提问是获取知识、解决困惑的重要途径。写一篇完美的总结需要有清晰的目标和明确的结构。以下是小编为大家整理的文学作品解读,希望能帮助大家更好地理解作品。
六年级正比例说课稿篇一
用小黑板在刚才准备题的表格中增加几列数据,变成下表。
住户张家赵家李家周家刘家吴家。
水费(元)1520352517.5。
用水量(吨)6814109。
教师:请同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。
教师根据学生的回答将表格完善,并作必要的板书。
教师:同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。
板书:相关联。
教师:你们还发现哪些规律?
学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:
水费用水量=156=208=3514=……=2.5。
教师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。
板书:水费用水量=每吨水单价(一定)。
2.教学“试一试”
教师:我们再来研究一个问题。
小黑板出示第52页下面的“试一试”。
学生先独立完成。
教师:你能用刚才我们研究例1的方法,自己分析这个表格中的数据吗?
教师根据学生的回答归纳如下:
表中的路程和时间是相关联的量,路程随着时间的变化而变化。
时间扩大若干倍,路程也扩大相同的倍数;时间缩小若干倍,路程缩小相同的倍数。
路程与时间的比值是一定的,速度是每时80m,它们之间的关系可以写成路程时间=速度(一定)。
3.教学“议一议”
教师:我们研究了上面生活中的两个问题,谁能发现它们之间的共同点呢?
引导学生归纳出这两个问题中都有相关联的量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是一定的。
教师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。
4.教学课堂活动。
教师:请大家说一说生活中还有哪些是成正比例的量。(1)完成练习十二的第1题。
教师:请同学们用所学知识判断一下,下面表中的两种量成正比例关系吗?为什么?
学生独立思考,先小组内交流再集体交流。
(2)完成练习十二的第2题。
这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
六年级正比例说课稿篇二
1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。
2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。
认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。
理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
教具:小黑板小黑板。
学具:作业本,数学书。
六年级正比例说课稿篇三
一、说教材。
我说的内容是九年义务教育六年制小学数学第十二册第一单元中的《成正比例的量》这部分内容是在教学比和比例的知识的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的正比例方面的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习中学数学和物理化学打下基础。
根据本课的具体内容,《数学课程标准》的有关要求和学生的年龄特点,我从知识技能、能力特点及情感态度三个方面确立了本课的教学目标。
二、说教学目标。
(1)使学生通过具体问题认识正比例的量,理解正比例的意义,能工巧匠有根据正比例的意义判断两种量是不是成正比例。
(2)引导学生通过观察、交流、归纳、推断等数学活动,感受数学思维的全过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活运用知识的能力。
(3)通过引导学生探索知识间的内在联系,激发学生的兴趣,增强学生的审美意识。
三、说教学重点,难点。
教学重点是理解正比例的意义,教学难点通过具体问题来理解正比例的意义。
四、说教法、学法。
如何突出重点,突破难点,完成上述的三维目标呢?根据《新课程标准》要求和教材的编排特点,我遵循教师为主导,学生为主体,训练为主线的指导思想,本节课我采用多媒体为主要的教学手段,以分组合作学习为产要方式来进行教学,主要采取让学生在自主、合作探究中通过多个例证,从多角度、多层次来归纳正比例的特征。
采取以上步骤的根据是学习比例的知识不能靠直观演示、操作,来获取知识,主要靠实际例子通过观察、比较归纳、推断等数学活动来获取知识,这样克服了比例意义教学中重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病,突出教学重点,突破了教学难点。
为了理好的实现教学目标,我准备的教具是多媒体课件和展示台。
五、教学过程。
第一个环节是铺垫孕伏,导入新课。
第二环节、合作交流、探究新知。
这一环节是学生获取新知的过程,教学中我以学生自产探索为主,合伯交流为辅,教师问题为桥的教学思路展开的,这个环节我分四个步骤来完成:
第一个步骤、师生携手,共同解决问题。
《新课程标准》中要求:注重培养学生的独立性和自主性,引导学生质疑、调查、探究。在实践中学习,促进学生在教师指导下主动地富有的学习,所以我请同学们观察刚才汽车路程和时间的统计表,让他们先独立思考,再讨论交流,回答、以下的问题(用多媒全出示)。
(1)表中有哪两种量?
(2)这两种量是怎样变化的?
(3)还可以从表中发现哪些规律?
学交流后回答,师随着学生的回答作必要的板书。
让他们享受到成功的喜悦。
第二步骤、自主探究、获取新知。
六年级正比例说课稿篇四
(1)苹果的单价一定,购买苹果的数量和总价.
(2)轮船行驶的速度一定,行驶的路程和时间.
(3)每小时织布米数一定,织布总米数和时间.
(4)小新跳高的高度和他的身高.
(5)正方形的面积和边长。
(6)正方形的周长和边长。
六年级正比例说课稿篇五
教学目标:
1、经历正比例意义的建构过程,通过具体问题认识成正比例的量,能找出生活中成正比例量的实例,能正确判断成正比例的量。
2、通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。
3、在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。
教学过程:
一、谈话导入。
1.出示苹果、梨、橘子的图片问:起一个总的名称是什么?
2.出示:仿照第一题填空。
(1)时间:3小时20分2小时45分。
(2)总价:5元()()。
(3)():6千克800克3吨350克。
填后问:左边的是什么?右边对应的是什么?你还能举出一种量和它对应的数吗?
二、学习新课。
(一)相关联的量。
教师做实验,向弹簧称上加钩码问:
(1)这其中有哪两种变化着的量?(2)弹簧长度为什么会变化?
指出:弹簧长度是随着钩码数量的变化而变化的,像这样的两种量我们把他们叫做相关联的量。
追问:现在你知道什么叫相关联的量了吗?你能举例说明吗?
1、出示19页表格。
观察图像,填表,回答下面的问题:
(1)表中有哪两个相关联的量?
(2)正方形的周长是怎样随着边长的变化而变化的?
(3)正方形的面积是怎样随着边长的变化而变化的?
(4)它们的变化规律相同吗?
小组讨论交流汇报。
2、20页第2题。
(1)例1和例2有什么共同点?(两种相关联的量,比值一定)。
师指出:这样的两种量就是成正比例的量,他们的关系叫成正比例关系。
问:现在你知道什么叫成正比例的量了吗?自由说说指生回答阅读课本。
师板书关系式:y/x=k(一定)。
(2)那么,要判断两种量是否成正比例的量该看什么呢?
三、巩固提高:19页说一说。
四、全课小结。
六年级正比例说课稿篇六
教科书第12册第94页“整理与反思”和95—96页的“练习与实践”5—10。
【知识要点】。
1、正比例和反比例的区别与联系:
相同点不同点。
特征关系式。
正比例两种相关联的量两种量中相对应的两个数的比的比值(也就是商)一定=k(一定)。
反比例两种量中相对应的两个数的积一定x×y=k(一定)。
与老教材相比,新教材进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。
2、图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离:实际距离=比例尺或=比例尺。
【教学目标】。
1、使学生进一步认识成正比例和反比例的量,掌握两种量是否成比例、成什么比例的思考方法。
2、使学生通过掌握判断两种相关联的量是否成正比例或反比例的方法,提高分析、判断的能力。
3、使学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容之间的密切联系。认识成正比例和反比例的量,使学生感受正、反比例是描述数量关系及其变化规律的又一种有效的数学模型。
二、教学建议。
复习正比例和反比例,重点是它们的意义。教材让学生回忆判断两种量是否成正比例或反比例的方法,重温正比例关系的特征是两种相关联变量的商保持一定,反比例关系的特征是两种相关联变量的积保持一定。再通过第7、8题的判断,进一步巩固正比例和反比例的概念。第9题复习正比例的图像,其中汽车行驶的路程和耗油量是否成正比例,要利用图像找出几组相对应的数,组成比并求出比值,根据正比例的意义进行判断。
复习比例尺的知识仅编排一道题,利用平面图的比例尺和量出的图上距离,计算相应的实际距离。教学第10题要说说这幅平面图的比例尺和具体含义,从线段比例尺得出数值比例尺,回忆比例尺的意义和算法。要通过解题归纳求实际距离的方法及注意点,还要说说怎样求图上距离。
三、知识链结。
1、正比例和反比例(教科书六下p62例1、例2、p63例3)。
2、比例尺(教科书六下p48例6、p49例7)。
四、教学过程。
(一)正比例和反比例的意义。
1、教师提问:根据正比例和反比例的意义,我们怎样判断两种量是否成正比例或反比例关系?(小组讨论后,交流)。
2、小结:第一,这两种量是不是相互关联?其中一种量是否随着另一种量的变化而变化?第二,这两种量中每一组对应的数的比值(或积)是否一定。
3、举出一些生活中成正比例或反比例量的例子,在小组里交流。
例如:黄瓜的单价一定,数量和总价成正比例。因为,第一,数量和总价这两种量是相互关联的,其中一种量总价随着另一种量数量的变化而变化。第二,这两种量中每一组对应的数的比值都是单价。单价一定,所以这两种量是成正比例的量。
(二)练一练。
1、下表中两种量成比例吗?为什么?
加数122、51424。
加数1827、5166。
总吨数422610024、4。
余下吨数41259923、4。
因数35320。
因数159101、5。
2、完成教科书95页“练习与实践”
第7题:让学生先独立做,再讲评。讲评时注意帮助学生解决困难。
第8题:引导学生列举几组对应的数值再具体分析每组中两个数的关系后再判断。
第9题:其中第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)第2小题让学生在教材提供的方格图上描点、连线,再引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。体会数形结合在解决问题方面的价值。
(三)复习比例尺。
1、教师提问:什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)。
2、举例说说怎样求图上距离?怎样求实际距离。
3、完成教科书95页“练习与实践”第10题。
(四)评价小结:
学了本课你对所学知识有什么新认识?还有什么问题?
习题精编。
一、对号入座。
1、在比例尺是1:4000000的地图上,图上距离1厘米表示实际距离千米。也就是图上距离是实际距离的1(),实际距离是图上距离的()倍。
2、一幅图的比例尺是,那么图上的1厘米表示实际距离();实际距离50千米在图上要画()厘米。把这个线段比例尺改写成数值比例尺是()。
3、一种微型零件的长5毫米,画在图纸上长20厘米,这幅图的比例尺是()。
4、判断下列各题中两种量是否成比例?成什么比例?
(1)路程一定,车轮的周长和车轮滚动的圈数。()。
六年级正比例说课稿篇七
说教学目标:
1、使学生理解正比例的意义,会正确判断成正比例的量。
2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
说教具准备:多媒体课件。
说教学过程:
一、揭示课题。
在教师的指导下,学生会举出一些简单的例子,如:
(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
(2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
(4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
2、这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。
二、探索新知。
1、教学例1。
(1)出示例题情境图。
问:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。
(2)出示表格。
高度/m24681012。
体积/m350100150200250300。
底面积/m2。
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25m2。
板书:
教师:体积与高度的比值一定。
(2)说明正比例的意义。
在这一基础上,教师明确说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示。
像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
六年级正比例说课稿篇八
认识成正比例的量这一局部内容是在教学过比和比例知识的基础上进行教学的,着重理解正比例的意义,关系是比较重要的一种数量关系,同学理解并掌握了这种数量关系,可以加深对比例的理解,并能运用它解决一些实际问题,同时可以进一步渗透函数思想。我在教学中注重以下几点:
一、从观察中考虑。
小同学学习数学是一个考虑的过程,“可以说,没有考虑就没有真正的数学学习。本课教学中,我注意把考虑贯穿教学的全过程。我出示书本例1的表格后,引导同学进行观察,并考虑:表格中的两种量怎样变化的?两种量之间有怎样的关系?你发现了什么?从而得出:两个相关联的量,初步渗透正比例的概念。这样的.教学,让全体同学在观察中考虑、在考虑中探索、在探索中获得新知,大大地提高了学习的效率。
二、在合作交流中感悟。
三、在生活中运用。
归纳总结出了正比例的意义后,我布置了让同学说说生活中的一些正比例关系,并判断一些量是否成正比例,培养同学综合运用知识的能力,从而体会到数学的内在价值。
六年级正比例说课稿篇九
教学目标:
1、使学生理解什么是相关联的量。
2、掌握正比例的意义及字母表达式。
3、学会判断两个量是否成正比例关系。
教学过程:
一、导入。
师(板书:关联):知道关联是什么意思吗?
生:指事物之间有联系。
生:也可以指事物之间相互影响。
师:对,关联就是指事物之间发生牵连和影响。
师:能举一些生活中相互关联的例子吗?
生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。
生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)。
生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。
这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”
生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。
二、新授。
师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?
师:从这个表格中。你还知道什么?
生:答对一题得10分,答对两题得20分,答对三题得30分……。
师:表中有哪两个量?它们的关系怎样?
生:答对的题目与最后的成绩,它们是两个相关联的量。
师:你们能够从中发现什么规律?
生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。
师:还能发现什么呢?
生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。
师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。
(随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)。
师:刚才这位同学在算出比值的时候,你们发现了什么?
生:不管怎样,它们的比值不变。
师:这个比值实际上就是什么呀?(板书:每题的分数)。
师:你能用一个关系式表示吗?
板书关系式:成绩/答对的题目=每题的分数(一定)。
师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)。
1、表中有()和()两种量。
2、路程是怎样随着时间的变化而变化的?
3、任意写出三个相对应的路程和时间的比,并算出它们的比值。
4、比值实际上表示(),请用式子表示它们的关系。
(学生交流汇报,师板书关系式)。
(结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)。
六年级正比例说课稿篇十
(一)知识目标:
(1)通过回顾与交流,鼓励学生自己独立整理知识,形成系统。
(2)通过具体问题的认识进一步认识正比例、反比例的量。
(二)数学思考与解决问题。
通过复习与整理加深对正、反比例意义的理解。并运用正、反比例的知识解决一些实际问题,为以后学习函数打下基础。
(三)情感态度。
培养学生认真思考的习惯,学会区分正反比例。
六年级正比例说课稿篇十一
2.能根据正比例的意义判断两种量是不是成正比例.。
3.培养学生的抽象概括能力和分析判断能力.。
教学重点。
教学难点。
教学过程。
一、复习准备。
1.已知路程和时间,怎样求速度?
2.已知总价和数量,怎样求单价?
3.已知工作总量和工作时间,怎样求工作效率?
二、新授教学。
(一)导入新课。
2.出示下表,并根据上述内容填表.。
一列火车行驶的时间和路程。
时间(时)。
……。
路程(千米)。
……。
3.思考:在填表过程中,你发现了什么?
(1)表中有时间和路程两种量.。
(2)当时间是1小时,路程则是90千米,
时间是2小时,路程是180千米……。
时间变化,路程也随着变化.。
时间扩大,路程随着扩大;时间缩小,路程也随着缩小.。
教师说明:像这样,时间变化,路程也随着变化,我们就说,时间和路程是两种相关。
联的量.。
教师板书:两种相关联的量。
(3)请每位同学先取一组相对应的数据,然后计算出路程与时间的比的比值.。
教师板书:
(4)教师提问:根据计算,你发现了什么?
教师说明:相对应的两个数的比的比值都一样或固定不变,在数学上叫做“一定”
教师板书:相对应的两上数的比值一定。
4.教师小结。
教师板书:
例2.在一间布店的柜台上,有一张写着某种花布鞋的米数和总价的表.。
时间(时)。
1
2
3
4
5
6
7
……。
路程(千米)。
8.2。
16.4。
24.6。
32.8。
41.0。
49.2。
57.4。
……。
1.观察上表。
(1)表中有数量(米数)和总价这两种量,它们是两种相关联的量.。
(2)总价随米数的变化情况是:
米数扩大,总价随着扩大;米数缩小,总价也随着缩小.。
(3)相对应的总价和米数的比的比值是一定的.。
教师板书:
2.师生小结。
通过刚才的观察和分析,我们知道总价和米数也是两种什么样的量?为什么?
怎样变化?它们扩大、缩小的规律是怎样的?
教师板书:(一定).。
(四)抽象概括正比例的意义.。
1.比较例1、例2,思考并讨论,这两个例子有什么共同点?
(2)例1中时间变化,路程就随着变化;例2中米数变化,总价也随着变化.。
教师板书:一种量变化,另一种量也随着变化.。
(3)两种量中相对应的两个数的比值(也就是商)一定.。
将本文的word文档下载到电脑,方便收藏和打印。
六年级正比例说课稿篇十二
本节课是让学生感受、体验概念的“形成过程”,形成概念的教学是整个概念教学过程中最重要的一步,概念的形成是通过对具体事物的感知、辨别而抽象、概括出概念的过程,因此学生形成概念的关键就是发现事物或形的本质属性或规律。
六年级正比例说课稿篇十三
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
成正比例的量的特征及其判断方法。
理解两个变量之间的比例关系,发现思考两种相关联的'量的变化规律.
启发引导法。
自主探究法。
课件。
一、定向导学(5分)。
1、已知路程和时间,求速度。
2、已知总价和数量,求单价。
3、已知工作总量和工作时间,求工作效率。
4、导入课题。
今天我们来学习成正比例的量。
5、出示学习目标。
1、理解正比例的意义。
2、能根据正比例的意义判断两种量是不是成正比例。
二、自主学习(8分)。
自学内容:书上45页例1。
自学时间:8分钟。
自学方法:读书法、自学法。
自学思考:
1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?
2、正比例关系式是什么?
(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。
y/x=k(一定)。
(4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。
2、归类提升。
引导学生小结成正比例的量的意义和关系式。
三、合作交流(5分)。
第46页正比例图像。
1、正比例图像是什么样子的?
2、完成46页做一做。
3、各组的b1同学上台讲解。
四、质疑探究(5分)。
1、第49页第1题。
2、第49页第2题。
3、你还有什么问题?
五、小结检测(8分)。
1、什么是正比例关系?如何判断是不是正比例关系?
2、检测。
1、49页第3题。
六、堂清作业(9分)。
练习九页第4、5题。
六年级正比例说课稿篇十四
根据教学需要和学生学习实际,自主开发一些新的教学内容,对学生的课本学习形成补充和拓展。
“成正比例的量”例1教学,我觉得不够,因为成正比例的量这个概念本来就很难理解,学生第一次这么短暂的接触难以很快正确建模,因此,补充时要有一定变化,所以补充了一个例2。
通过例1和例2这两张表的共同特点,让学生小组合作自己观察并总结正比例的意义。
六年级正比例说课稿篇十五
教科书第63页的例2,“练一练”和练习十三的第4、5题。
1。能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。
2。使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。
3。使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的'习惯。
能认识正比例关系的图像。
利用正比例关系的图像解决实际问题。
多媒体。
一、复习激趣。
1、判断下面两种量能否成正比例,并说明理由。
数量一定,总价和单价。
和一定,一个加数和另一个加数。
比值一定,比的前项和后项。
二、探究新知。
1、出示例1的表格。
根据表中列出的两种量,在黑板上分别画出横轴和纵轴。
你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?
2、学生尝试画出正比例的图像。
3、展示、纠错。
每个点都应该表示路程和时间的一组对应数值。
4、回答例2图像下面的问题,重点弄清:
(1)说出每个点表示的含义。
(2)为什么所描的点在一条直线上?
(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?
借助直观的图像理解两种量同时扩大或缩小的变化规律。
三、巩固延伸。
1、完成练一练。
小玲打字的个数和所用的时间成正比例吗?为什么?
根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。
估计小玲5分钟打了多少个字?打750个字要多少分钟?
2、练习十三第4题。
先看一看、想一想,再组织讨论和交流。要求学生说出估计的思考过程。
3、练习十三第5题。
先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。
组织讨论和交流。
4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?
根据表中的数据,描出所对应的点,再把它们按顺序连起来。
同桌之间相互提出问题并解答。
四、反思。
这节课你学会了什么?你有哪些收获?还有哪些疑问?
五、作业。
完成《练习与测试》相关作业。
板书设计。
六年级正比例说课稿篇十六
我将例1调整为学生较熟悉的单价、数量、总价的例子,再由学生观察,找出规律,初步感受“一个量增加,另一个量也随着增加”以及比值不变,为后面学生发现变化规律提供了充分的心理准备,课堂学生表现来看,也证明了这一点,学生发现、归纳规律所有时间短了,语言组织也比较到位。
六年级正比例说课稿篇十七
数学学习是一个思考的过程,没有思考就没有真正的数学学习。新的数学课程标准倡导:引导学生以自主探索与合作交流的方式理解数学,解决问题。所以我在教学中利用表格,创设学生熟悉的系列生活情境,与正比例的意义进行联系。让学生独立填表,目的是让学生经历这样的一个过程,让学生在填表的过程当中,强化学生对于概念表象的建立。通过学生独立填表让学生几次感知“变”与“不变”,在感知“变”与“不变”过程中体会“相关联”,以此来理解正比例的意义。让学生通过观察分析、归纳概括、拓展提升等系列的学习活动,这样安排教学使学生经历了正比例意义的建构过程,并且采取数形的教学手段把具体的数据用图像的形式体现出来,使学生真正意义上理解了正比例的意义,经历用具体数据解释图像,用图像描述具体数据的过程,做到“数”与“形”的有机结合,以帮助学生构建立体的概念模型,并为今后函数知识的学习奠定了有力的知识基础。整个教学过程使学生在观察中思考,在思考中探索,在探索中交流,在交流中获得了新知。
六年级正比例说课稿篇十八
学生是一个个鲜活的个体,知识基础和生活经验各不相同,所以教学中我尽最大努力照顾到所有的学生,使他们每一个人都得到应有的知识和不同程度的提高。新课开始,我设计了生活中的一种情景,利用表一引导学生进行观察,并出示学习提示,让学生从不同角度说出自己所观察到的,初步渗透正比例的意义。在引导学生初步感知了两种相关联的量后,放手让学生采取小组合作的方式自学表二,并让学生在小组中讨论例题的共同点,从而归纳出正比例的意义。
在整个教学过程中,我灵活运用《分层测试卡》这一教学资源,把其中的题目按照难易程度和层次的不同选择性的适时融入教学,为学生理解正比例的意义而服务。
【本文地址:http://www.xuefen.com.cn/zuowen/13900874.html】