分式的运算教案(热门20篇)

格式:DOC 上传日期:2023-11-21 16:57:18
分式的运算教案(热门20篇)
时间:2023-11-21 16:57:18     小编:文锋

教案是教师系统思考和指导教学的产物,有助于提高教学效果。在编写教案时,教师应该合理选择教学方法和教学手段,以激发学生的学习兴趣和主动参与。在这些教案范例中,我们可以看到教师如何通过创新的教学方法和手段激发学生的学习兴趣和积极性。

分式的运算教案篇一

1、进一步认识整数四则运算的意义,正确掌握整数、小数、分数四则运算法则及整数计算方法与小数计算方法之间的联系,能正确地进行计算。

2、掌握加减法之间、乘除法之间的关系,并能应用这种关系进行验算。

3、在计算过程中熟练地进行估算。

掌握整数与小数四则运算的方法,熟练地进行估算。

正确掌握整数、小数、分数四则运算法则及整数计算方法与小数计算方法之间的联系,能正确地进行计算。

多媒体课件。

一、计算导入。

1、计算。

45+21=5+102=3、15+2、2=41、62-32、16=。

134-12=2、5+45=1/4+3/5=5/6-1/7=。

学生自主计算,完成后交流答案。

2、师:今天我们复习的内容是关于整数、小数和分数的四则运算。(板书课题)。

二、整理与反思。

1、加、减法。

(1)你能详细地分别说说整数、小数、分数的加减方法吗?

(2)计算整数加减法要把相同数位对齐,

计算小数加减法要把小数点对齐,

计算分数加减法要先通分化成同分母分数,

你能说说这之间的联系吗?

你能用一句话小结出整数、分数、小数的加减法规律吗?概括得出:计算加减法时都要把相同单位的数直接相加减。

2、乘、除法。

(1)整数、小数、分数乘除法呢?你能分别说说各自的算法吗?小组交流,讨论。

(2)完成p74“练习与实践”第2题。

(3)分数乘法有几种情况?可以通过刚才计算的例子及自己举例说说它们的计算法则。

(4)分数乘以分数的计算法则,为什么适用于分数乘以整数的计算法则?

三、复习拓展。

师:今天我们复习的内容是关于整数、小数和分数的四则运算。

1、复习四则运算中的特殊规定。

(1)在四则运算中关于0和1的运算,有一些特殊的规定。谁能说一说是怎样规定的?请学生说一说。

(2)0为什么不能作除数?

2、复习四则运算的验算方法。分别说一说对四则运算应该怎样验算?

四、巩固应用。

1、“练习与实践”第1-5题。

第4题请学生说说分别是怎样计算的,引导学生体会相关计算方法的内在联系。

第5题请学生说说单价数量总价之间的数量关系,每一题分别是运用什么数量关系求出的`。

2、完成p75“练习与实践”第9题。

让学生说说从图中得出什么信息。学生自主计算,集体订正。

3、完成p75“练习与实践”第10题。

(1)小组讨论,怎么比较他们的成绩更合理?讨论后请学生说说,引导学生明确单比较助跑摸高的厘米数是不合理的,合理的应该是先分别算出每人助跑摸高的厘米数相当于其身高的几分之几或百分之几,比较得到的数字。

(2)学生自主计算,集体订正。

五、作业。

“练习与实践”第6、7、8题。

六、总结提升:

这节课我们复习了什么内容?你有什么收获?

教学反思。

分式的运算教案篇二

1、在解决实际问题中让学生感受运算顺序规定的必要性,进一步掌握加减混合或乘除混合运算的运算顺序并能正确计算。

2、让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。

3、在解决实际问题的过程中,逐步培养学生提出问题解决问题的能力。

1.教学重点:感受运算顺序的必要性,准确提出问题解决问题。

2.教学难点:掌握解决问题的策略和方法。

:本节课从学生非常感兴趣的生活问题入手,放手让学生独立思考,自主解决问题,掌握解决问题的方法,体验成功的快乐,快速高效的掌握知识。

:例题一道,习题10道。

(一)复习旧知(课件展示)。

1.口算:245=324=8+27=9003=。

604=72-44=453=85+28=。

2.解答题:用小棒摆8个六边形,共需要多少根小棒?

(二)导入新课,新知学习。

(课件出示)例2冰雪天地3天接待987人。照这样计算,6天预计接待多少人?

1、观察主题图,根据条件提出问题。

2、小组交流。根据图中提出的信息,你能提出哪些问题,怎样解决?(引导学生理解照这样计算的意思)。

3、抓住新旧知识的联系,运用知识迁移类推,学会知识。

4、学生汇报。引导学生列综合算式并说一说每一步表示的意义。

5、教师用线段图引导学生用两种方法解决问题。

6、教给方法:我们可以用画线段图、简图等方法来帮助我们理清解题思路,保证准确的解决问题。

(三)巩固练习(课件展示)。

基础练习。

1、直接写出计算结果。

37+12-20246790-52+28。

624328548-13+5。

2、划出下面题目的计算顺序并计算任意两题。

192+8+157453054290-68+951。

6005090143-45-57。

2453043478240204。

3、啄木鸟医生(判断并改正)。

850252345-164+36。

=95050=345-200。

=19=145。

提高练习(课件展示)。

1、先计算,再列出综合算式。

24012=236+70=237+263=。

12514=175025=2536=。

20+1750=943-306=900-500=。

2、列综合式计算。

(1)4除900的商减224,差是多少?

(2)504加140除以28的商,和是多少?

(3)比一个数的3倍少12是60,这个数是多少?

3、课本p8练习一4、

4、你能提出什么数学问题?并列式计算。

小张有8张10元的。小王有18张2元的。?

(四)拓展练习(课件展示)。

1、用两种方法解决下面的问题:(只要求列式不计算)。

(五)、课堂小结。

一、教学目标。

1、在解决实际问题中让学生感受运算顺序规定的必要性,进一步掌握加减混合或乘除混合运算的运算顺序并能正确计算。

2、让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。

3、在解决实际问题的过程中,逐步培养学生提出问题解决问题的能力。

二、教学重点、难点。

1.教学重点:感受运算顺序的必要性,准确提出问题解决问题。

2.教学难点:掌握解决问题的策略和方法。

三、设计理念:本节课从学生非常感兴趣的生活问题入手,放手让学生独立思考,自主解决问题,掌握解决问题的方法,体验成功的快乐,快速高效的掌握知识。

您现在正在阅读的《四则运算一》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《四则运算一》教学设计四、课件设计意图:例题一道,习题10道。

五、教学过程。

(一)复习旧知(课件展示)。

1.口算:245=324=8+27=9003=。

604=72-44=453=85+28=。

2.解答题:用小棒摆8个六边形,共需要多少根小棒?

(二)导入新课,新知学习。

(课件出示)例2冰雪天地3天接待987人。照这样计算,6天预计接待多少人?

1、观察主题图,根据条件提出问题。

2、小组交流。根据图中提出的信息,你能提出哪些问题,怎样解决?(引导学生理解照这样计算的意思)。

3、抓住新旧知识的联系,运用知识迁移类推,学会知识。

4、学生汇报。引导学生列综合算式并说一说每一步表示的意义。

5、教师用线段图引导学生用两种方法解决问题。

6、教给方法:我们可以用画线段图、简图等方法来帮助我们理清解题思路,保证准确的解决问题。

(三)巩固练习(课件展示)。

基础练习。

1、直接写出计算结果。

37+12-20246790-52+28。

624328548-13+5。

2、划出下面题目的计算顺序并计算任意两题。

192+8+157453054290-68+951。

6005090143-45-57。

2453043478240204。

3、啄木鸟医生(判断并改正)。

850252345-164+36。

=95050=345-200。

=19=145。

提高练习(课件展示)。

1、先计算,再列出综合算式。

24012=236+70=237+263=。

12514=175025=2536=。

20+1750=943-306=900-500=。

2、列综合式计算。

(1)4除900的商减224,差是多少?

(2)504加140除以28的商,和是多少?

(3)比一个数的3倍少12是60,这个数是多少?

3、课本p8练习一4、

4、你能提出什么数学问题?并列式计算。

小张有8张10元的。小王有18张2元的。?

(四)拓展练习(课件展示)。

1、用两种方法解决下面的问题:(只要求列式不计算)。

(五)、课堂小结。

分式的运算教案篇三

本节课的教学是对数的运算知识的总复习,鉴于本册书所学的乘、除法内容是整数笔算乘、除法的最后阶段,因此在教学设计上有如下两大特点:

1.引导回顾,构建知识体系。

教学中,通过引导学生回顾、交流乘、除法的知识,以树状图的形式展示各知识点之间的关系,使学生对相关内容有完整了解的同时,进一步体会乘、除法的'互逆关系。

2.逐步反馈,逐层提高。

教学中,结合教材内容,有的放矢地进行针对性教学,把乘、除法的笔算方法的复习与估算知识相结合,把商的变化规律、简便运算、四则混合运算及解决问题等知识进行系统的复习,在激发学生复习主动性的同时,恰当启发、点拨,使学生的计算正确率和熟练程度得到提高。

教师准备ppt课件、小黑板。

独立思考,构建知识网络。

学习构建知识网络。

(1)归纳整理。

师:本学期我们在数的运算方面主要学习了哪些知识?请同学们先自行整理,再在组内交流。

(学生回忆整理,小组讨论交流,教师巡视指导)。

(2)构建知识网络。

师:怎样展示相关的知识才能让人一目了然呢?现在,就让我们一起来完成知识网络的构建吧。

乘法。

除法。

运算律。

(引导学生有序地回顾已学知识,结合学生的回答,课件出示构建知识网络的过程)。

设计意图:通过引导学生回顾、整理所学知识,使学生对所学的数的运算知识有一个比较系统的了解,并学会构建完整的知识网络。

相互启发,分类复习。

1.复习乘、除法的计算及估算。

(1)先估计积或商,再计算。(课件出示教材102页4题)。

253×56503×3245×240。

336÷21858÷39918÷27。

(2)指名估算。

(引导学生说明估算的方法,合理即可)。

(3)复习乘、除法的计算方法。

(结合学生的回答,课件出示两、三位数的乘法的计算方法和除数是整十数、两位数的除法的计算方法)。

(4)生独立计算。

(生计算后,组内订正,分析错因,明确改正方法,教师巡视指导)。

2.复习运算律。

(1)你能很快算出答案吗?(小黑板出示)。

(125×12)×827×45+27×55。

44×2513×102800÷25。

(2)引导学生复习运算律和商不变的规律。

(3)引导学生结合算式的特点,运用运算律进行简算。

(生自主完成后,汇报简算过程及方法)。

3.复习四则混合运算的运算顺序。

(1)看谁做得对。(课件出示教材102页6题)。

(227+26)÷11459×(76-50)。

(105×12-635)÷25864÷[(27-23)×12]。

分式的运算教案篇四

教学目标:

1.复习用四舍五入法进行凑整。

2.复习大数的读写。

3.培养同学们分析问题解决问题的能力。

教学重点:

理解并应用。

教学过程:

一、创设情景。

师:你去过黄山吗?见过哪些景色?请游览过黄山的学生谈谈自己的所见所闻。

生:回答。(参照书p4。)。

师:今天我们在游览黄山的景点时解决一些数学问题。

二、中心阶段。

1.数的'组成、读和写。

师:你还能想到什么?人吗。本国的游客和外国的来宾。如果要计算一年有多少人参观,这个数目一定很大。,我们学过大数的认识和凑整,请谁来做小老师说一说。

生:我们学过数位顺序表,由个级、万级和亿级。个级有个位、十位、百位、千位;计数单位分别是个、十、百、千。

师:10个千是()。100个千是()。10个()是一亿。

一个九位数,它的最高位是()位。35个百是()。

师:读数的时候要注意什么?写数呢?

生:先分级,从高位起,一级一级地读数中间的0或连续几个0只读一个0,数末尾的0不读。

2.读出下面的数,再用线连一连。

30000052三千万五千二百。

35000三千万零五百零二。

30500200三十五亿零二十万。

30052000三千万零五百二十。

30005200三千万零五十二。

30000520三千零五万二千。

30000502三亿五千万二千。

3500200000三千零五十万零二百。

校对。

3.凑整。

师:我们学过哪些凑整的方法?

生:有四舍五入法、去尾法和进一法。

师:它们各有什么不同?举一个生活中的运用。

师:出示两组题把下列各数四舍五入到万位。

45678345432176328067103。

师:这组题完成后,就游完了猴子观海这一景点。(媒体演示)。

把下列各数四舍五入到亿位。

师:用四舍五入法凑整要注意什么?用。

生:回答。练习。交流。

师:我们到黄山的著名景点迎客松去游一游。

三、提高。

1.29183万29182万。

可以填几?

2.用3个5,4个0组成七位数,

一个0也不读的数()。

只读一个0的数()。

读出两个0的数()。

3.拓展:把下面各数按要求填在相应的位置上。

一个0也不读的数是:

只读一个0的数是:

只读两个0的数是:

读3个0的数是:

最高位是十万位的数有:

与1亿最接近的数是:

位数最多的数是:

分式的运算教案篇五

一生提出问题,全班同学口答。

1.课件出示:小军说:买3本笔记本和一个书包,你们能帮我计算出一共用去多少钱吗?

2.学生独立解答,教师巡视。

先算3本笔记本多少钱?

53=15(元)。

再算一共多少钱?

15+20=35(元)。

3.提问:要求一共用去多少钱,先要算出什么?

你们能不能把刚才这两个算式合并成一个算式呢?

给学生尝试列出综合算式的时间和空间,允许讨论和交流,然后板书:53+20。

指出:在计算综合算式时,为了看清楚运算的过程,一般都要写出每次计算的结果,用递等式表示。这一步可以这样写:在第二行先写上等号(为便于第二行的算式与第一行的算式对齐,第二行的等号要写在算式稍左的位置),再写上第一步的得数,还没计算的一步要照抄下来。

板书如下(边板书,边说明书写位置)。

53+20。

=15+20。

提问:接下来算什么?得数是多少?该怎么写?

分式的运算教案篇六

1.理解同分母分式与异分母分式加减法的运算法则,体会类比思想.

2.能运用同分母分式和异分母分式加减运算法则进行运算,体会化归思想.

异分母分式的加减运算.

一师一优课一课一名师(设计者:)。

一、创设情景,明确目标。

同学们还记得分数是如何进行加减法运算的吗?(找同学叙述)。

现在我们看下面两个问题:

请按两个问题的要求列出代数式,请观察两个代数式有何特征,如何对这类代数式进行运算,这就是我们今天所要探究的内容.

二、自主学习,指向目标。

1.自学教材第139至140页.

2.学习至此:请完成《学生用书》相应部分.

三、合作探究,达成目标。

活动一:

1.让学生观察课本p140页思考,并让学生叙述分数加减法法则.

2.类似分数加减法运算法则,推广可得分式的加减法法则,你能叙述吗?

展示点评:同分母的分式相加减,分母________,把分子相________.

异分母的分式相加减,先________,变为________分式,再加减.

分式的运算教案篇七

学情分析:

第一课时:

教学目标:

1、从实例中归纳加减法的意义和关系,初步理解加法与减法的意义以及它们之间的互逆关系。

2、初步学会利用加减法算式中各部分之间的关系求解加减法算式中的未知数。

3、培养学生发现数学知识和运用数学知识解决问题的能力。

教学重、难点:

教学重点:理解加、减法的意义和利用加减法的关系求加减法中的未知量。

教学难点:从实例中探究加、减法的互逆关系。

教学准备:课件。

教学过程。

一、理解加、减法的意义。

1、理解加法的意义。

(1)问:根据这道题你收集到了哪些信息?(让学生尝试用线段图表示)。

(2)请学生根据线段图写出加法算式。

814+1142=1956或1142+814=1956。

师:为什么用加法呢?

那怎样的运算叫做加法?(小组讨论)。

(根据这两个算式,结合已有的知识讨论并试着用语言表示什么是加法。)。

(3)小结:把两个数合并成一个数的运算,叫做加法。(出示加法的意义)。

(4)说明加法各部分名称。

2、理解减法的意义。

能不能试着把这道加法应用题改编成减法应用题呢?

(1)根据学生的回答,出示例1(2)(3)尝试用线段图表示:

师:根据线段图写出两道减法算式,并说说这样列式的理由。

1956-814=1142或1956-1142=814。

(2)问:怎样的运算是减法?(小组讨论)。

(根据这两个算式,结合已有的知识讨论并试着用语言表示)。

(3)小结:已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。(出示)说明减法各部分名称。

分式的运算教案篇八

100以内的连加运算。

1、使学生掌握100以内连加运算的计算方法,竖式的书写格式,并正确熟练地进行计算。

2、提高学生的`计算水平。

3、培养学生计算认真、仔细的良好习惯。

正确掌握计算方法。熟练的进行计算。

正确掌握计算方法。熟练的进行计算。

图片、投影片。

一、基本训练。

1、口算:

(1)9+6+33+4+55+4+2。

2+8+92+7+62+7+5。

(2)20+5+427+2+3022+20+3。

3+18+915+20+654+8+10。

2、计算:28+7+56=。

同学之间互相说一说笔算的方法。一位同学板演,其他同学作在本上。

2835。

+7+56。

3591。

让同学说一说笔算过程。

(1)先把前两个树相加,28+7得35。

(2)再用结果35同第三个数相加,35加56得91。

也可以这样计算:

28。

7

+56。

91。

计算过程:(1)先把个位上的三个数相加,得21。

(2)再把十位数相加,最后要加上个位进上来的20。

3、说一说两种笔算写法有什么不同?

二、课堂作业:

1、计算下面个题:

56+27+10=28+56+3=25+27+26=。

35+30+17=7+50+34=18+4+19=。

2、连线:

27+4+660+15+753+17+10。

25+8+1126+25+2524+16+15。

3、列式计算:

(1)车上有17人,到站后上来3人,现在车上有多少人?

(2)车上有17人,到站后上来3人,又上来9人,现在车上一共有多少人?

四、课堂:这节课我们练习的是100以内的连加,我们先把前两个数相加,这加第三个数,在计算过程中要认真、仔细。

分式的运算教案篇九

1、知识与技能:四则运算意义的深入理解,归纳整数、小数、分数计算法则的异同点,进一步总结计算时应遵循的一般规律及四则运算中的一些特殊情况。

2、过程与方法:培养运用法则熟练计算的能力和对学过的知识进行归类整理、比较异同、形成知识结构的能力。

3、情感态度与价值观:探索知识间的内在联系,认识事物本质。

对四则运算算理本质规律的认识和理解。

多媒体课件。

一、提问导入。

我们学过哪些运算?(加法、减法、乘法、除法),每一种运算都有其自己的含义,也有其自己的计算法则。下面我们就来学习整理这一部分的知识。

回顾复习方法:(幻灯片出示)。

请你按照复习方法试着整理这一部分知识,计算法则要根据具体实例说清楚。

(设计意图:引导学生进行知识点的复习)。

二、整理复习。

(一)学生汇报,适时补充。

(二)教师需要知道的相关知识。

加法的意义:把两个(或几个)数合并成一个数的运算,叫做加法。

减法的意义:已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。

乘法的意义:求几个相同加数的和的简便运算。

(1)整数乘法的意义:求几个相同加数的和的简便运算。

(2)小数乘法的意义。

小数乘整数的意义与整数乘法的意义相同,也是求几个相同加数的和的简便运算;

一个数乘纯小数的意义,就是求这个数的十分之几、百分之几是多少。

一个数乘小数的意义,就是求这数的混小数倍是多少。

(3)分数乘法的意义。

分数乘整数的`意义与整数乘法的意义相同,也是求几个相同加数和的简便运算;

一个数乘分数的意义,就是求这个数的几分之几是多少;

一个数和乘假分数或带分数的意义,是求这个数的假分数(或带分数)倍是多少。

除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。

分式的运算教案篇十

p21:例4“做一做”。

知识与技能:通过观察、猜想、验证、归纳,让学生经历探究发现减法的特殊规律并选择运用进行简算的过程。

过程与方法:让学生从解决生活实际问题中体会到计算方法的多样化。

情感态度价值观:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

:理解一个数连续减去两个数,可以写成这个数减去后两个数的和的道理。

:灵活运用减法的性质进行简便运算。

:多媒体课件。

一、激趣生疑。

1、竞赛。

出示两组题,分组计算,比赛看哪组同学即对又快?(幻灯)。

第一组第二组。

72—6—472—(6+4)。

85—8—285—(8+2)。

126—70—30126—(70+30)。

2、发现:让学生通过观察、比较发现了什么?(学生说说自己的发现)。

3、猜想:观察三个等式,激励学生大胆猜测:这里面有没有什么规律呢?(学生发表自己的说法)。

4、师板书:从一个数里连续减去两个数可以写成这个数减去后两个数的和。

5、师提问:是不是从一个数里连续减去两个数都可以写成这个数减去后两个数的和呢?

6、举例验证。

7、师小结:大家善于观察,善于动脑,这是一种很好的学习习惯,刚才大家通过观察发现了规律,利用这些规律使计算简便。(板书:简便)。

二、自主探索,探究新知。

(创设情景引出例题)师:“同学们喜欢旅游吗?(喜欢)如果让你自己去旅行,你能行吗?不要着急,李叔叔给大家介绍了一个旅行法宝——《自助旅行》指南。这本书可以告诉我们旅行时应做的准备和注意事项。”

1。出示情境图。

(数数学信息:李叔叔昨天看了66页,今天又看了34页。这本书一共有234页。)。

师:根据这些数学信息,你能提出哪些数学问题?

2。尝试各种算法师:“还剩多少页?”这个问题,你能解决吗?

师:自己先列式算算看,计算好后把你的思路跟小组内的同学交流一下,看谁的算法最多。

3.全班汇报交流。

师:你们都是怎么计算的`?把你的思路跟大家分享一下。指名上黑板板演算法:

方法一方法二方法三。

234—66—34234—(66+34)234—34—66。

=168—34=234—100=200—66。

=134=134=134。

思路2:先算出李叔叔昨天和今天一共看了多少页,再从总页数里减去看过的页数,就是剩下的页数,即234—(66+34)。

思路3:总页数里减去今天的页数,再减去昨天的页数,就是剩下的页数,即2。

分式的运算教案篇十一

知识与技能:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。

过程与方法:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。

情感态度和价值观:

从认知状况来说,学生在此之前对分数乘除法运算比较熟悉,加上对本章第一节分式及其性质学习,抓住初中生具有丰富的想象能力和活跃的思维能力,爱发表见解,希望得到老师的表扬这些心理特征,因此,我认为本节课适合采用学生自主探索、合作交流的数学学习方式。一方面运用实际生活中的问题引入,激发学生的兴趣,使他们在课堂上集中注意力;另一方面,由于分式的乘除法法则与分数的乘除法法则类似,以类比的方法得出分式的乘除法则,易于学生理解、接受,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性。不但让学生“学会”还要让学生“会学”

重点难点。

重点:理解并掌握分式乘除法法则及应用。

难点:分子分母是多项式的分式的乘除法运算。

教学过程。

第一学时。

教学活动活动1。

【导入】一、创设情境,导入新知。

活动1:提出问题,引入课题。

问题1:求得水的高:

问题2:大拖拉机的工作效率是小拖拉机的倍。

教师活动:教师引导学生观察分析以上两式的特点得出它们分别是分式的乘法和除法。

从上面的问题可知,解决生活中的问题有时需要进行分式的乘除运算,那么分式的乘除是怎样运算的呢?这是我们本节课要学习的内容。

学生活动(解决问题):学生动手操作,探究规律,激发学生学习兴趣。

活动2【活动】二、合作交流,探索新知。

问题2:以学生为主体,鼓励学生进行类比探究,让学生根据分数的乘除法法则类比探究得出分式的乘除法法则。教师巡视,观察学生探究的情况,对学习有困难的学生给以指导。

1.学生独立完成问题1和问题2的结果。

2.学生通过类比分数的乘除法则,探究分式的乘除法则。

3.小组之间交流结果,并总结规律性的结论。

乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

除法法则:分式除以分式,把除式的分子,分母颠倒位置后,与被除式相乘。

用式子表示为:

活动3【练习】学以致用巩固新知。

(1)运算结果应约分到最简。

(2)分式除法应:“颠倒相乘”。

(3)运算中,先判断运算符号,再计算结果。

例2计算:

例2是例1的拓展,也是本节课的难点,学生在独立完成时,应提醒学生先分解因式后再运用法则进行运算。解题时应注意:

分子、分母为多项式时,先将多项式分解因式,再约分。

活动4【练习】学以致用,运用新知。

1.练一练。

2.试一试3.闯一闯。

活动5【讲授】归纳与总结。

(1)熟练掌握并应用分式的乘除法法则进行运算;

(2)因式分解在分式乘除法中的灵活应用;

(3)运算结果要最简;

(4)乘除混合运算统一为乘法运算;

活动6【练习】实际应用。

活动7【讲授】教学反思。

1、选取学生熟悉的分数的乘除运算问题,用类比的思想方法学习归纳出分式乘除法的运算法则,学生感到轻松容易的掌握了分式乘除法的运算,激发了学生的学习兴趣。

2、针对本节课内容我设计一系列有梯度的问题,并采取小组合作形式。课堂气氛活跃,生学习热情比较高。课堂学习效果较好。

3、学生能力的培养,创设良好的问题情境,强化问题意识,激发学生的求知欲;培养学生敢于独立思考,敢于探索、敢于质疑的习惯;培养学生善于观察的习惯和心里品质;培养学生良好的思维习惯,教会学生在多方面思考问题,多角度解决问题的能力。

存在的问题:

(1)由于部分学生计算能力欠缺,算上还出现问题。在以后的教学中还应加强计算能力的培养。

(2)教学效果还有些欠缺,争取以后在课堂上让学生思维活跃,气氛热烈,学生受益面大,不同程度学生在原有的基础上都有进步。知识、能力、情感目标都能达到,让学生学的轻松,积极性高,当堂问题当堂解决。

分式的运算教案篇十二

教材第17页例3、例4和“练一练”,练习四第1~4题。

1.使学生进一步掌握在带有小括号的算式里,要先算小括号里面的,再算括号外面的运算顺序。

2.使学生知道在带有两个小括号的三步计算式题里,两个小括号里的同时计算、脱式比较简便,并能照这样的方法计算。

3.使学生掌握小括号里含有两级运算的运算顺序,会计算小括号里含有两级运算的三步计算式题。

一、复习引新

1.做第17页复习题。

(1)指名学生依次说出每题里各有哪些运算,应该按怎样的顺序计算。并口答运算过程及得数。

(2)提问:算式里有乘法或除法,又有加法或减法,运算顺序是怎样的?

有括号的混合运算,运算顺序是怎样的?

第l小题计算时是怎样使运算过程简便的?

2.引入新课。

从刚才的两道题可以知道:算式里如果有加或减,又有乘或除,就要先算乘、除,再算加、减。在有括号的算式里,要先算括号里的。如果两步可以同时计算、脱式,那么同时计算、脱式比较方便。

我们今天根据这些运算顺序的规定,来继续学习带有小括号的三步计算的一些混合运算。(板书课题)

二、教学新课

1.教学例3。

(1)出示例3。

提问:这道题里有小括号时,要先算什么?有两个小括号时,

(在两个小括号下面画线表示)运算时怎样写比较简便?

让学生计算在课本上。

(3)指出:有括号的算式,要先算括号里面的,同时计算、脱式时,同时计算、脱式比较简便。

2.做“练一练”第1题。

让学生把先算的部分画出来。

指名二人板演,其余的学生做在练习本上。

集体订正,让学生说说为什么这样算。

3.教学例4。

(1)出示例4。

提问:这道题先算哪里的?小括号里面又要先算什么?为什么?

说明:算式里有小括号要先算小括号里的,小括号里有加法和乘法,要先算乘法。(在“25x4”下面画线)

请同学们按照计算顺序,在练习本上算出结果。(教师巡视辅导)

谁来说一说,你是怎样算的?(学生口答,老师板书递等式)

结合板书过程提问:为什么第一步要先算乘法?

完成计算过程后指出:括号里如果有加、减法和乘法,也要先算乘法,再算加、减法。

想一想,括号里如果是加、减法和除法,要先算什么?

4.教学“试一试”。 ·

请同学们看“试一试”的题。第一步要先算什么?为什么?二步和第三步各要算什么?

指名板演,其余学生做在练习本上。

集体订正。

追问:为什么第一步先算除法?

5.小结:上面两道题都是括号里有加法或减法,又有乘法或

除法的三步计算式题。在计算时,要计算括号里的部分时,也要先算乘法或除法,再算加法或减法。

三、巩固练习

1.做“练一练”第2题。

分别指名说一说两题的运算顺序。

指名两人板演,其余学生做在练习本上。

集体订正。强调括号里要先算什么。

2.做练习四第l题第一组。

指名两人板演,其余学生做在练习本上。集体订正。

提问:第一步先算什么?为什么两个小括号里的可以同时计算、脱式?

指出:有小括号的三步计算式题,要先算小括号里面的。如果有两个小括号,为了使计算简便,小括号里的可以同时计算、脱式。

3.做练习四第2题。

让学生先在方框里填数。

提问:第1小题先算什么?再算什么?最后算什么?第2小题呢?

让学生在练习本上列出综合算式。

学生口答综合算式,老师板书。

提问:为什么第l小题前两步上要加小括号?第2小题为什么后两步加了小括号?

指出:第1小题为了先算除法、加法,最后算乘法,所以要把除法和加法括在括号里。第2小题为了先算乘法、减法,最后算除法,所以要把乘法和减法括在括号里。

四、课堂作业:练习第l题第二组,第3、4题。

分式的运算教案篇十三

义务教育课程标准实验教科书(西南师大版)四年级(下)第17~18页例1~2,练习四第1题。

1.经历在计算和解决问题的具体情景中探索发现乘法交换律、结合律的过程。

2.理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。

3.体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。

在具体情景中探索发现乘法交换律、乘法结合律。

一、创设情景,探索新知。

1.教学例1。

出示例1图,学生独立列式解答,然后在小组中互相交流。

板书:9×4=36(个),4×9=36(个)。

学生观察板书,思考:这两个算式有什么特点?

板书:9×4=4×9。

教师:你还能写出几个有这样规律的算式吗?

板书学生举出的算式。

如:15×2=2×15。

8×5=5×8……。

教师:观察这些算式,你发现了什么?

学生1:两个因数交换位置,积不变。

学生2:这就叫乘法交换律。

教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)。

教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a×b=b×a)。

2.教学例2。

出示例2情景图,口述数学信息和解决的问题。

学生独立思考,列式解答。

然后在小组中交流解题思路和方法。

全班汇报,教师板书。

(8×24)×68×(24×6)=192×6=8×144=1152(户)=1152(户)。

学生对这两种算法进行观察、比较,有什么相同点和不同点?

板书:(8×24)×6=8×(24×6)。

出示下面的算式,算一算,比一比。

16×5×2=16×(5×2)=35×25×4=。

35×(25×4)=12×125×8=12×(125×8)=。

观察算式,有同样的特点吗?每排的两个算式的结果相等吗?学生独立计算,验证自己的猜想,全班交流。

学生1:每个算式只是改变了运算顺序。

学生2:每排左、右两个算式计算结果相等。

学生3:三个数相乘,先算前两个数的积或者先算后两个数的积,值不变。

教师:谁知道这个规律叫什么?

教师板书:乘法结合律。

教师:如果用a、b、c表示3个数,可以怎样表示这个规律?

教师板书:(a×b)×c=a×(b×c)。

教师:这个规律就叫乘法结合律。

小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。

二、课堂活动。

1?练习四第1题:学生独立完成,全班交流,说出依据。

2?连线。

(学生独立完成)。

23×15×217×(125×4)17×125×439×(25×8)39×25×823×(15×2)。

三、课堂小结。

今天这节课你都有哪些收获?还有什么问题?

分式的运算教案篇十四

1、掌握小数四则混合运算得运算顺序。

2、学会四则混合运算计算能简便运算的要简便。

掌握小数四则混合运算得运算顺序。

学会四则混合运算计算能简便运算的要简便。

多媒体和卡片。

0.8×0.51.2×0.70.8÷0.021.5÷0.3。

18.6-60.54-0.0050.4÷203×0.04。

9-0.193÷0.0324.6+45+0.04。

1、以开火车形式报得数。

p-74第一题。

1、学生先直接在书上写出得数。

2、学生以报得数形式校对。

p-74第二题。

1、先让学生说一说每题的运算顺序。

2、抽四名学生板演,教师巡视。

3、校对。错的订正。

p-75第三题。

1、前后四个同学讨论,哪些题能用简便方法运算?

2、学生独立思考解题。

3、抽四名学生板演,校对。

1、学生理解“除”“除以”被……除”和“去除”的含义?

2、学生相互讨论上面这些词的含义?

3、学生独立完成,教师巡视。

4、校对,错的说明原因。

今天我们复习了什么内容,又有什么地方得到了补充?

《作业本》。

分式的运算教案篇十五

本单元我们选取的素材是高速运转的济南长途汽车总站和高速运转的济青高速,选取这个素材原因主要有以下三点:

(1)济南长途汽车总站,连续多年创下旅客发送量、发送班次和售票收入三项全国第一,被称为“中华第一站”。据说济南长途汽车站占地110亩,日客流量4万多,客票年收入达到4—5亿元。被中国企业联合会、中国企业家协会授予“中华第一站”称号,这个荣誉一直保持到今天。

(2)山东的高速公路全国闻名。说起山东的高速公路来,在全国是的,俗话说得好“要想富,先修路”。据有关经济专家研究,一个国家的富裕程度与其公路的优劣,成正相关。可见,我省经济之所以能够高度发展,寻其原因,不言而喻。

(3)以比较真实的数据为素材,体现了数学的价值。本单元提供的数据与第一单元一样,都是一些真实的数据。旨在说明交通生活中也实实在在存在着数学,数学无处不在。

本单元有2个信息窗。

1、情景图的解读。

此信息窗的题目为“高速运转的长途汽车站”。情景图上呈现的是一幅济南长途汽车总站的真实照片。照片的下面附有一张20xx年济南长途汽车总站大巴车中巴日发送旅客情况统计表。

2、情景图中的信息。

是2组数据:

(1)平均每天发车的数量。

(2)平均每车次的乘客人数。

3、例题的设置与功能。

本信息窗一共有3个例题,包含的知识点分别是:

(1)乘法结合律。

(2)乘法交换律。

(3)运用乘法交换律和结合律进行简便运算。乘除法各部分的关系。(第六题)。

分式的运算教案篇十六

“混合运算”是在学生学习了百以内数的连加、连减和加减混合运算以及万以内数的加减法的基础上进行教学的,是前面所学计算方法的综合练习,是进一步学习四则混合运算的基础。因此,要引导学生在解决具体问题的过程中,掌握混合运算顺序,体会混合运算顺序的合理性,为后续学习打好基础。

本节课表面上是混合运算,实质上是解决两步计算的应用题,所以地位非常重要。

1、知识性目标:

通过参观养鸭场,让学生发现生活中的数学问题,并以自己的亲身经历为基础,寻求解决问题的办法和途径。在解决问题和相互交流的过程中,体会在一个有括号的算式里,要先算括号里的必要性。

2、发展性目标:

通过观察、思考、自主探究,让学生主动地参与教学活动。

我认为:探求科学、合理的解决问题的方法,熟练掌握带有小括号的混合运算的顺序是本节课的教学重、难点。

(1)读懂图是学习的前提。

因为本信息窗内容比较多,感觉比较乱,所以带领学生认真读图,让他们找出相关的数学信息。

(2)引导学生分析数量间的关系是训练的重点。

(3)由分步到综合。

教材上既有分步算式又有综合算式,作为解决问题的策略是可以的,但作为本节课的教学目标仅仅会做分步是不够的。要引导学生列出综合算式,因为只有在综合算式中才能体现括号的作用。

(4)解决有括号的算式的运算顺序是学习的落脚点。

因为学习带有括号的运算是本节教材的主要内容。所以教学的落脚点是有括号的算式怎么算。对于运算顺序的学习,要和解决问题的顺序结合起来理解。

在教学方法上我力求体现以下几个方面:

1、引导学生在解决实际问题的过程中,理解运算顺序的合理性。教学时,我充分利用教材中设计的参观养鸭场的活动情境,引导学生提出相应的数学问题,让学生在运用混合运算解决这一串问题的过程中,理解有小括号的混合运算运算顺序的合理性,并能正确计算。

2、尊重学生的个性,鼓励算法多样化。不同的学生有不同的思维方式,允许学生思维方式的多样化,尊重学生的个体差异。教学时,教师要鼓励学生独立思考,允许学生用自己喜欢的方法解决问题。在解决具体问题时,学生可以分步解答,也可以列出综合算式解答。

3、密切数学与生活的联系,增强数学的应用意识。本单元教材富有浓厚的生活气息,充满浓浓的亲情。教学时,我注意引导学生用数学的眼光观察生活,结合解决现实问题,感受数学与生活的密切联系,激发学生学习数学的兴趣和热爱生活的情感。

分式的运算教案篇十七

这节课主要教学乘法交换律和结合律进行相关的简便运算,由于学生已有应用加法运算律进行简便计算的基础,所以本课时的主要目标是对“两个数相乘”进行简便计算的教学,以及对简便运算方法的提升。

在学习本节课乘法交换律、结合律之前,学生已经学习了加法交换律和结合律,逐步学会了不完全归纳法和用字母表示数学规律,并运用规律进行简便计算。本节课在此基础上,重点让学生经历探索乘法交换律、结合律的过程,并会运用乘法交换律、结合律进行简便计算的方法。在学生日常的自学活动中,重视让学生依据已有的知识和经验自主探索,重视小组的合作与交流,所以学生的理解能力、自学能力和合作能力正逐渐提高,良好的自主学习习惯正在逐渐养成。

1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。

3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。

1、引导学生概括乘法交换律、结合律。

2、乘法交换律和结合律进行简便。

一、创设情境,发现问题。

师:同学们喜欢搭积木吗?

生:喜欢。

生:想。

师:那好,就让我们一起去探索与发现。

二、探索乘法交换律。

播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)。

师:你知道图中有多少个小正方体吗?说说自己是怎样想的。

生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。

生:竖着数一排有4个小正方体,一共有5排,4×5=20个。

师(板书5×4=4×5)可以这样写吗?为什么?

生:可以因为积相等,(求的就是一个整体)。

师:认真观察这个等式,你能发现什么奥妙吗?

生思考,汇报(数字相同,交换了位置,积不变)。

生:……。

师:请你帮淘气举一些这样的例子来验证一下行吗?

生举例验证。

生说师板书:

a×b﹦b×a叫做乘法交换律。

师:a.b指的是什么?

三、探索乘法结合律。

1、课件2出示情景图(书54页)。

师:请大家认真观察,估一估搭这个长方体用了多少个小正方体?

学生独立观察、思考后集体交流。(说说估计的方法)。

师:谁估计的准确呢?请同学们在本子上算一算。

(学生独立思考,计算,教师巡视)。

师:谁愿意把你的想法介绍给大家?

生举手汇报,师追问:怎样想的?

师引导从上面、正面观察。

上面:(3×5)×4。

师:这个算式可以写成(5×3)×4吗?

生:可以,都是求同一个物体,

生:可以,虽然3和5的位置交换了,但根据乘法的交换律它们的积不变。

师:出示4×(5×3)可以这样写吗?

生交流,师引导可以把(5×3)看成一个数,这里也运用了乘法的交换律。

正面:(4×5)×3。

师:你还可以怎样写?根据是什么?

生:(5×4)×33×(5×4)。

[设计意图:通过对算式的变换,巩固乘法交换律]。

师:细心的淘气在这些算式中发现了两组特别的算式,(师擦掉其它算式,留下(3×5)×43×(5×4)请同学们比较这两个算式你发现了什么?把你的发现告诉大家。

生;乘数相同,三个数的位置不相同,运算顺序不同,积相同。

师:可以写成(3×5)×4=3×(5×4)吗?

生思考回答。

[设计意图:通过对算式异同的比较,让学生自己发现规律。]。

2、提出假设,举例验证。

(学生在小组内举例交流讨论,教师巡视指导。)。

师:谁愿意介绍一下你们举例的情况。

生:……。

3、概括规律。

生思考概括。

生说师板书:

(a×b)×c﹦a×(b×c)叫做乘法结合律。

四、运用模型,完成练习。

1、学生独立完成“练一练”1题。最后运用课件集体订正。

2、运用乘法结合律很快算出38×25×442×125×8。

生独立完成,小组交流后汇报。

3、完成“练一练”。先要求学生独立计算,教师巡视,发现有错的让该生上去视屏展示,集体交流,并说明运用了什么规律。

五、小结:

1、这节课你学到了什么?

2、我们是怎样认识这个好朋友的?

将本文的word文档下载到电脑,方便收藏和打印。

分式的运算教案篇十八

设计理念:

根据高年级学生心理特点,我用学生熟悉的情景作为学习的素材,激发学生的学习兴趣。学时依据学生的思维特点,尊重学生的个性差异。探究新知过程充分发挥了学生的主体作用,让学生经历了一个完整的探究过程。在探索与交流的活动中,体会解决问题策略的多样性,增强优化意识,逐步形成积极的自我评价和自我反思的意识,体验数学学习的成就感。

教学目标:

1、在解决实际问题的过程中,认识到整数加法的运算律对小数加法同样适用,能正确应用加法运算律进行一些小数加法的简便计算。

2、在探索与交流的活动中,体会解决问题策略的多样性,增强优化意识;逐步形成积极的自我评价和自我反思的意识,体验数学学习的成就感。

教学重难点:

能正确应用加法运算律进行一些小数加法的简便计算。

教学准备:

多媒体课件。

教学过程:

一、口算导入,复习铺垫。

1、口算练习九第1题,指名口答。

2、算一算,比一比。

(6.4+1.3)+8.7=(2.8+5.5)+4.5=。

6.4+(1.3+8.7)=2.8+(5.5+4.5)=。

设计意图:通过口算小数加减法习题,复习巩固小数加减法的计算法则。通过“算一算,比一比”两组习题,让学生初步体验到应用加法的运算律进行小数加法的简便之外,从而为学习新知做铺垫孕伏。同时培养学生对数学的兴趣。调动学生学习数学的积极性、自觉性和主动性。

二、创设情境,探究新知。

请大家看,小华在文具店买了一些文具,那他一共用了多少元钱呢?你能帮他算一算吗?

根据学生的回答,教师板书。

8.9+3.6+6.4+1.1=。

2、引导学生探索算法。

请同学先独立完成。(老师巡视,注意选择所采用不同方法的学生)谁愿意到黑板上来做。算完的同学可以和你的同桌同学交流一下你的算法。

我们来看一下黑板上几位同学的板演。有两种不同的算法,结果都等于20元,计算的正确吗?看来两种方法都是可以的。

3、比较。

(其中一种方法更简便)。

我们为什么可以这样算,这样算的依据到底是什么?说得再简单点就是你在计算的时候用的是什么运算律?(加法交换律和结合律)。

你同意他的观点吗?

通过刚刚的例子我们可以发现,整数加法运算律,对小数加法也同样适用。这也就是我们今天要学习的加法运算律的推广。

我们以前学过哪些加法的运算律?你能字母将它们表示出来吗?

这里的字母a、b、c可以表示怎样的数?

指出整数加法的运算律对小数同样适用,所以这些字母所表示的数的范围既包括整数,也包括小数。

设计意图:本环节创设买文具的情境,把教学内容放到一个学生非常熟悉的情境中,学生通过尝试计算、知识迁移,自觉地将整数加法运算律迁移到小数加法运算当中,从比较中得出简便算法。这样既让学生题会到解决问题策略的多样性,增强了优化意识,体会到新旧知识之间的内在联系,培养了迁移能力,又让学生体会到数学来源于生活,有应用于生活。

三、巩固练习。

1、完成“练一练”第1、2题。

先让学生说说怎样算简便。

2、完成练习九第2题。

(1)学生独立完成。

(2)提问:比较每组算式的计算过程和结果,你有什么发现?

(3)谈话:整数减法的一些规律在小数减法里同样适用,运用这些规律也能使一些计算简便。

3、拓展练习。

(1)下面的算式中,哪些算式可以用简便方法计算的.,请选出来。

2.7+6.6+3.47.5—3.87+2.136.17+28+3.2。

5.08—0.8—4.26.02+4.5+0.986.59+9.32—2.59。

(2)填上一个数,使计算简便。

32.54+2.75+()7.58-2.66-()。

4、课堂作业。

完成练习九第3-5题。

分式的运算教案篇十九

1、知识技能:理解并掌握加法运算律和乘法运算律,并能够用字母来表示。能运用运算定律进行一些简便运算。

2、数学思考与问题解决:能根据具体情况,选择算法,发展思维的灵活性。

3、情感态度:在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,进一步形成独立思考和探究问题的意识、习惯。

1、理解并掌握加法运算律和乘法运算律,并能够用字母来表示。

2、能运用运算定律进行一些简便运算。

能根据具体情况,选择合适的算法。

自学与合作相结合、讲解与互帮相结合。

收集一些学生平时做错的例子,多媒体课件。

一、复习导入。

1、我们学过了哪些有关整数的运算律?(用提问的方式复习)。

2、它们有什么作用?

二、系统复习。

1、回顾和总结学过的整数运算律。(显示课件,分别复习运算律的文字叙述,和字母公式)。

(1)加法交换律a+b=b+a。

(2)加法结合律(a+b)+c=a+(b+c)。

(3)乘法交换律ab=ba。

(4)乘法结合律(ab)c=a(bc)。

(5)乘法对加法的分配律(a+b)c=ac+bc。

3、认识到整数运算律在小数、分数运算中仍然成立。(完成79页第2题,四人小组合作,互相举例说明,然后推选代表到讲台上展示)。

4、感受在数系的扩充过程中,人们总是希望在新的数系中运算律能尽量地成立。

(1)出示79页巩固应用的第1题。

(2)引导学生观察、思考。(自己通过观察、分析找出结果)。

(3)交流。(满足数的运算的需要也是数扩充的重要原因,也是产生分数和负数的重要原因,从而拓展学生对分数和负数的认识,加深对分数、负数意义的理解。)。

分式的运算教案篇二十

1、能进一步理解并掌握乘法分配律。

2、能应用乘法分配律使一些计算简便,发展应用意识。

经历乘法分配律的探究过程,会用字母表示乘法分配律,进一步培养发现问题和提出问题的能力,积累合情推理的数学活动经验。

情感态度价值观。

体会计算方法的多样性,发展学生的数感。

教学重点。

能理解并掌握乘法分配律。

教学难点。

培养发现问题的能力。

课件、图片。

ppt。

自主合作探究。

【探究学习自主观察,发现问题。

1)、3×10+5×10=(3+5)×10=。

2)、4×8+6×8=(4+6)×8=。

我发现:

2、什么是乘法分配律?用字母如何表示?

3、用简便方法计算。

(60+25)×478×69+22×6928×99+2869×10285×98。

【导学解惑】:

1、请提出你的问题,大家一起来解答。

2、请记录下你认为特别有意义的题。

【当堂检测】:

下面的算式分别运用了什么运算定律。

25×34=34×25()。

7×2×5=7×(2×5)()。

2×4+2×6=2×(4+6)。

用简便方法计算。

76×62+24×62156×99+156127×101。

【课后反思】:

1.想一想,这节课有哪些收获?还存在哪些问题?

2.问一问自己:“今天,我主动学了吗?”

根据老师讲课适当板书。

完成本节课题。第四单元运算律。

课题。

【本文地址:http://www.xuefen.com.cn/zuowen/14070482.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档