学会平衡工作和生活,才能更好地享受生活的美好。在写总结之前,我们应该明确总结的目的和要求。想要更好地了解这个主题,可以参考以下给出的相关范例。
四年级相遇问题教学设计篇一
1、了解相遇问题的特点,并学会解答求路程的相遇问题。
2、通过操作、观察、比较、分析,提高学生灵活解答的能力。
3、培养学生学习数学的兴及趣创新意识。
掌握求路程的相遇问题的解题方法。
理解相遇时,两人所走路程的和正好是两地的距离,相遇时间为两人共同所走的同一时间。
一课时 。
1、列式计算 。
(1)李诚从家到学校,每分钟走70米,4分钟抵达,他家离学校有多远? 。
(2)张华从家到学校,每分钟走60米,4分钟抵达,他家离学校有多远?
2、板出联系式:速度×时间=路程。
1、教学准备题。
(1)点击课件中准备题出示题目。
(2)学生理解题意。
(3)找出出发时间、地点、运动方向。
相向而行。
时 间间 。
(5)用课件演示两人同时从两地向对方走去,引导学生思考会出什。
么情况。利用课件继续演示会出现的三种情况(相距、相遇、交叉而过)。
(6)利用课件出示准备题的表格,指导学生填表格的一、二行并课。
件演示填空内容。
(7)请一学生上来利用交流性课间完成表格第三行的填写。
(9)小结:出发一段时间后两人之间的距离变成了零,这时两人就相遇了,这就是我们这节课要研究的——相遇问题。(板书课题:相遇问题)。
2、教学例5。
(1)点击新课出示例5。
(2)理解题意。
(3)四人小组讨论:
a、 两人是怎样走向学校的?
b、 4分钟后两人怎样? 。
c、 两人所行的路程与全路程有什么联系?
(4)学生试做。
(5)用电脑课件演示解题思路并讲评。
(6)学生看书、质疑。
(7)小结:我们解例5时用了哪两种方法?
1、学生做课本第59页的第1题和第2题。
2、利用课件出示选择题:
(1)xx米 (2)1000米 (3)无法确定。
1、今天学了什么内容?
2、解决这样的问题,我们用了哪几种方法?
3、质疑。
四年级相遇问题教学设计篇二
教学内容:
苏教版小学六年级数学上册第四单元解决问题的策略第1课时,教材第68页—69页例2和练一练。
教学目标:
1、引导学生经历解决问题的过程,能有序、有效地思考、分析数量关系,初步学会用假设的策略解决含有两个未知数的实际问题。
2、能对解决问题的过程进行反思,初步感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
能有序、有效地思考、分析实际问题中的数量关系。
教学难点:
感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。
教学准备:
课件、导学单、教具。
教学过程:
一、复习铺垫。
1、出示下面的问题,让学生列式解答。
把720毫升果汁倒人9个同样的小杯子里,正好倒满。平均每个杯子的容量是多少毫升?
数量关系:个小杯的容量=720毫升。
口头列式解答。
提问:和第1题相比,这道题难在哪里?(第1题是把720毫升果汁倒入一种杯子里,可以直接用除法计,这一道题是把720毫升果汁倒入两种杯子里,题中有两个未知数量。)。
3、揭示课题:这道题可以怎样解答呢?今天我们就来研究解决这样的实际问题的策略。(板书课题:解决问题的策略)。
二、探索策略。
1、教学例1。
(1)理解题意。
谈话:请同学们先观察题中的条件和问题,想一想,根据题意,你。
能找到怎样的数量关系,和小组里的同学说说你是怎样理解这些数量关系的。
揭示:6个小杯的容量+1个大杯的容证=720毫升。
大杯的容量x=小杯的容量小杯的容量x3=大杯的容量。
(2)确定思路。
谈话:我们知道,在遇到比较复杂的问题时,要想办法把复杂的问题转化成简单的问题。你有办法把这个问题变得简单吗?请先联系刚才理解数量关系式想一想,再和同学说说你准备怎样解决这个问题。
反馈:请把你的解题思路分享给大家。
学生想到的思路可能有以下几种,结合学生的交流,分别作如下引导:
思路一:假设把720毫升果汁全部倒入小杯。
问:把720毫升果计全部倒入小杯,1个大杯要换成几个小杯?把大杯换成小杯后,正好倒满多少个小杯?先画线段图分析。
思路二:假设把720毫升果汁全部倒入大杯,6个小杯换成几个大杯?把小杯换成大杯后,正好倒满多少个大杯?先画线段图分析。
思路三:列方程解。
小结:根据题中的数量关系,同学们想到了解决问题的不同思路。上面的几种思路都是抓住哪一个数量关系展开思考的?像这样通过假设把复杂问题转化为简单问题的方法,也是常用的解决问题的策略。(板书:假设)。
(3)列式解答并检验。
谈话:选择一种方法完成解答,并检验解题的过程和结果。
完成解答后,让学生说说列式、检验的方法和结果。
(4)回顾反思。
(5)教学第二种思路。
学生独立思考,列式计算,教师巡视。
指名交流解题时的思考过程,以及列式计算的过程和结果。
(6)比较和回顾。
提回:通过解答上面的问题,你有哪些收获和体会?
让学生先在小组里说一说,再组织全班交流。
2、完成“练一练”。
(1)出示题目,提问:要求桌子和椅子的单价、可以怎样进行假设?让学生按自己的思路完成解答,教师巡视。
(2)让不同思路的学生展示自己解题的过程。
三、巩固练习。
完成练习十一第1—3题。
四、课堂总结。
今天这节课我们学了什么?你有哪些收获和体会?还有什么疑问?
四年级相遇问题教学设计篇三
本节课是青岛版小学数学四年级上册第六单元《快捷的物流运输—解决问题》信息窗中第二个红点问题,即构建相遇问题的数学模型,并借此解决生活中的实际问题。因为相遇问题牵扯到两个物体的运动情况,其中的数量关系比较复杂,学生理解起来有一定困难,因此学生要首先理解和掌握速度、时间和路程三者的关系,然后在此基础上,创设他们感兴趣的、贴近生活的情境,在一步步解决问题的过程中构建数学模型,积累数学活动经验。
【教学目标】。
1、 在具体情境中,御用模拟演示和画线段图等方法理解速度、时间和路程的数量关系,初步构建相遇问题的数学模型。
2、 在解决问题的过程中,经历“发现问题----提出问题----分析问题----解决问题”的过程,积累数学活动经验。
3、 在合作交流中体验学习的乐趣,培养学习数学的积极情感。
【重点】。
用画线段图的策略分析“相遇问题”的数量关系,构建其数学模型。
【难点】。
理解“相遇问题”的基本特征,构建数学模型“速度和×时间=总路程”和“路程1+路程2=总路程”。
【教具】。
多媒体课件,两个能在一条线上自由活动的小人。
【教学过程】。
一、 情境导入,复习旧知。
谈话:同学们,你们知道刘老师家住哪儿吗?悄悄告诉你们吧,刘老师家离着人民公园非常近,到底有多近呢?你们来看。
ppt出示:刘老师从家出发步行去人民公园,每分钟走60米,5分钟后到达。
根据这个信息,你能提出什么问题吗?
ppt出示:刘老师家距离人民公园有多远?
你会解决吗?
ppt:60×5=300(米)。
这60表示什么?5呢?300呢?
通过这个小例题,我们总结出速度、时间和路程三者间的关系是:速度×时间=路程(课件出示)。
今天我们就在这个关系式的基础上来研究点新问题,好不好?
二、 合作探究,构建数学模型。
预设:让学生用语言或者肢体动作来解释这几个词的含义。
把这几个关键词搞明白了,大家再来读这个题。思考这个问题:我们之前学的行程问题是几个物体在运动?今天研究的问题是几个物体在运动?而且是怎么运动的?(同时出发、相对运动、最后相遇)我们就把这类问题称作“相遇问题”,板书课题。
【设计意图】。
此处通过学生之间的交流和表演,使他们在头脑中形成两个物体相对运动的表象,理解并抓住相遇问题的基本特征:同时、相对、相遇。
现在你能和你的同桌合作把这个题目表演出来吗?用2只笔分别代表小明和李老师,同时从桌子的两端出发相对而行,只走一遍,相遇了就停在相遇点别动了。
学生活动,教师巡视。
(询问不同的小组)你们相遇在哪里?相遇点离谁家比较近?为什么?
预设:出现相遇点在中间和相遇点不在中间两种情况。
【设计意图】。
通过同桌两人的模拟表演进一步理解相遇问题的运动过程和基本特征,同时学生们也在“相遇点在哪儿”的讨论和交流中进一步理解了:速度不同,相遇点不可能在中间,而是离速度慢的一方较近,从而培养学生认真审题、动脑思考的好习惯。
3、理解速度和。
老师制作了两个可以自由活动的小人分别代表小明和李老师,请两名同学上台来慢放一遍刚才的相遇过程,生边操作老师边提问:
一分钟后他俩分别走了多少?一共走了多少?
两分钟后他俩又走了多少?一共走了多少?
三分钟?四分钟?五分钟呢?
【设计意图】。
通过两个可活动的小人一分钟、一分钟地走,帮助学生理解“单位时间内他俩一共走的路程”,即速度和。同时能够直观地看到相遇点离速度慢的一方较近。
4、画线段图。
你能根据刚才的演绎把相遇过程和题目中的已知条件及问题在线段图中表示出来吗?
投影学生作品,点评。你能看明白他的线段图吗?还有哪些补充和改正的?
学生补充和完善自己的线段图。
师出示课件演示画线段图的过程。
5、自主解决问题。
你会解决这个问题了吗?自己动手试试。做的快的同学你还有没有别的方法?两种方法都做出来的同学组织一下自己的语言,争取一会儿发言时让大家都能听明白你的意思。
找2生板书2种方法,点评。
回顾这两种方法,我们是怎么解决相遇问题的?
小结:方法1:路程1+路程2=总路程。
方法2:速度和×相遇时间=总路程。
6、体会线段图的好处。
对比题目文字和线段图,你有什么感觉?
小结:线段图能够使抽象的数学问题变得更直观,便于我们理清楚题目中的数量关系。像这样把抽象的数学语言、数量关系与直观的图形结合起来,使复杂的问题简单化,抽象的问题具体化的思想就是数学上非常重要的“数形结合思想”,在今后的学习中同学们还会用到。
三、 巩固练习,拓展应用。
1、两列火车分别从甲、乙两地同时相对开出,4小时后相遇。甲车的速度是110千米/时,乙车的速度是100千米/时。求甲、乙两地间的路程。(先画图整理条件和问题,再解答)。
2、
数学6制4上打样_页面_087。
两队分别从两头同时施工,4个月开通。这条隧道长多少米?(只列式不计算)。
刚才这些问题也不是相遇问题呀,为什么你还用这种方法呢?
小结:他们的题型都跟相遇问题差不多,所以解决问题的方法和思路都是一样的。
四、 总结。
这节课你有什么收获?学会了什么?
四年级相遇问题教学设计篇四
1、了解相遇问题的特点,并学会解答求路程的相遇问题。
2、通过操作、观察、比较、分析,提高学生灵活解答的能力。
3、培养学生学习数学的兴及趣创新意识。
掌握求路程的相遇问题的解题方法。
理解相遇时,两人所走路程的和正好是两地的距离,相遇时间为两人共同所走的同一时间。
一课时 。
1、列式计算 。
(1)李诚从家到学校,每分钟走70米,4分钟到达,他家离学校有多远? 。
(2)张华从家到学校,每分钟走60米,4分钟到达,他家离学校有多远?
2、板出关系式:速度×时间=路程。
1、教学准备题。
(1)点击课件中准备题出示题目。
(2)学生理解题意。
(3)找出出发时间、地点、运动方向。
相向而行。
时 间间 。
(5)用课件演示两人同时从两地向对方走去,引导学生思考会出什。
么情况。利用课件继续演示会出现的三种情况(相距、相遇、交叉而过)。
(6)利用课件出示准备题的表格,指导学生填表格的一、二行并课。
件演示填空内容。
(7)请一学生上来利用交换性课间完成表格第三行的填写。
(9)小结:出发一段时间后两人之间的距离变成了零,这时两人就相遇了,这就是我们这节课要研究的——相遇问题。(板书课题:相遇问题)。
2、教学例5。
(1)点击新课出示例5。
(2)理解题意。
(3)四人小组讨论:
a、 两人是怎样走向学校的?
b、 4分钟后两人怎样? 。
c、 两人所行的路程与全路程有什么关系?
(4)学生试做。
(5)用电脑课件演示解题思路并讲评。
(6)学生看书、质疑。
(7)小结:我们解例5时用了哪两种方法?
1、学生做课本第59页的第1题和第2题。
2、利用课件出示选择题:
(1)2000米 (2)1000米 (3)无法确定。
1、今天学了什么内容?
2、解决这样的问题,我们用了哪几种方法?
3、质疑。
四年级相遇问题教学设计篇五
教学。
设计由本站会员“夜色恋人”投稿精心推荐,小编希望对你的学习工作能带来参考借鉴作用。
作为一位无私奉献的人民教师,可能需要进行教学设计编写工作,借助教学设计可以提高教学效率和教学质量。如何把教学设计做到重点突出呢?以下是小编精心整理的小学人教版四年级数学植树问题教学设计,仅供参考,欢迎大家阅读。
教学目标分析(结合课程标准说明本节课学习完成后所要达到的具体目标):
知识技能目标:
2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。
过程目标:
2、渗透数形结合的思想,培养学生借助图形解决问题的意识;
3、培养学生的合作意识,养成良好的.交流习惯。
情感目标:
1、通过实践活动激发热爱数学的情感;
2、感受日常生活中处处有数学,体验学习成功的喜悦。
学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):
通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难独立的完成学习任务,但学生的合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。
教学过程(按照教学步骤和相应的活动序列进行描述,要注意说明各教学活动中所需的具体资源及环境):
一、创设情景,激发兴趣。
1、猜谜导入揭题。
师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)。
师:生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)。
【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。
二、经历探究,发现规律。
1、激趣引入,启发探究积极性。
(课件出示)出示江口小学为绿化环境的招聘启事及设计要求。
招聘启示。
学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。
设计要求:
在一条长20米的小路一边等距离植树,两端要栽。
【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。
小学四年级数学植树问题教学设计如果还不能满足你的要求,请在本站搜索更多其他小学四年级数学植树问题教学设计范文。
四年级相遇问题教学设计篇六
教学目标:
1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。
2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。
教学重难点:
1、理解相遇问题的结构特点,能根据速度、时间、路程的数量关系解决求相遇时间的'问题。
2、理解相向运动中求相遇时间问题的解决方法。
教学过程:
一、复习旧知。
1、说一说速度、时间和路程三者之间的关系。
2、应用。
(1)一辆汽车每小时行驶40千米,5小时行驶多少千米?
(2)一辆汽车每小时行驶40千米,200千米要行几小时?
二、探索新知。
1、揭示课题。
师:数学与交通密切相联。今天,我们一起来探索相遇问题。
2、创设“结伴出游”的情境。
淘气和笑笑相约出去游玩。
3、引导学生找出有关的数学信息,解决第一个问题。
第一个问题时让学生根据信息进行估计,两人在何处相遇?因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。
4、画线段图帮助学生理解第二、第三个问题。
第二个问题,主要是要用方程解决相遇问题中求相遇时间的问题,关键是找出数量间的相等关系。
三、试一试。
先让学生独立分析数量关系,并尝试用方程解决问题,再组织学生交流。说说怎样找出数量间的相等关系,并列出方程。
四、练一练。
1、第1题,先观察图上的信息,让学生估计在何处相遇,并说说是怎么想的。
2、第2题,先独立完成,然后选几题让学生说一说解方程的方法,教师进行有针对性的指导。
五、知识回顾,全课总结。
今天这节课我们学习了什么?
六、布置作业。
教学反思:
四年级相遇问题教学设计篇七
运用加法和减法两步计算解决问题(p4例1)。
[教学目标]。
1、使学生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法。
2、学会运用加法和减法两步计算解决实际问题。
3、在解决问题的过程中,让学生感受可以用不同的方法解决问题。
4、初步培养学生发现问题、提出问题、解决问题的能力。
[教学重点]。
学会运用加法和减法两步计算解决实际问题。
[教学难点]。
培养学生在实际生活中多角度观察问题、发现问题、提出问题、解决问题的能力。
[教学过程]。
一、情景导入,激发兴趣。
观察主题图问:图上有谁,他们在干什么,还有想去做什么的,数一数分别有多少人?这幅主题图将告诉我们什么数学知识呢?我们具体来看。
二、合作交流,探索新知。
1、引导学生观察木偶戏的情景图。
(1)说一说,图上给我们提供了那些信息?(文字信息:原来有22人在看戏,又来了13人,图中信息:走了6人)。
(2)要解决什么问题?(有多少人在看木偶戏)。
2、小组交流讨论,提出解决问题的方案。
3、选派组内代表在班中交流解决问题的方法。
4、把学生解决问题的方法记录在黑板上,试着用文字说说每道算式的意思。
方法一、22+13=35(人)35-6=29(人)。
(原来的人数+又来的人数=总人数总人数—走了的人数=现在看戏的人数)。
方法二、22-6=16(人)16+13=29(人)。
(原来的人数—走了的`人数=还剩下的人数还剩下的人数+又来的人数=现在看戏的人数)。
方法三、13-6=7(人)7+22=29(人)。
(又来的人数—走了的人数=多来的人数多来的人数+原来的人数=现在看戏的人数)。
5、比较以上方法的异同。明确这三种方法的结果都是求现在看戏的有多少人,只是在解决问题的思路上略有不同。让学生体会对于一个实际的问题可以有多种不同的解答方法。
6、你能把每种计算方法的两个小算式写成一个算式吗?学生尝试列综合算式。
板书:(1)22+13-6(2)22-6+13(3)13-6+22。
再次交流:你是怎么想的?
(1)学生尝试自己说。
(2)小组内互相说。
(3)全班交流说,老师适时纠正说的过程中出现的问题。引导学生如何去掉中间量,把分步计算变成综合算式。
三、指导学生脱式计算。
=35-6(先算加)=16+13(先算减)=7+22(先算减)。
=29(再算减)=29(再算加)=29(再算加)。
比较计算的方法,你发现了什么?
(在一个算式里,只有加减法,按照从左往右的顺序,依次计算)。
四、练习巩固,应用实践。
1、给得数相等的两个算式连线.。
2、p6第1题,让学生说明图意,明确计算的问题后,让学生独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的学生以启发。
3、p7第4题,让学生自己独立完成。汇报解决问题的思路时,教师结合题目的具体内容,适当渗透思想教育。
五、课堂总结。
你能用我们今天学会的数学知识解决我们身边的实际问题吗?
四年级相遇问题教学设计篇八
吴兴区学校(幼儿园)具体课时备课表(成熟型教师用)。
单元(章)主题任课教师与班级。
本课(节)课题整理和复习(一)第课时/共课时。
教学目标(含重点、难点)。
及设置依据1.通过复习进一步理解百分数的意义,掌握百分数的写法。
2.掌握百分数和小数、百分数和分数互化的方法,熟练解答求一个数是(比)另一个数(多或少)百分之几应用题以及百分比应用题。
重点:熟练解答求一个数是(比)另一个数(多或少)百分之几应用题以及百分比应用题。
难点:百分数意义的理解。
教学准备多媒体课件。
教学过程。
内容与环节预设个人二度备课课后反思。
一、基本练习。
1.完成下面表格。
内容与环节预设个人二度备课课后反思。
小数0.16。
分数。
百分数24.5%0.9%。
2.只列式,不计算。
(1)40占50的几分之几?(2)50是40的百分之几?
(3)5比8少百分之几?(4)8比5多百分之几?
二、知识梳理。
1.百分数和分数在意义上有什么不同?百分数写法有什么特点?
2.说一说百分数和小数互化的方法,百分数和分数互化的方法?
3.求一个数是另一个数的百分之几的应用题用什么方法解答?
如:甲数是200,乙数是150。
(1)甲数是乙数的百分之几,算式:_____________,把________看作单位“1”。
(2)乙数是甲数的百分之几,算式:_____________,把________看作单位“1”。
(3)甲数比乙数多百分之几,算式:_____________,把________看作单位“1”。
(4)乙数比甲数少百分之几,算式:_____________,把________看作单位“1”。
三、深化练习:
1.李师傅加工一批零件,其中合格率是95%,这里的95%表示什么?
2.一条水渠已修的比未修的长25%,这里的25%表示什么?未修的比已修的短百。
内容与环节预设个人二度备课课后反思。
分之几?
四、小结:这节课复习了什么?
板书。
设计。
整理和复习(一)个人二度备课:课后反思:
作业布置或设计p104第1、2、3题。
课后反思:
教后整体反思。
四年级相遇问题教学设计篇九
二、教材简析(见教学用书)。
三、教学目标。
1、知识技能方面:使学生在解决有关面积计算的实际问题的过程中,初步学会用画直观示意图的方法整理相关信息,能借助所画的示意图分析实际问题中的数量关系,确定正确的解决问题的思路;能正确解答与长(正)方形面积计算的有关实际问题。
2、数学思考和解决问题方面:使学生经历画示意图描述和分析问题的过程,积累一些整理条件和问题、借助图形直观分析数量关系的经验,感受画示意图对理解题意和分析数量关系的作用,提高分析问题和解决问题的能力,发展几何直观。
3、情感与态度方面:使学生在解决问题的过程中,进一步体会数学与生活的联系,让学生体验经过克服困难而获得解决问题的成功体验,提升学好数学的信心。
四、教学重难点。
学会用画图的方法表示图形面积增加或减少的情况,帮助理解题意,得到解决问题的方法。
五、教具学具。
多媒体课件,
六、教学过程。
一、引入新课。
1、出示复习题。
师:观察这三幅示意图,你能说说每一题的条件和问题分别是什么吗?
谁能口答算式?(数量关系式)。
四年级相遇问题教学设计篇十
本册教材的数学广角主要是渗透有关植树问题的思想方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第2课时,是探讨关于一条线段并且两端都不栽的情况。
“两端都不栽”与“两端都栽”的区别是比较明显的,可以借助线段图帮助学生建立两者的表象,再正确建立数学模型。
教学目标。
1、建立“树的棵数=间隔数-1”的数学模型;能利用数学模型解决简单的实际问题。
2、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的思想方法。
3、体会数学模型的生活意义与作用,体验到学习的`喜悦。
学习重点:建立“树的棵数=间隔数-1”的数学模型。
学习难点:“两端都不栽”与“两端都栽”有什么联系与区别。
预设过程。
一、复习两端都栽。
在一条12路的一侧种树(两端都种),每2米种一棵,共需种几棵?
1、揭题:植树问题。
2、呈现问题,请学生解决。新课标第一网。
3、反馈解法,强调“两端都种”与“间隔数+1”。
二、研究两端都不栽。
在一条12路的一侧种树(两端都不种),每2米种一棵,共需种几棵?
1、提出研究课题:要是两端都不种呢?
2、呈现问题,请学生思考后试解。
3、反馈解法,强调“两端都不种”与“间隔数-1”。
4、比较:“两端都种”与“两端都不种”有什么不同?
三、练习。
1、画示意图,完成p118例2,注意“两端都不种”与“两旁都种”。
2、画示意图,完成做一做1,注意“两端都种”与“两旁都种”。
3、画示意图,完成做一做2,发现“锯的次数=段数-1”。
4、完成补充题,知道“四层楼三个间隔”。
四、总结。
四年级相遇问题教学设计篇十一
吴兴区学校(幼儿园)具体课时备课表(成熟型教师用)。
单元(章)主题百分数任课教师与班级。
本课(节)课题利息第9课时/共9课时。
教学目标(含重点、难点)。
及设置依据1.通过教学使学生知道储蓄的意义;明确本金、利息、税后利息和利率的含义;掌握计算利息的方法,会进行简单计算。
2.对学生进行勤俭节约,积极参加储蓄;支援国家、灾区、贫困地区建设的思想品德教育。
重点:掌握利息的计算方法。
难点:正确地计算利息,解决利息计算的实际问题。
教学准备多媒体课件。
教学过程。
内容与环节预设个人二度备课课后反思。
一、导入。
随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一是支援国家建设,二是对个人也有好处,既安全和有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。
内容与环节预设个人二度备课课后反思。
二、新课。
1.介绍存款的种类、形式。
存款分为活期、整存整取和零存整取等方式。
2.阅读p99页的内容,自学讨论例题,理解本金、利息、税后利息和利率和含义。
本金:存入银行的钱叫做本金.小丽存入的100元就是本金。
利息:取款时银行多支付的钱叫做利息。
税后利息:国家规定,存款的利息要按20%的税率纳税。小丽实际得到的1.8元是税后利息。国债的利息不纳税。
利率:利息和本金的比值叫做利率。
(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。
(2)阅读p99页表格,了解同一时期各银行的利率是一定的。
4.利息的计算。
(1)出示利息的计算公式:利息=本金×利率×时间。
(2)计算方法:
按照书上的利率,如果李奶奶的1000元钱存整取两年,到期的利息是多少?学生计算后交流。
内容与环节预设个人二度备课课后反思。
(3)两年后取款,李奶奶能得到93.6元利息吗?为什么?
(4)学生计算后回答,教师板书:。
1000×4.68%×2=93.6(元)1000×4.68%×2=93.6(元)。
93.6-93.6×5%=88.92(元)93.6×(1-5%)=88.92(元)。
比较两种方法?
加上她存入本金1000元,到期时她可以实际取回多少元?
5.练习。
1、完成二十三的第6题,学生读题后,提问:贝贝存入的本金是多少?利率是多少?存期是多少?然后由学生解答,集体订正。
2、完成100页做一做。
3、完成练习二十三的第9题。
三、小结:这节课你懂得了什么?
板书。
设计利息。
利息=本金×利率×时间。
1000×4.68%×2=93.6(元)1000×4.68%×2=93.6(元)。
93.6-93.6×5%=88.92(元)93.6×(1-5%)=88.92(元)。
个人二度备课:课后反思:
作业布置或设计自学103页什么是成数?说说自己对成数的了解。课后反思:
教后整体反思。
四年级相遇问题教学设计篇十二
1、让学生初步学会用“替换”的策略分析数量关系,并能根据问题的特点确合理的解题步骤,学会正确解答这类问题。
2、让学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、让学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学信心。
教学重、难点:
用“替换”的策略解决问题。
教学过程:
课前欣赏:播放《曹冲称象》录像,感受策略。
一、引入。
1、刚才课前我们一起看了《曹冲称象》的故事。最后是谁帮曹操解决了问题。
(曹冲)曹冲真了不起啊!曹冲是用什么方法解决了这个问题的?(生答)。
2、师:石块的重量等于大象的重量,把大象替换了石块,这样就可以很容易地称出来了。
3、这节课我们就一起来用“替换”的方法解决一些实际问题。(板书:替换)。
二、展开。
1、出示例1。
2、那老师把刚才题目中的条件换一下:大杯的容量是小杯的4倍。
(1)师:又如何解决这个问题呢?每个同学有作业纸,请同学们自己先画一画,画出替换过程,并计算出来。
(2)指名上台展示并讲述。
过渡:同学们都很棒!老师再把题目换一下,好吗?
3、出示“小杯的容量比大杯少160毫升”。
(1)师:现在我们可不可以用替换的方法了?(上课时有的说可以,也有人说不可以)。
(2)请小组讨论一下怎样替换?小组讨论时注意这几个问题(手指屏幕)生读。
(3)小组汇报。(生答时演示过程)。
三、课堂练习。
1、过渡:我们班的洪老师遇到了一个问题,请同学们用刚才学过的知识来帮忙解决。
(1)出示题目。
(2)师:同学们先再作业纸上自己做做看。
(3)指名汇报。(找不同做法的学生汇报)。
(1)出示题目。
他们进了公园,来到水上乐园,其中有40人去划船。
每只大船比每只小船多坐2人,每只大船和每只小船各坐几人?
(2)左边三组完成第一个问,右边三组完成第二个问。
(3)指名汇报。
3、过渡:其实在我们的生活中还有很多这种替换的现象。
(1)播放视频。(生活的替换现象)。
(2)老师真心希望同学们能用智慧的眼睛去发现,并能灵活运用替换的策略解决问题。
[在最后我播放了一段视频,是让学生了解在我们生活中到处都有替换现象。]。
四、全课总结师:那么通过这节课的学习你有什么收获?
五、综合实践。
过渡:最后老师留给同学们一个综合实践题,课后想一想。
苏果超市用3个空啤酒瓶可以换一瓶啤酒。
王叔叔买了12瓶啤酒,他最多能喝到多少瓶啤酒?
四年级相遇问题教学设计篇十三
教学内容:人教版《义务教育教科书.数学》四年级下册p103——p104页数学广角——《鸡兔同笼》。
教材分析:“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。通过两种方法的探究让学生感知解决问题的多样性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
教学目标:
2.经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。
3.在解决问题的过程中,培养学生的逻辑推理能力,增强应用意识和实践能力。
教学重点:
1.理解掌握解决问题的不同思路和方法。
教学难点:理解掌握假设法,能运用假设法解决数学问题。
教学具准备:课件、表格。
教学过程:
一、导入。
师生谈话导入新知。
(设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。)。
二、探究新知。
1.质疑:提问:
(1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?
(2)鸡和兔相比:什么比什么多?多多少?
(3)课件出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?
(4)尝试解决,交流想法;
(5)课件出示交换已知条件以后的题目。
(设计理念:通过对比两种动物的异同,引出基础题目,让学生经历观察、比较、分析、归纳概括的过程,同时也让学生了解鸡兔腿数数量的差别,每只兔比每只鸡腿数多2,这为下一教学环节,猜测、调整和有序整理探究列表法奠定基础,同时也为探究假设法做好铺垫。)。
2.教学例1。
(1)出示例题1。
师:请同学们读一读,和前面的题目一样吗?什么地方不一样?
请同学们大胆的猜一猜鸡兔各有几只?猜的时候要注意什么?(共有8个头)。
(设计理念:通过对比两题的已知和未知条件的不同培养学生认真审题的良好学习习惯,同时也为后面的猜测、有序整理、验证做好铺垫。)。
(2)学生自由猜测。
师:大家的猜测有很多种,听起来有点乱,我们按顺序整理一下(出示表格)。
(3)验证猜想。
(4)观察发现规律。(5)总结概括:在数学中这种方法叫列表法。(板书)。
(设计理念:通过猜测让学生感知在解决类似问题时这是最基础的方法,然后通过列表法进行验证让学生感知有序整理可以找到问题的答案。最后通过观察、交流探讨发现鸡兔数量的变化引起腿数变化的规律,这样也积累了学生解决问题的经验。)。
质疑:如果遇到鸡兔数目多的时候,这种方法行吗?怎么办呢?
3.探讨假设法:
a.假设全是兔。
1.师以童话故事的形式引入全是兔的情境。
2.集体探究,引导交流。
b.假设全是鸡。
1.师再次继续童话故事引入全是鸡的情境。
2.小组独立探究交流假设全是鸡的计算方法。
3.指名小组展示并叙述计算过程。
4.小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)。
5.延伸:其实解决“鸡兔同笼”的问题还有其它方法,同学们如果有兴趣的话下来以后可以了解一下。
(设计理念:通过情境假设,让学生感知数学的趣味性,提高了学生探究新知的兴趣,也为假设法的探究增添了趣味。同时,学生又经历了自主探究、合作交流的学习过程,体验了解决问题的方法的多样性。为后面灵活的解决问题打下了基础。)。
三、练习巩固。
课件出示练习题。
四、课后总结。
(设计理念:学生通过练习一方面加强了对列表法、假设法的巩固,另一方面学生运用所学知识灵活的解决问题,增强了学生的应用意识;通过小结收获整理课堂新知,培养学生归纳总结的能力。)。
板书设计:
鸡兔同笼。
1.列表法。
2.假设法。
四年级相遇问题教学设计篇十四
教学目标:
1、使学生在解决实际问题的过程中初步学会从条件出发展开思考,分析并解决相关问题。
2、使学生在对解决实际问题过程的不断反思中,感受解决问题策略的价值,发展分析、归纳和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
用从条件想起的策略解决问题。
教学难点:
策略的体验和理解。
教学过程:
分了五个环节。
第一部分是导入,先出示一个条件,让学生初步体验只有一个条件无法求出问题,接着提供两个条件,让学生选择一个能解决问题的条件,让学生进一步体会只有两个相关联的条件才能解决问题。
第二部分是教学例题,感悟策略。出示例题后重点让学生理解“以后每天都比前一天多摘5个”,用自己的话来说说,从两个角度提炼出了数量关系,然后说解题思路,主要讲清楚根据哪两个条件求出什么,再根据哪两个条件什么。完成填表和列式后沟通了两者的关系,最后总结得出解决问题时我们紧紧抓住条件在思考。揭示课题。
第三环节是变式沟通,形成策略。通过两个变式的教学,让学生加深对策略的感知。接着安排了皮球那道题目,学生对条件的理解是比较困难的,所以我安排了一个动画,帮助学生理解。四个题目结束后,安排了回顾反思,这一环节是新教材比较强调的,让学生在回顾反思中提炼出解决问题的`经验。
第四环节是练习巩固,运用策略。选取了想想做做第一题的第一小题,让学生根据条件提出不同的问题,再解答,最后在分析中提炼出解决问题的第三个小窍门。紧接着请学生独立完成想想做做第4题,第5题。第5题的设计主要考虑到一是学生对游戏比较感兴趣,二是国际象棋是我们学校的特色,三是培养学生估算的能力,四是增加学生的课外知识。
第五环节是课堂总结,交流收获。回顾学习了什么内容,以及解决问题时是怎样一步步分析的。
四年级相遇问题教学设计篇十五
一、教材分析:
《课标》中指出:数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为简的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。“鸡兔同笼”问题的解法包括:列表法、假设法、方程法等。由于本单元方程解法还没学,因此这里主要引导学生通过猜测、列表、假设等方法来解决问题,培养学生猜测、有序思考及逻辑推理的能力。
二、学情分析:
鸡兔同笼”问题,对于四年级学生而言,学生的逻辑推理能力还不是很强,自主探究解决问题困难较大,思维难度大,学生难以理解。特别是对于那些智力水平属于中下的学生来说更是不易。但是有一些学生在课外书中已经学习了相关的内容。教学这一内容时,学生的程度会参差不齐,有一定难度。因此,教学中教师要充分发挥引领作用,通过情景感受,化繁为简,猜测,列表,画图等方法帮助学生参与探究活动,使学生借助展开想象,促进数学思考,找到问题解决的方法。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。在这节课中,主要采用适时引导和学生小组合作探究相结合的教学方式,让学生在尝试、探索、合作交流中弄懂“鸡兔同笼”问题的基本结构特征,经历不同的方法解决“鸡兔同笼”问题的过程,体会解题策略的多样性,渗透化繁为简的思想,初步形成解决此类问题的一般性策略。
三、教学目标:
知识与技能:了解“鸡兔同笼”问题的结构特点,掌握用列表法和假设法解决问题,初步形成解决此类问题的一般性策略。合理利用假设法,通过化繁为简的思想,帮助学生探索出解决问题的一般方法。
过程与方法:通过自主探索,合作交流,经历用不同的方法解决“鸡兔同笼”问题的过程,体会解题策略的多样性,渗透化繁为简的思想。能用类比思想解决实际问题。
情感态度与价值观:感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
四、教学重点:理解掌握用不同的方法解决问题的不同思路和方法。
五、教学难点:运用不同的方法解决实际问题。
七、教具准备:多媒体课件、学习单等。
八、教学过程:
(一)创设有效情景,激活生活经验策略。
1.师:同学们,今天老师很高兴能跟大家一起度过一堂生动有趣的课。同学们有没有信心能上好这堂课?真棒!师:请同学们带着你们的信心和热情跟老师一起走进数学广角。我们一起来学习一道我国古代非常有名的数学趣题。
师:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”(ppt投影展示原题。)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头。从下面数,有94条脚。鸡和兔各有几只?)(ppt展示今意。)。
2.师:这类题我们把它叫做什么问题好呢?(“鸡兔同笼”问题。)板书。
师:其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。那么这个流传了上千年的问题到底有什么魅力,使得那么多的人乐此不疲地去解决这个问题呢?相信同学们学习了这节课,你们就会揭开这个秘密。老师再问一次大家:你们有没有信心把这节课的内容学好?【设计意图】结合课件谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。同时在学生猜测得不到正确结果的情况下,激发学生的探究兴趣,为下一环节引导学生经历“化繁为简”的解题策略做好铺垫。
(二)引导自主探究,感悟数学思想策略1.探究用猜测列表法解决“鸡兔同笼”问题。
师:为了便于研究,我们可以先从简单的问题入手,来探讨解决这类问题好吗?出示例1。
生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师:还有补充吗?有两个隐藏条件看谁细心发现了?。
生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。
【设计意图】学生认知的规律是:由易到难。鸡兔同笼原题中的数据比较大,不利于首次接触该类问题的人们进行探究,根据化繁为简的思想,此题有效降低了问题的难度,为解决《孙子算经》中的较难“鸡兔同笼”问题搭好了桥,做了巧妙引领。
(2)列表法。
师:猜想,要求鸡和兔各有几只,咱们不妨猜一猜,好吗?(学生猜)。
师:到底谁猜对了呢?我们来验证一下。解决问题要有理有据,不能随意猜。我们应该抓住什么样的条件来验证我们的猜测是否正确?首先要知道鸡和兔一共有8只,其次鸡的腿和兔的腿一共有26只,所以我们必须要把鸡的腿和兔的腿加起来看看等不等于26。这两个条件必须同时满足才是正确答案。
师:现在请同学们拿出你们的表格把你们的猜测的数据按顺序填到表格中并找到正确答案。
学生独立完成表格,之后交流完成情况,出示大屏幕的表格中。(像这样把我们的猜测按一定的顺序列成表格,这种方法叫列表法)。
师:观察这个表格,你找到答案了吗?答案是怎样的。【设计意图】列举法是学生最容易掌握的运算方法,这里就运用到了数学的枚举思想。用猜测尝试去作图验证,实际就是用枚举法来解决问题。虽然麻烦,但比较直观,它是掌握假设法的前提,本教学环节是下一教学环节的巧妙过渡。当头和脚的只数较多时,用列表法还是不容易找出答案,我们还有研究新方法的必要。猜想法和列表法都是解决问题的策略,但都有其局限性。教学中,既让学生理解、掌握和运用了这些策略,又未局限于这些基本的策略;既体现了解决问题策略的多样化,又通过表格规律的发现,为探索新策略奠定了不可缺少的基础;教师既关注了学生解决问题的结果,更关注了学生解决问题的过程与方法,并在不断提升学生解决问题的技能技巧。
师:列表的方法可以解决鸡兔同笼问题,但是如果数据很大,会发生什么情况?(繁琐)。有没有其他方法可以解决?请同学们四人一小组探讨一下还有没有其他方法可以解决。交流探讨结果。
(1)假设八只全是鸡。
师:那么我们再来试一试。假设8只全是鸡,请同学们试着做。
生:8×2=16(只)脚。
师:题意要求一共有26只脚。
生:26-16=10(只)脚。
师:少了10脚。那么少的是谁的脚呢?
生:少了兔的脚。
生:4-2=2(只)脚。10÷2=5(只)兔。
生:8-5=3(只)鸡。(假设法a)。
师:可能还有些同学有点迷糊,我们用画图法直观理解一下。
1)请画8个圆表示鸡,每只鸡2只腿,一共有16只脚。
2)还差10只脚,每只鸡再加两只脚变成兔子,共有5只鸡变成5只兔子。
3)最后剩下的3只就是鸡。
【设计意图】通过生的讲解与老师的精要提示,大部分学生肯定已经初步掌握了假设法,但是所有的学生都准确掌握方法且明白算理,还需要一个强化的过程。在这里用到了画图法是打开其他学生发散思维的钥匙。画图法直观形象,对其他学生的启发作用很大。此法貌似画图法,其实质仍然是列举法。
(2)假设八只全是兔。
我假设8只全是兔。4×8=32.。(师在32后添加只脚)32-26=6(只脚)。(师:多了6只脚)。4-2=2(只脚)。
师:为什么用4-2?
生丙:因为兔子多了,兔子有4只脚,鸡有2只脚。6÷2=3(只鸡)。
师:等等,老师又不懂了!为什么用6÷2。
生丙:因为我多假设了兔,多了6只脚,这6只脚是鸡的。所以用6÷2=3(只鸡)。
师:我还是没有听明白。请哪位同学给我再说说。
生丁自愿起来说清算理。
师故作明白状:哦,原来是多假设了兔的只数,所以多出来的脚应该是鸡的,所以要这样。
生丙继续:8-3=5(只)。因为兔子多算了3只,所以用8减去3等于5,答案是兔子有5只,鸡有3只。(假设法b)。
师:现在大家清楚了吗?再引导学生回顾一遍。先怎么想?假设全是鸡,用总脚数减去鸡的脚数求出它们的相差数是10,再用相差的数除以每只鸡相差的2只脚,就得到了兔的只数,最后用总只数减去兔的只数就是实际鸡的只数。
师:你们从以上两种假设法中发现了什么?
假设全是鸡,先得到兔子的只数。
假鸡先得兔,假兔先得鸡。
师总结:假甲先得乙,假乙先得甲。
师:这种方法好吗?给这种方法起个名字,叫什么好呢?(假设法)。
【设计意图】假设法是本节课教学的难点。我在学生讲述假设法a时,故布疑团,循循善诱,把学生的思考方法与过程准确无误地呈现在全体学生面前,在展示关键步骤时,我扮演一位导演,“我还是没有听明白。请哪位同学给我再说说。”把教者需要给学生重点强调的地方,假借学生的口再重点反馈给其他学生。师故作明白状:“哦—原来是多假设了兔的只数,所以多出来的脚应该是鸡的,所以要这样。”看似是我的自言自语,其实是把此种方法的关键强调给学生,引起学生的注意。所以此步骤就是对学生掌握运用假设法的再一次强化,让所有的学生都掌握方法,并明白算理。教师没有一句是在讲解,都是学生在思考展示、相互启发、自我教育。
(3)小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)。
(4)师:现在我们能用上面的方法解决古人流传下来的问题了吗?出示:鸡兔同笼,有35个头,94只脚,鸡兔各有几只?学生独立自主完成。师(在学生运用假设法、例举法解决问题之后):解决“鸡兔同笼”,哪种方法比较简便?生:假设法比较简便,例举法比较麻烦。
【设计意图】与教学最初设置的悬念遥相呼应,在学生进一步运用学习的新方法解决问题后,引导学生通过比较,找出最简便的解决问题的方法。用最简单的方法解决数学问题,永远是数学教学的真谛。这就是数学中化繁为简的思想。
(5)小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。
【设计意图】学生结合具体算法,先初步归纳总结出运用假设法解决鸡兔同笼问题的一般规律,教师再将之完善,归纳升华为运用解决鸡兔同笼这一类问题的一般规律。让学生发散思考、加深理解。
(三)突出数学运用,强化渗透应用策略。
巩固练习:课本105页“做一做”的1、2题。
【设计意图】通过化繁为简的思想,帮助学生探索出解决问题的一般方法。学习的目的是为了应用。此环节有两个妙处:一是让数学知识来源于生活,又运用于生活,提高学生的应用能力与学习数学的兴趣;二是让学生能够认识“鸡兔同笼”这一类问题,掌握“鸡兔同笼”问题的变式,达到举一反三的目的。
(四)强化总结反思,发现数学规律策略。
师:通过今天的学习,你有哪些收获?你们对自己这节课还有什么问题?
(五)作业布置:课本106页练习二十四第一题。
九、板书设计:。
鸡兔同笼。
1.猜测法2.列表法3.假设法。
a、假设八只全是鸡先得到兔的只数。
b、假设八只全是兔先得到鸡的只数。
四年级相遇问题教学设计篇十六
吴兴区学校(幼儿园)具体课时备课表(成熟型教师用)。
单元(章)主题百分数任课教师与班级。
本课(节)课题纳税第8课时/共9课时。
教学目标(含重点、难点)。
及设置依据1.使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。
2.在计算税款的过程中,加深学生对社会现象的理解,提高解决问题的能力。
3.增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。
重点:税额的计算。
难点:税率的理解。
教学准备。
多媒体课件。
教学过程。
内容与环节预设个人二度备课课后反思。
一、复习。
1.口答算式。
(1)100的5%是多少?(2)50吨的10%是多少?
(3)1000元的8%是多少?(4)50万元的20%是多少?
内容与环节预设个人二度备课课后反思。
2.什么是税率?
二、新授。
1.阅读p98页有关纳税的内容。说说:什么是纳税?
2.税率的认识。
(1)说明:纳税的种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率。一般是由国家根据不同纳税种类定出不同的税率。
(2)试说以下税率表示什么。
a、商店按营业额的5%缴纳个人所得税。这里的5%表示什么?
b、某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么?
3.税款计算。
(1)出示例5(课本99页)。
(2)理解:这里的5%表示什么?(应缴纳营业税款占营业额的百分比。)。
(3)要求“应缴纳营业税款多少”就是求什么?
(4)让学生独立完成?
4.看课本98页内容。读一读,什么是纳税?什么是税率?
内容与环节预设个人二度备课课后反思。
三、练习。
1.巩固练习:练习二十三第4题。(要点:5%对应的单位“1”是营业额,7%对应的单位“1”是营业税。)。
2.依据第5题,学生各自发表意见。
(有关税率的常识:由于不同行业的经营效果有差别,又由于国家为了保护和扶持某些人民群众迫切需要的产品和服务行业等,会减少这些行业的税率,因此消费税和营业税的税率会有很大差别。如例5中说到饭店的营业税率是5%,而审稿费的个人所得税率就是3%。)。
四、小结:今天你有什么收获?
板书。
设计纳税。
应缴税款=应纳税金额×税率个人二度备课:课后反思:
作业布置或设计学习、宣传税法知识。课后反思:
教后整体反思。
四年级相遇问题教学设计篇十七
师:日常生活中,大家可能吃过各种各样的饼。
拿出一个烙饼问:吃过这样的饼吗?
学生有的人说吃过,有的人说没有吃过。
师:它叫烙饼,知道是怎么做的吗?
拿出平底锅一边演示烙饼的过程,一边讲解:先把一面烙几分钟,再把另一面烙几分钟,熟了。
师:想试试吗?拿出准备的圆片,用大圆片代替锅,小圆片代替饼,烙一个试试。
学生动手操作烙饼。
师:假如饼的正反面都烙3分钟,请问烙熟一个饼要多长时间?
学生回答。
师:看似很简单吧,其实不然,烙饼中也有学问哦,今天咱们就来探讨烙饼问题中的学问。(板书课题)。
二、探究新知。
1、动手操作。
刚才我说烙饼中有学问的时候,有人不以为然,耳听为虚眼见为实,接下来咱们就来进行一次烙饼比赛,看谁是最聪明的烙饼师!请看比赛规则:大屏幕出示:
(1)每人烙3个饼。
(2)锅里每次最多只能放两个饼。
(3)饼的两面都要烙,每面3分钟。
(4)算出烙完3个饼所用的时间。
请一个学生读一读。
师:规则明白了吗?那就开始烙饼吧!
学生动手操作。
2、探讨优化方法。
师:大家的饼都烙熟了,你们用了多长时间?
有的用了12分钟,有的用了18分钟,有的用了9分钟。
师:真奇怪,都是烙3个饼,为什么你们用的时间有长短呢?奥妙在哪里?请三个代表上台给我们演示一下烙饼的过程,请大家认真观察、倾听和思考!
三个学生上台边演示边讲解。
师:现在知道奥妙在哪里了吗?谁来说一说?
学生自由发言。
学生回答。
师归纳:我也认为某某的方法最好,因为安排合理,所以用时最少,在数学上我们把这样的方法称为最优化的方法!现在我们就用最优化的方法再烙烙这三个饼吧!
学生用最优方法烙饼。
3、深化提高。
师:知道了烙3个饼的最优化方法,那么烙4个、5个、6个......10个饼的最优化方法又是怎样的呢?出示表格:
饼数(个)最优方法。
4
5
6
7
8
9
10。
有信心找出来吗?咱们就以小组为单位展开讨论吧!
汇报、反馈:有结论了吧?哪个小组先来汇报?
一个小组的代表先发言,其余小组补充。
依据学生的讲解填写表格。
引导观察:仔细观察这个表,想一想能得出什么结论?
生:饼的个数是双数时,就2个2个地烙;是单数时,先2个2个地烙,最后剩下3个时,就用烙3个的最优方法烙。
三、巩固运用。
1、烙饼优化的方法,其实小到我们生活中的点点滴滴,大到经济建设、交通运输等行业都会面临合理安排的问题,不信咱们到餐厅去看一看:出示书上做一做的第一题。
学生了解题意后思考安排。
2、由于你们的合理安排,三位客人满意地走出了餐厅,临走时给大家留下了2道题,因为他们深信你们一定能解决的。请看:大屏幕出示:
四、小结。
这节课我们研究了什么,从中大家感悟到什么?
说的真好,合理的安排事情可以提高效率,节省时间,这就是优化问题,我国的大数学家华罗庚在这方面可是做出了巨大的贡献,他提出的优选法已经广泛地应用于我们的生产和生活中了,下节课我们将继续研究!
【本文地址:http://www.xuefen.com.cn/zuowen/13228466.html】