、大数据关键设备7大领域突破一批关键技术,推动大数据技术在电子政务、民生服务、城市管理及相关重点行业广泛应用,将大数据产业培育成全市经济发展的重要增长极,打造2-3个大数据产业示范园区,培育10家核心龙头企业、500家大数据应用和服务企业,引进和培养1000名大数据产业高端人才,形成500亿元大数据产业规模,建成国内重要的大数据产业基地。
沈阳。
沈阳市委、市政府把大数据发展当成全市“一号工程”,在全国率先组建了正局级单位“沈阳市大数据管理局”,主要职责就是推动大数据发展和建设智慧城市,确定了以大数据发展为主体、智慧城市建设和传统产业转型升级为两翼的智慧产业“一体两翼”发展思路。并发布了《沈阳市促进大数据发展三年行动计划(-)》,将打造成为国家级大数据产业创新发展试验区、东北地区大数据集聚区,形成立足沈阳、辐射辽宁、带动东北的市场布局。
沈阳市将大数据发展与智慧城市建设工作作为实现沈阳老工业基地振兴发展的重要举措。沈阳市实现大数据产业创新发展和打造成为东北大数据中心,形成以大数据发展为主体、以智慧城市建设和传统产业转型升级为两翼的“沈阳模式”。
到,沈阳市大数据发展水平达到国内领先,沈阳市智慧城市“惠民、兴业、善政”的目标初步实现,在大数据的引领下沈阳传统产业转型升级的步伐不断加快,以智能制造为核心的具有国际竞争力的装备制造业基地逐步形成。大数据产业链不断完善,大数据技术及解决方案在公共服务、城市管理及产业发展等方面的广泛应用;城市及城市群的政府和企事业单位数据不断开放。大数据布局基本形成,大数据相关产业规模力争突破1000亿元,加快促进并在浑南区、沈北新区、铁西区等地打造沈阳大数据产业带和2-3个大数据示范园区,培育大数据行业龙头企业10家,大数据产业从业企业达到200家以上,引领带动相关产业7000亿元,建成一个国家级工业大数据示范基地,引领沈阳成为具有国际竞争力的智慧产业先导区、充满活力的区域性大数据集聚区和全国智慧城市群典型示范区。
内蒙古。
内蒙古自治区凭借能源、地理位置及地方政府在支持大数据产业和应用发展等方面很有特色:在呼和浩特建设“草原云谷”——中国·内蒙古呼和浩特云计算产业基地,聚集中国电信、中国移动、中国联通等一批云计算产业链各环节核心企业和科研机构;全区首个云计算大数据创客中心在和林县开园,近40家创新型企业。据了解,内蒙古蒙数大数据有限公司正基于政府大数据,实现从顶层设计、平台搭建到产业推动的全链条合作。
十三五”期间,内蒙古呼和浩特市将把云计算产业作为转型发展的抓手和创新发展的着力点,总体思路是以国家级数据中心建设为基础,以数据的开发和应用为核心,以构建完成产业链为目标,着力引进一批国内外知名的云计算和大数据企业,建设一批领先水平的应用示范,突破和实施一批主导行业的核心技术,打造一批引领发展的云计算服务平台。把呼和浩特市云计算产业打造成500亿元以上的产值,力争做到千亿级的产业集群,为国家大数据行动计划和“互联网+”战略的实施作出贡献。
徐主任关于国家大数据综合试验区的意义,他认为,以建设国家大数据综合试验区为抓手,助力供给侧结构性改革。积极试点探索大数据与传统产业、区域经济的融合发展,促进数据要素与其他生产要素的整合利用,提高产业组织效率,加速形成高质量、多层次的供给体系,重塑产业链供应链价值链,实现资源优化配置,全面释放数据红利,推动供给侧结构性改革。
专家认为,国家级大数据综合试验区带来的机遇远不止此。运用大数据可以实现三个突破,即:在政府数据的整合、共享和开放方面,以及政府治理和社会民生服务领域的应用方面实现突破;在推动制造业和互联网融合方面实现新的突破;通过大数据更可以促进“双创”的实现。
大数据社会实践报告篇十二
近日,腾讯“守护者计划”旗下反诈骗联合实验室发布《第三季度反电信网络诈骗大数据报告》。报告中显示,第三季度诈骗热度指数为94,在7月、8月暑期期间尤其高发,在9月份开始下降,各项数据都得到控制。
据悉,腾讯守护者计划基于腾讯安全云库、腾讯手机管家、微信安全中心等海量大数据,定期发布诈骗热度指数,用于量化当季诈骗发生的情况,从而达到预警和教育的目的。
第三季度损失金额上升,暑期诈骗进入年度高峰期。
据《报告》显示,2016年第三季度诈骗指数为94,相较第二季度89的热度有所上升,诈骗案情延续从6月份就开始的暑期诈骗高发上升势头,并在7、8月份达到高峰,指数突破100。
据《报告》分析,诈骗分子趁着暑期的空档,瞄准学生及家长这个特殊群体,实施精准场景诈骗,从而提高诈骗成功率。自8月份起,连续出现了多起电信诈骗大学生致死的案件,引起全社会的广泛关注。
同时《报告》还指出,整个第三季度全国共接到用户标记4.26亿,环比上季度下降了3400万条;收到诈骗短信的人数环比减少1.9亿人;收到诈骗电话的人数环比减少了30%。
在诈骗率降低的同时,诈骗金额却在大幅度上升,损失金额共计56.4亿元,环比上升81.2%。大额的的财务诈骗屡屡发生拉高了总额以及暑期诈骗高发更多针对学生、老人等弱势群体造成单一案件危害变大都是诈骗金额上升的原因。
《报告》中的第三季度特辑《诈骗集团内部绝密培训资料曝光:一个菜鸟骗子的成长史》总结到,在三种诈骗手段里电信诈骗损失金额最大,占总损失金额的50.1%平均每起电信诈骗案件损失接近3.2万元,每10元就有5元是电信诈骗。在电信诈骗中仿冒公检法类诈骗居首,占总损失金额的11.5%。
《报告》分析得出,仿冒类电信诈骗之所以屡屡得手,在于其背后成熟的'黑色产业链,能够为骗子精准诈骗提供各种支持。通过人们对熟人的“大意”或者公检法的“恐慌”实施诈骗。而仿冒公检法类诈骗金额单一案件损失金额往往十分巨大。
手机病毒改头换面不断扩大覆盖,平均每一个手机病毒就能影响179台手机。
《报告》显示,第三季度支付类手机病毒数量在不断减少,从7月份31188种病毒,到9月份21763种病毒,下降30.2%;但是由于使用手机支付的用户越来越多,手机用户数量也不断上升,病毒的覆盖度更加广泛,感染的手机数量也在增长,到9月份达4666910台。
《报告》指出,相较于第二季度随着第三季度随着暑期和大学开学季,各种类似成绩单、通讯录的支付类病毒大量传播。以致各位学生家长频频上当,第三季度平均每一个病毒致179台手机中毒。
诈骗短信大幅度减少,麒麟伪基站实时检测系统全国落地成效显著。
从《报告》中我们可以看到,从7月到9月份,在各类手机垃圾短信中。诈骗短信从979万减少到621万,降低了36.5%。短信诈骗发生频率仅站所有诈骗案件的3%,损失金额仅占全部损失的1.5%。
自8月4日腾讯与公安部达成战略合作协议,大数据反诈骗产品“麒麟”伪基站实时检测系统将在全国公安部门落地。“麒麟系统”在上半年深圳、广州、北京等地试点以来取得了打击各类伪基站的重大成效,伪基站诈骗短信大大减少。
反伪基站神器——“麒麟”系统能够准确定位伪基站施以打击,利用有腾讯lbs精准的定位技术支持和腾讯手机管家海量的用户群体标记的黑产数据库,实现对正在发布欺诈信息的伪基站50米内的精准定位。
时至今日,电信网络诈骗团伙愈发呈现出专业化的“职业素养”,诈骗金额空前绝大。面对如此成熟的黑色产业链,推动反电信网络诈骗体系化建设的任务更是迫在眉睫。
基于腾讯安全17年对抗黑产的经验和能力,腾讯在反诈实践过程中,逐渐形成了一个以技术对抗为先行,行业联合共同防御,教育宣传为常态,围绕腾讯守护者计划平台运行的反信息诈骗的“腾讯模式”。“腾讯模式”自实践以来协助破获案件金额超过5亿元。
腾讯愿意拿出诚意和技术与所有的行业伙伴进行分享、合作,将自己的能力开放出来,让已验证有效的方式和技术能够在全国更深入地推广和落地,积极推动反电信诈骗体系化建设,真正为保护网民权益而服务。
大数据社会实践报告篇十三
近日,360搜索联合中国平安健康险发布国内首份《中国“癌症焦虑”大数据报告》(以下简称“报告”),统计了不同年龄、性别、星座的受众对癌症的焦虑程度和种类,以及致癌原因,抗癌就医等其他方面信息。
年轻人更易焦虑。
不同于人们认为年纪大的人更容易对疾病产生焦虑心理的惯性思维,报告数据显示,25到34岁的年轻人更容易癌症焦虑,占比高达49%。
伴随着经济的飞速发展,中国转型步入压力社会,25到34岁的年轻人需要应对来自房价、工作、赡养父母的多重压力,难免会对各种疾病产生畏惧心理。另一方面,癌症早期各种身体不适的症状类似食欲减退、头疼乏力等病理反应,也年轻人焦虑患癌的一个重要因素。
肺部、胃部成两性共同重点关注对象。
报告显示,不同性别的人焦虑的癌症种类并不尽相同。男性最焦虑的十大癌症中,肺癌、直肠癌所占比例较高。而由于生理构造的不同,女性更怕患上乳腺癌、宫颈癌等。
尽管如此,人们对“肺癌、胃癌”的焦虑却是惊人的一致。睡眠严重不足、饮食几无规律、工作和心理压力过大,以及对胃部不适或胃部感染幽门螺杆菌不以为然,都是越来越多中青年人患胃癌的主要因素。青年人最近几年胃癌的发生情况经常在我们身边看到,胃癌不再是老年人专利,我们认为胃癌是越来越年轻化了,青少年胃癌的患病率一直高速上涨。一项最新发布的数据显示,近5年来,19至35岁的青年人胃癌发病率比30年前翻了一番,可见大家对癌症的关注度、焦虑度都如此之高并不无道理。
三聚氰胺、空气污染致癌风险等级较高。
三鹿奶粉中三聚氰胺含量超标事件余威不减,报告中显示33%的参与者都将三聚氰胺列为危险等级的第一级。可见,人们对饮食安全的关注度正在逐渐增加。
除此之外,人们对空气污染致癌的焦虑也占较高比例。研究显示,拥有大量人口、正处在快速工业化进程中的国家出现了空气污染加剧的`情况,亚洲地区是空气污染较为严重的地区,其中包括中国,随着暴露在颗粒物和空气污染中程度的增加,罹患肺癌的风险也相应增加。
公众保险意识增强,接近半数愿意参保。
74%的人在癌症焦虑产生之后,会选择搜索调整饮食结构、注意饮食习惯等方式的相关信息,以改善自身状况避免患病。43%的调查参与者愿意购买保险以降低癌症在经济上带来的危害,而在购买保险时,保险理赔、保险种类是用户重点关注的两大因素。
除了上述方面,报告还对患癌焦虑者海外就医区域分布、焦虑人群收入分布、学历分布等其他方面做了调查研究。方便用户更多元化、全方位的了解患癌焦虑,并对癌症处理方式等提供了一定参考价值。
大数据社会实践报告篇十四
日前,首份基于第三方平台的《2016保险理赔大数据报告》出炉。报告显示,在细分险种上,境内旅游保险、普通门诊保险、境外旅游保险、出国留学保险以及申根签证保险等排名出险率前五,而自住型家财险的出险率是最低的。从年龄层观察,25~29岁区间的被保人出险率最高,其次是18~24岁。
报告发现,男性在旅行、意外保险等险种上出险率明显高于女性,“全身心”投入去“玩”的男性更喜欢冒险;相反,女性对自己身体显得更加“自爱”,她们定期体检和就医频率远高于男性,因而在早期重疾发生时更容易被察觉。
从2016年慧择网接到的理赔报案分析,在细分险种上,境内旅游保险、普通门诊保险、境外旅游保险、出国留学保险以及申根签证保险等排名出险率前五,而自住型家财险的出险率是最低的。从年龄层观察,25-29岁区间的被保人出险率最高,其次是18-24岁。
梳理理赔人群整体画像,“男女有别”的特征最值得玩味,这区别不仅体现在生理特征、思维方式上,甚至在衣食住行上风险的发生率都有差异。数据显示,男性整体出险率(4.35‰)显著高于女性(2.86‰)。尤其体现在境内外旅行保险中,男性的出险率是女性的2倍,其中较大的.差异体现在旅行理赔案中,男性因医疗和意外赔付案件占比较高。
慧择的风控分析师认为,这与男性的性格特征和出行习惯上有很大的关联,男性出游喜欢挑战、爱尝试新鲜事物,尤其是户外运动、长途自驾游、海岛旅游。他们出游真的是放开“全身心”投入去“玩”,而相反,女性则更多的是“享受”美景和购物的乐趣,更关注自身的安全。
不仅在旅行出险率上男性风险高于女性,在人身意外保险上,2016年男性的出险率也比女性高达3倍。2016年慧择网人身意外赔案中,男性客户占比高达75.54%,女性客户占比为24.46%。
近年来重大疾病发病率日趋年轻化。慧择网理赔统计显示,31-50岁是重大疾病赔付集中的年龄段,占比超过六成。恶性肿瘤是重大疾病赔付的主要原因,约有八成的重大理赔是是因为罹患恶性肿瘤导致,紧跟其后的分别是急性心肌梗塞等心血管疾病和脑中风。
值得注意的是,女性相较于男性更重视身体健康,会定期规律体检,或就医频率远高于男性,伴随现代医疗水平的提高,女性一些较为早期的重疾更易被察觉并且出险,尤其集中在一线城市。慧择大数据显示,甲状腺癌的发病率近年明显上升,其中约有三成的恶性肿瘤赔付均是甲状腺癌导致,而25-40岁女性成了这个高发癌最青睐的对象。有分析指出,体内雌激素水平越高,越有助于甲状腺疾病的发生。女性到25岁-45岁时,雌激素水平处于一个高位,尤其是40岁左右女性为高发群体。再加上年轻女性情绪不稳定、精神压力大、晚育等情况,导致内分泌紊乱,更容易受到癌细胞的侵袭。
不过,从重疾理赔金额来看,55.56%的重疾案件理赔金额在5万元以下,理赔金额在15万以上的占比不到10%。
随着各种意外因素增加,我国游客保险意识提升,2016年旅游意外险投保的游客人数创历史新高。慧择网大数据显示,“深圳—上海”是国内商务旅行客人理赔发生率最高的航线,深沪两地均为枢纽型机场,航班量很大,且经常遇到台风、雷暴雨等不正常天气,多变的气候容易发生延误,此外频繁的航空管制也是造成延误高发的重要因素。
出境游中,从出险率看,排名前列的国家从高到低依次是泰国、菲律宾、马尔代夫、美国、尼泊尔、澳大利亚、法国、西班牙、俄罗斯和南非。境外理赔案件类型最多的是旅程延误,海岛类目的地延误情况最严重,第二是旅程变更,其次是医疗、行李延误,还有签证拒签、财务损失等。
法、意、西班牙等欧洲国家旅行的随身财物盗抢的理赔人数比例远超东南亚,很多人认为欧洲人素质很高,但事实是法国政府曾因为小偷泛滥而关闭埃菲尔铁塔。数据显示,日本连续多年名列亚太最安全的旅行之地。另外,美国、加拿大、澳大利亚是医疗费最高的境外游目的地,日均医疗费用为1980美元。
另外,通过梳理2016年理赔案件几大常见拒赔原因,“属于保单责任免除、既往病史出险、不属于保单列明责任、出险不在保单有效期内、出险事故原因无保障责任、就诊医院不符合条款规定的医院等级”等拒赔原因是消费者在理赔时应该注意避免踩到的“地雷”。
其中,“出险原因不属于保单责任”是消费者常常误认为“保险是忽悠人”的主要原因,必须提醒的是投保人在购买保险时需要了解产品保障什么样的事故,事故是否有特定条件的约束,避免出险事故和保障责任名称一致,但不符合事故的特定约束条件,最终无法赔付。比如,意外险看似简单,但理赔时保险公司的拒赔决定往往会让消费者觉得意外。意外险有界定的保障范围,“高风险运动、过劳猝死、手术意外、因病摔伤”等多种情况就属于免赔范围。
大数据社会实践报告篇十五
近年来,“大数据”这个概念突然火爆起来,成为业界人士舌尖上滚烫的话题。所谓“大数据”,是指数据规模巨大,大到难以用我们传统信息处理技术合理撷取、管理、处理、整理。“大数据”概念是“信息”概念的3.0版,主要是对新媒体语境下信息爆炸情境的生动描述。
我们一直有这样的成见:信息是个好东西。对于人类社会而言,信息应该多多益善。这种想法是信息稀缺时代的产物。由于我们曾吃尽信息贫困和蒙昧的苦头,于是就拼命追逐信息、占有信息。我们甚至还固执地认为,占有的信息越多,就越好,越有力量。但是,在“大数据’时代,信息不再稀缺,这种成见就会受到冲击。信息的失速繁衍造成信息的严重过剩。当超载的信息逼近人们所能承受的极限值时,就会成为一种负担,我们会不堪重负。
信息的超速繁殖源自于信息技术的升级换代。以互联网为代表的新媒体技术打开了信息所罗门的瓶子,数字化的信息失速狂奔,使人类主宰信息的能力远远落在后面。美国互联网数据中心指出,互联网上的数据每两年翻一番,目前世界上的90%以上数据是近几年才产生的。,数字存储信息占全球数据量的四分之一,另外四分之三的信息都存储在报纸、胶片、黑胶唱片和盒式磁带这类媒介上。,只有7%是存储在报纸、书籍、图片等媒介上的模拟数据,其余都是数字数据。到,世界上存储的数据中,数字数据超过98%。面对数字数据的大量扩容,我们只能望洋兴叹。
“大数据”时代对人类社会的影响是全方位的。这种影响究竟有多大,我们现在还无法预料。哈佛大学定量社会学研究所主任盖瑞·金则以“一场革命”来形容大数据技术给学术、商业和政府管理等带来的变化,认为“大数据”时代会引爆一场“哥白尼式革命”:它改变的不仅仅是信息生产力,更是信息生产关系;不仅是知识生产和传播的内容,更是其生产与传播方式。
我们此前的知识生产是印刷时代的产物。它是15世纪古登堡时代的延续。印刷革命引爆了人类社会知识生产与传播的“哥白尼式革命”,它使得知识的生产和传播突破了精英、贵族的垄断,开启了知识传播的大众时代,同时,也确立了“机械复制时代”的知识生产与传播方式。与印刷时代相比,互联网新媒体开启的“大数据”时代,则是一场更为深广的革命。在“大数据”时代,信息的生产与传播往往是呈几何级数式增长、病毒式传播。以互联网为代表的媒介技术颠覆了印刷时代的知识生产与传播方式。新媒体遍地开花,打破了传统知识主体对知识生产与传播的垄断。新媒体技术改写了静态、单向、线性的知识生产格局,改变了自上而下的知识传播模式,将知识的生产与传播抛入空前的不确定之中。在“大数据”时代,我们的知识生产若再固守印刷时代的知识生产理念,沿袭此前的知识生产方式,就会被远远地甩在时代后面。
(节选自2013.2.22《文汇读书周报》,有删改)。
大数据社会实践报告篇十六
近期成立的深圳市综合交通运行指挥中心囊括深圳全市24个交通信息化系统和海量的交通基础数据,上述问题应该也是其重点的研究方向。
抛砖引玉:
分析案例1:结合公交车gps数据、乘客刷卡信息等数据,能够获取每辆公交车每个站点停车时间、上下车乘客数量、乘客精细时空轨迹等,再此基础上应该可以做“公交车线路、站点、发车频次优化”、“典型居住区和就业地的通勤出行分析”等分析。
分析案例2:结合rfid、gps等数据,能够获取车辆精细化时空轨迹信息,能够对行车辆行驶轨迹、路段行程时间可靠性、od分布(起点-终点)等进行数据分析,应该能替代部分传统交通规划和交通需求分析的内容,理论上应该更加实时可靠。
[大数据理论指导交通数据分析的方法]。
大数据社会实践报告篇十七
早在5000多年前,中国人就拥有了长伴一生的独特印记——名字,但对于名字的研究,由于缺乏数据支持,从古至今都比较稀少。
日前,中国首份姓名大数据报告《2016大数据“看”中国父母最爱给宝宝起什么名》出炉。
该报告由清华大数据产业联合会发起之一、清华大学“幸福科技实验室”支持项目、国内唯一以大数据和心理学为基础进行姓名研究和起名服务的专业机构“起名通”耗时3个月完成,抽取整理了平台540万新生儿姓名数据、后万姓名数据,并综合覆盖了11亿人口的历史数据,是国内首份关于名字的全景式报告。
备受关注的中国人重名情况到底有多严重,报告首次进行了披露:“中国前100个重名率最高的名字,在全国覆盖的人口整体超过10%。”各个省份的重名严重度也有明显差异。“东北三省,其每一个省的前100个热名与该省人口之比,都能高于16%,而广东省的爆款名覆盖率则不到6%。”
再从年代看,随着大众受教育程度的普遍提升,重名情况已经有所好转,“80后”的爆款名覆盖率高达17%;而到了“00后”,这一比例下降到了8%。但名字的选择范围却很狭窄。20新生儿的热名一眼望过去,傻傻的分不清。报告认为,从众心理,创新精神不足,以及家长普遍强调“过好自己的日子”、缺少更多元化的考虑,影响了新生儿名字的文化韵味、寄寓深意和精神风骨。而各大商业网站为吸引用户点击特设的“男孩女孩好名字帖”与“生肖取名宜忌”帖,则成为“10后”高重名率背后的两大“黑手”。
最新一年的热名榜单,还能看出新一代父母对孩子最集中的'期望是“阳光、快乐”,传统对女子美丽温柔的要求已经不占主流,男孩起名也不像其父辈更强调坚强伟大、个人奋斗。一些代表美德的字,如诺、芷、恩、允、谦,正开始受到年轻父母的青睐,体现了时代对于“德行”的呼唤。
此外,报告对中国人的民族性格,子随父姓观念的松动,父母在育儿中的参与度,中性现象,流行、地域和外来文化对新生儿影响等,都从姓名视角进行了深入剖析,并提供了多纬度榜单。
“dt时代的大数据,必将深入各行各业,以服务大众为主,以给社会创造多少价值作为衡量标尺。姓名大数据报告的发布,是这样一个大趋势下的必然产物。”报告领衔人张襦心表示,“名字反映了父母的价值观,对孩子的性格引导具有重要意义。所以这份报告,不仅从姓名的微观视角记录了这个时代正往何处去,我们也希望它能为下一代文化素养和价值观提升尽一点力量,帮助他们遇见更好的自己。”
大数据社会实践报告篇十八
前几年,上面还动不动将九亿农民挂嘴边,未来,我相信,上面也会经常说:九亿城市人。或者,更多。
我相信,就在不远将来。
世界正经历城市化,中国更是如火如荼。不久的将来,更大的城市,城市群,更多的人口,会成为常态。这盛况,我有生之年,应该能看到。
更大的城市,更多的人,绝大多数的人将生活在城市里。人们于是关心城市,关心它的一切。当然,也包括它的半径。
有意思的是,目前,中国的城市半径,普遍“不约而同”:约30km。
无论北京的16410km,上海的6340km,还是厦门的1699km,(岛内128km),半径都在30km左右(厦门稍微小,主岛太小),这背后的原因,其实简单:尖端科学的运用,以及科学的可复制型。
以前只有一线城市拥有的地铁,现在在二线基本全面开花,甚至,有些三线也大干快上。究其原因,不过是科学的发明,运用到一定时间后,其成本不断被降低,从而让其他规模较小,财力叫弱的城市,也能造得起。
90年代的地铁,以及建筑其上的销品贸,现在,二线能够“轻易”地复制,且因为经验和时间的积累,建造更先进、科学,搭配更合理,技术更先进。北京、上海的地铁一号线乘坐体验,运营速度,技术应用,未必有苏州、杭州的三号线好。
每一次技术的突破和革新,都让城市半径得到拓展。地铁发明以前,是公路、铁路时代,城市半径远没有现在大,公路、铁路发明之前,是马车时代,繁华的长安城,老百姓靠马车在城市里运行,东到西,十公里已经是极限。再大,活动极不方便(以马车的平时速度计算)。
汉长安城面积达36平方公里,是古代面积最大的都城遗址之一。
现在城市的半径得到极大提升,到达30km左右,地铁功劳不可磨灭。地铁不再是一线的标配,很多城市拥有地铁,并且大干快上。中国城市的半径,因此“不约而同”地扩展到同一长度。
地铁已是城市最高级的技术,最前沿的科技运用。在新的革命性技术还未到来之前,城市的半径,再难以突破。
那么,未来,城市的半径到底怎样呢?真的一直无法突破了?
在几十年前,公交车是人们出行的重要交通工具,当然现在也是,那时的公交车,不但破旧,而且速度、载客量、技术都不如现在。
这是必然,技术在前进。
公交最明显的变化,其实不是这些,而是运行方式。
开始公交都是首发尾至,一条条线路定好,一站一站站点定牢,司机早上出发,沿着线路,有序按序逐站停靠,到点,回到起点,下班。
后来,公交单独划出车道:公交专用,再后来,brt快速公交系统,不但线路专用,而且不再三五公里一站,而是拉长距离,提高速度,专程车道。
北京公交线路图。
这,大大提高了公交的运行速度和效率。长路途的人,可以较快时间到达目的地。当然,其他的线路,还是按原计划的行驶、停靠。
当一个城市的公交普及到线路全覆盖,站点全覆盖,还不能满足市民出行要求时,专线,长距离的公交运行系统出现了。
郑州brt。
其实,地铁也会遵循这个规律。目前,绝大多数的地铁网,还远远不够做到线路全覆盖,站点全程性。
纽约地铁图。
伦敦地铁图。
东京地铁图。
全国的城市,都在大干快上地,继续建地铁。
上海地铁未来效果图(2020)。
北京地铁未来效果图(2020)。
当大多数的城市地铁网,像公交网一样,全程覆盖,并且全站点覆盖时,地铁的进化,就会朝公交的专车道,brt快速公交系统进发:长站点,专业性,快速度的地铁,将不断诞生。
那时,天安门到通州,30分钟,南京路到临港,30分钟。
再以后,天安门到燕郊,30分钟,南京路到昆山、太仓,30分钟,------。
随着地铁的升级和改进,城市的半径进一步被扩大。城市在不断扩大,城市间的边界,越来越模糊。在960万平方公里上,除了几片土地建满高楼大厦,绝大多数的地方,将回归森林。
地球一片绿海,“原始社会”再现。
因而,环保是个伪命题,保护生态就是扯淡,退耕还林根本就没有必要。
作者:皮特。
公众号:peter。
大数据社会实践报告篇十九
1月12日消息,财新传媒、滴滴出行主办的“知道·大数据智慧城市论坛”今日在京举行,论坛上,滴滴出行联合第一财经商业数据中心发布了《2016智能出行大数据报告》(以下简称“《报告》”)。
《报告》覆盖全国重点城市,基于滴滴(含优步)平台全量数据解读中国城市出行,并通过智能出行情况反映城市交通、居民生活、热点事件及分享出行所带来的意义,具有极高的参考借鉴及深度分析价值。
三四线城市拥堵加剧北京人均每年“堵”掉近9000元。
拥堵是大家对交通最直接的感受之一,无论是“影响中国互联网发展30年”的后厂村路,还是“堵点网红”北京大山子路口,堵车总能引起人们的共鸣和吐槽。2016年,一线城市平均车速略有上升,三四线城市平均车速下降明显,从的26.2km/h降至2016年的25.3km/h。这一年中,平均车速增幅较大的前三个城市为大连、常州和青岛,而下降幅度最大的城市为丽江、嘉兴、三亚等。
根据高峰期拥堵延时指数,西安成为2016年堵城冠军,延时指数为1.79。20的拥堵冠军重庆今年位列第2位,而去年的亚军青岛2016年治堵效果显著,今年排名第9。受极寒天气、冰雪路面、市政建设等影响,哈尔滨也上榜十大堵城,位列第8位。
在此值得一提的是,尽管北京位列堵城第4名,但因“社会平均工资”较高,所以成了拥堵造成损失最高的城市,北京人每年损失8717元;在全国最堵的西安,人均拥堵成本为6960元,排名全国第3。
互联网行业工作时间长京东下班最晚。
在加班“重灾区”的互联网公司中,京东超越去年冠军奇虎360成为今年的“加班之王”,平均下班时间最晚,随后为360和阿里巴巴,看来这一年互联网行业中最拼命的还是电商公司。从年货节、美妆节、母婴节、双11到双12,节假日不够,电商造节来补,购物狂欢的背后也是无数员工加班加点的辛勤努力。在榜单前10名中,新浪、网易老牌门户网站也上榜,而今年的“网红公司”乐视位居第10,加班起来也很拼。
不仅加班多,互联网人群平均工作时间也偏长。相较于金融、传媒以及房地产等行业,互联网人群平均工作时间更长,每天超10小时,尤其是深圳码农,工作几乎占据了其一半的时间。而且码农们生活节奏更为固定,公司与家两点一线偏多。
媒体人异地奔波苦金融从业者“朝七晚五”
《报告》中,有一部分内容对当下关注度较高的传媒业、金融业、教师等几个职业群体做了分析,通过出行连接着生活的方方面面,通勤、餐饮、购物等各种出行场景,出行大数据进一步可以关照现实,看生活的潮起潮落。
《报告》发现“隔行如隔山”,每个行业出行差异较大。传媒人工作随机性较大,处于随时待命状态,出行峰值曲线较为平缓;同时他们的出差相比最为频繁,往返机场火车站及酒店的出行量接近1/5,密集的出差节奏使得他们一般直接从家出发奔赴外地。
金融从业者上班早下班也早,“朝七晚五”是他们的工作特点,同时他们应酬多夜生活也丰富,20%的人下班后直接奔向餐饮娱乐场所,夜晚餐饮订单也超出平均水平40%。同时,他们偏爱高档购物中心,北京的三里屯太古里、上海的`国金中心、正大广场都是“金领一族”经常光顾的地方。
出行数据看城市性格:绵阳最温情大连最小资。
《报告》还基于滴滴出行大数据平台的指数测算体系,发布d-index榜单,从不同维度窥见不同城市的性格特点。
根据滴滴顺风车免单占比,十大最温情城市为绵阳、南宁、金华、昆明、湖州等地,上榜的多为三四线城市。小城故事多,充满喜和乐,顺风车把陌生人连接在一起,共走一程路,惊喜和温情的故事总在路上发生着。
从目的地为健身场馆的数据来看,山西太原城市最爱健身的城市,其次为福州、佛山,一线城市中只有广州上榜;十大最爱读书之城长沙位列榜首,其次为青岛,温州;最休闲也就是去往休闲娱乐场所占比最高的城市为,南宁、太原、大连等;最小资的城市为大连、绍兴和上海,那里的人去往咖啡厅、酒吧、电影院占比最高;《报告》同时显示,天津位列十大海鲜之城冠军,重庆居于十大火锅之城榜首。
杭州智能渗透率居榜首贵阳发展前景可期。
作为世界领先的移动出行平台,滴滴出行基于大数据的机器学习技术,在中国超过400个城市为近4亿用户提供包括出租车、专快车、顺风车、公交、小巴、代驾、试驾、租车、企业级等多种出行服务。
从智能渗透率来看,一二线城市依然整体优势明显,杭州继续位居榜首。珠三角地区总体渗透率较高,在用户渗透率排名前10的城市中占据4席,分别是深圳、广州和东莞、珠海。
在各级城市月人均出行次数上,三四线城市与一二线城市相比仍有较大差距。月人均出行次数排名前五的城市依次是天津、青岛、北京、杭州、宁波。
根据智能渗透率,出行活跃度和便捷程度等综合指标测算的智能出行发展指数,杭州北京广州深圳成都排名前五,一线城市和省会城市明显更高。排名前20的城市中有8个为珠三角和长三角城市。而潜力城市(二、三、四线城市)多为长三角、珠三角和京津冀地区的二线和三线城市,西部城市贵阳排名第7,前景可期。
【本文地址:http://www.xuefen.com.cn/zuowen/12820329.html】