人教版可能性教学设计(实用19篇)

格式:DOC 上传日期:2023-11-24 04:44:11
人教版可能性教学设计(实用19篇)
时间:2023-11-24 04:44:11     小编:雁落霞

总结能够让我们更好地借鉴他人的经验与教训,避免犯相同的错误。一个完美的总结需要有明确的目标和清晰的结构。我们汇总了一些关于总结的范文,希望能够给大家提供一些写作的灵感和参考。

人教版可能性教学设计篇一

教学目标:

2、通过丰富的游戏活动和对生活中几种常见游戏(或现象)剖析与解释,使学生初步体会数学与生活的紧密联系。

教学重点:体验事件发生的等可能性以及游戏规则的公平性,会用分数表示事件发生的可能性。

教学难点:能按要求设计公平的游戏方案。

教学具准备:多媒体课件,硬币,实验记录表,骰子,六个面上分别写上数字1-6的长方体,透明塑料桶,乒乓球等。

教学过程。

一、故事导入。

师:同学们,喜欢听故事吗?在课前我们一起来回忆一个经典的成语故事--《守株待兔》,请同学们认真的观看,看完后回答老师所提出的问题。(出示故事视频)。

学生认真观看故事。

师:农夫天天在这里等着捡兔子,他可能会等来什么样的结果呢?(生发表自己的看法,教师预设学生可能会出现说“什么都等不到”或者是“可能会再捡到兔子”。)。

师:农夫能否等到兔子,这是一件不确定的事,生活中许多事情的发生是不确定的,发生的可能性有大有小,我们在生活中经常会遇到应用可能性来决定输赢或者先后顺序的情况,今天我们就来进一步研究不确定事情发生的可能性。(揭题:可能性)。

二、探究新知。

1、动手体验,获取数据。

师:同学们喜欢运动吗?(喜欢)看过足球赛吗?

(课件出示:例1情景图)。

师:足球场上的裁判员在干什么?(抛硬币)为什么抛硬币?(决定谁先开球)。

师:那么大家觉得用抛硬币的方法决定谁先开球,这样公平吗为什么。

(学生发表自己的看法,教师预设生1:公平,因为硬币可能是正面朝上,也可能是反面朝上,所以公平;生2:公平,因为硬币可能是正面朝上,也可能是反面朝上,它们各占一半,所以公平……)。

师:既然认为是公平的,那么大家想一想正面朝上的可能性是多少?(学生发表自己的看法,教师预设生1:1/2;生2:50%;生3:0.5。)。

师:你是怎样想的?

师:那掷出反面的可能性是多少?为什么?(板书:正面:1/2,反面:1/2。)。

师:大家想一想,如果我抛掷10次,正面大约可能出现多少次?(5次)。

师:为什么?(正面出现可能性是1/2。)。

师:同意他的说法吗?(同意)。

师:那么正面朝上的可能性和反面朝上的可能性都是1/2,就进一步说明了用抛硬币的方法决定谁先开球,是公平的。为了深入探讨这个问题,我们先来做个试验,(出示课件实验要求):

2、试验完成后思考:正面朝上的次数与总次数有什么关系?

记录表格:。

试验次数抛硬币次数正面朝上次数。

第一次10。

第二次10。

第三次10。

第四次10。

总计40。

师:大家试验做完了吗?请各小组汇报。

课件出示统计表根据学生的汇报教师填入数据。

2、分析数据,初步体验。

师:大家来观察一下这些数据,你有什么发现?(学生发表看法,教师预设生:有些小组正面朝上的次数是总次数的一半,有些小组少一点,有些小组多一点,但是全班加起来接近总次数的一半。)。

师:同学们观察的都很仔细有这么多的发现,我们会发现有些小组正面朝上的次数不一定是总次数的一半,有些小组少一点,有些小组多一点,但是全班加起来正面朝上的次数就比较接近总次数的1/2。

3、阅读材料,加深体会。

师:其实在历史上,为了验证这一点有很多数学家也做过这样的实验,我们来看一看他们实验的结果是怎么样的(出示统计数据)。

历史上一些著名数学家做抛硬币试验的数据。

试验者抛硬币次数正面朝上的次数。

德.摩根40922048。

蒲丰40402048。

费勒100004979。

皮尔逊240001。

罗曼若夫斯基8064039699。

师:随着抛掷次数的不断增加,正面朝上的次数会怎样?(正面朝上的次数会越来越接近总次数的1/2。)。

师:那么反面朝上的次数呢?(也一样,会越来越接近总次数的1/2。)。

三、应用拓展,体验可能性。

游戏活动一:三色转盘。

师:刚才同学们表现的非常好,接下来我们轻松一下,同学们喜欢做游戏吗?(出示飞行棋游戏)。

师:玩过这种游戏吗?怎么玩?(学生发表自己的看法生,教师预设生1:掷骰子,掷出几就走几步,先到终点为胜利;生2:补充,棋盘上有一些要求,要根据要求走;生3:最后如果超出终点要退回等。)。

师:好,我把全班分成3个队,左边为红队,中间的为蓝队,右边的为白队,。

师:哪个队愿意先走(所有学生都举手)既然大家都想先走,我们就用转转盘的方式决定好吗?(出示转转盘)。

(生:不公平)。

师:刚才不是说行吗?怎么又不行了?(生:红色的可能性大,而白色和蓝色的可能性小。)。

师:你能用今天所学的知识解释一下吗?(生:红队占4份中的两份,可能性是1/2,所以红队可能性大,蓝队和白队的可能性都是1/4,因为它们都占4份中的一份)。

师:那么大家认为公平吗?(不公平)。

师:看来的确是不公平,谁能想个办法,把它变的公平(生:把这个圆平均分成3份,每种颜色一份,就公平了。)(出示平均分成3份的转盘。)。

师:这样公平吗?(公平)。

师:为什么这样就公平了?(生:每个队现先走的可能性是1/3)师:是相等的,是不是?那么我们来决定一下哪队先走的次序,同学们喊停我就停。

(确定走的次序后准备玩游戏并出示骰子.)游戏活动二:掷骰子。

师:决定了要走的次序了,那这有两个骰子看清楚了吗?每队再上来一位代表选择骰子。(学生都选择正方体的骰子)师:如果是你会选哪个?为什么?(生:长方体1,2出现的可能性大,别的面出现的可能性小,正方体6个面出现的可能性都一样是1/6,所以选正方体。)。

师:大家想为什么这个正方体每个面出现的可能性是一样呢?(生:因为这个正方体每个面的面积都一样,所以每个面出现的可能性都一样。)。

师:都是多少?(1/6)。

师:正方体每个面出现的可能性都是1/6相等的,那么这个长方体的每个面出现的可能性也一样吗?(不一样)。

师:为什么?(因为面积大小是不一样的)。

师:好了,同学们和我们这3个队的队长都选择了用这个正方体骰子做游戏那我们就用它来做游戏!(师生共同做完游戏)。

师:为什么呢?(每个队赢的可能性都是1/3,所以有可能会赢)。

师:那就是说每个队输赢的可能性能不能确定啊?(不能)。

四、思维拓展。

师:刚才同学们已经能够应用今天所学的知识来解决游戏中的问题了,非常好.请大家再看老师这有一个不透明塑料桶,猜一猜里面有什么?(出示不透明塑料桶)。

师:我来告诉大家,里面是乒乓球,一种是黄色的,一种是白色的,如果我从里面随意摸出一个乒乓球,摸出白乒乓球的可能性是多少?(学生发表自己的看法,教师预设生1:摸出白乒乓球的可能性是1/2;生2:我认为不对,他们的个数不一定。)。

师:那么你们还能否确定摸出白乒乓球的可能性?(不能)。

师:那么还需要什么条件你想知道什么条件?(生:我想知道黄乒乓球有几个?白乒乓球有几个?)。

师:那么让我们来看看它们的数量。(出示1个白乒乓球,6个黄乒乓球)。

师:现在你认为摸到白乒乓球的可能性是多少?(生:摸到白乒乓球的可能性是1/7)。

师:为什么?那摸出黄乒乓球的可能性是多少?(生:摸到黄乒乓球的可能性是6/7)。

教师:那任取一个,一定能取到黄球吗?

师:那么要使摸到白乒乓球的可能性变成1/9,这应该怎么办?为什么?

师:那么想一想,只可能加两个黄乒乓球吗?(还可以加别的颜色的球)。

师:要使摸到白球的可能性是黄球的1/2,该这么办?

五、全课总结1、师:通过这节课的学习,老师发现同学们都非常善于思考。你学的快乐吗?都有哪些收获?这节课我们学习了一件不确定事件的可能性,可以用一个数来表示,例如抛掷硬币,正面或反面朝上的可能性都可以用1/2来表示,刚才我们投掷骰子,每个面出现的可能性都可以用1/6来表示,那么这些知识在数学上都叫做概率.概率知识在日常生活中有应用广泛,比如天气预报,降水概率,航天发射等等都应用了概率的知识,它是怎么发展来的呢?请同学们来看。

2、阅读概率小史(播发音乐)。

板书设计:。

可能性。

正面:1/2白球:1。

反面:1/2黄球:6。

可能性:1/7。

人教版可能性教学设计篇二

教学内容: 义务教育课程标准实验教科书三年级上册106页例3及“做一做”,练习二十的第4、6、10题。

教学目标:

1、知识目标:经历可能性的试验过程,知道事件发生的可能性是有大小的。

2、能力目标:培养学生通过实验获取数据、利用数据进行猜测与推理的能力;并能列出简单试验所有可能发生的结果。

3、情感目标:在活动交流中培养合作学习的意识和能力。

教学重点:学生通过试验、收集和分析试验数据知道事件发生的可能性是有大小的。

教学难点:利用可能性的知识解决实际问题。

教学准备:两个转盘、盒子、红球24个、蓝球6个、漂亮的卡通人物、硬币、多媒体课件,颜色笔。

教学过程:

一、 创设情境,激趣猜测。

1、听故事,激发学习兴趣。

(1)老师知道同学们最喜欢听故事,特意准备了一个《小猴子下山》的故事,想听吗?

(动画播放:有一天,小猴子下山来。它看见玉米地里的玉米结得又大又多,就掰了一个扛着往前走。走着走着,来到桃树底下,看见满树的桃子又大又红,就扔了玉米去摘桃子。小猴子棒着几个桃子走到一个瓜地里,它看见满地的西瓜又大又圆,就扔了桃子去摘西瓜。它抱着一个大西瓜往回走,走着走着,看见一只小兔蹦蹦跳跳的多可爱,就扔了西瓜去追小兔。)。

2、猜测:请同学们想一想,小猴去追小兔,结果会是怎样呢?

学生猜测:它有可能追到小兔,也有可能追不到小兔。

师:那追到的可能性会……很小。

3、有些同学认为小猴不可能捉到小兔,有些同学认为小猴还有可能捉到小兔,只是可能性很小,看来,事情的发生不仅有可能性,而且发生的可能性还有大、有小。今天这节课我们就继续来学习有关可能性的问题。

(板书课题:可能性的大小)。

实践是最好的老师,下面我们就通过摸球试验来研究,好吗?

二、探究、验证。

1、试验准备。

(1)介绍试验材料。

师:每个小组准备了一个盒子,盒子里都有红球和蓝球。

(2)说明试验要求。

(多媒体出示小组合作要求。)。

(二)摸到哪种颜色球的可能性小?

(3)提出注意事项。

师:最后还请同学们特别注意:摸球时不能用眼晴看,摸球试验结束后不要打开盒子哟,能做到吗?下面请小组长拿出记录表和统计图,就可以开始试验了。

2、合作试验、初步推测。

(1)各小组试验,教师巡视。

(2)观察、汇报。

师:谁把你们组的试验结果给大家汇报一下?

生汇报。

3、推理、验证、归纳。

(1)观察。

(集中展示各小组的摸球情况统计图。)。

师:这是我们6个小组的摸球情况统计图,请同学们仔细观察,你发现什么呢?

生发现:每个小组都是摸出红球的可能性大,摸出蓝球的可能性小。

(2)思考。

师:这都是你们的推测,到底对不对呢?有什么方法可以知道?

师:好!莫老师数三声,我们就一起把盒子打开。

(红球的数量多,摸到的可能性大,蓝球的数量少,摸到的可能性小。)。

师:也就说,在摸球试验中,可能性的大小和什么有关系呢?

(与球的数量有关。)。

师:如果让你在自己小组的盒子里再摸一次,你觉得摸到什么颜色球的可能性大?为什么?好,请六个小组长一起来摸摸看。

(3)归纳。

三、应用、拓展。

1、转转盘。(课本106页的“做一做”。)。

(生可能会选黄色)你为什么会选黄色格呢?

(因为黄色格的数量多,红色格的数量少,所以转到黄色的可能性大。)。

转转试试看?

不行,每次都是你们赢,我得换个转盘,这次如果你还是转到黄色格的话,我就送你一张更漂亮的图案,谁来转?(指名3名学生上台转)。

师:为什么只有( )个同学拿到图案?

3、拓展。

师:老师这里还有一个有趣的转盘(出示幸运转盘)。

(因为一等奖的奖品很贵重,所以要让人们转到一等奖的可能性小,转到其它奖的可能性大。)。

师:你们能用学到的数学知识解释生活中的问题,真是棒极了!

2、设计转盘。(练习二十第4题。)。

师:看了这个转盘,你们想不想也来设计这样有趣的转盘?

(1)课件出示设计要求。

请同学们在书本109页上涂一涂。

(2)谁想上来展示一下自己的作品?(用实物投影仪投影学生作品)。

问:在设计转盘时你是怎样想的呢? 你们也是这样想的吗?

(3)小结。

4、解决问题。

师:今天还有一位我们非常熟悉的朋友来到了我们的课堂,看谁来了?(课件出示小猫扑蝴蝶)。

师:小精灵明明带着他的魔棒来了,还有谁来了?(小猫)。

(小猫扑到黄色蝴蝶的可能性大。)。

师:那我们就来看看小猫是不是扑到黄色蝴蝶的可能性大。(课件演示小猫扑到了一只黄色的蝴蝶。)。

(天空中还有6只黄蝴蝶3只红蝴蝶,小猫随意扑一只,还是扑到黄色蝴蝶的可能性大。)。

师:我们一起来看一看。(课件演示小猫扑到了一只红蝴蝶。)。

师:(疑惑地)咦!不是说小猫扑到黄蝴蝶的可能性大吗?怎么会扑到一只红蝴蝶呀?

(因为天空中还有红蝴蝶,所以还是有可能扑到红蝴蝶的,只不过扑到红蝴蝶的可能性小一点。)。

师:扑到红蝴蝶的可能性小并不是说不可能扑到红蝴蝶。

听!小猫又有问题想问了:你能想办法让我扑到红蝴蝶的可能性大吗?(增加红蝴蝶的只数,让它的只数比黄蝴蝶多。)。

(师用课件演示:小精灵用它的魔棒增加了7只红蝴蝶。)。

5、猜一猜。(练习二十第10题。)。

师:下面我们来做个游戏怎么样?这里有四个盒子,其中只有一个盒子里面放着一个硬币,你来猜一猜,可能会在哪个盒子里?下面我们来统计一下,注意:每个同学只能选择一次;认为在一号盒子里的举手,认为在二号盒子的,三号盒子,四号盒子。

汇报:因为硬币只能在四个盒子中的一个,有三个盒子中没有,所以猜错的人数多,猜错的可能性就大。

师补充:虽然猜对的可能性小,但我们也是有可能猜对的。

四、总结、延伸。

1、延伸。

2、小结。

(3)师:刚才《小猴子下山》的故事还没讲完,想听完吗?

出示录音:小兔子看到小猴追上来,马上串进草丛里不见了,这时太阳快下山了,小猴只好空着手回家去了。

师:看了这个故事结果后,你们有话要跟小猴子说吗?

小朋友们,我们可不要像小猴那样三心两意哦!

五、板书设计。

可能性大小。

数量多       可能性大。

数量少       可能性小。

人教版可能性教学设计篇三

1、认识简单的等可能性事件。

2、会求简单的事件发生的概率,并用分数表示。

教学重难点:

感受等可能性事件发生的等可能性,会用分数进行表示。验证掷硬币正面、反面朝上的可能性为。

教学准备。

主体图挂图,老师、学生收集生活中发生的一些事件(必然的、不可能的、不确定的),硬币。

教学过程。

一、信息交流。

1、学生交流收集到的相关资料,并对其可能性做出说明。

师出示收集的事件,共同讨论。

2、小结:在生活中有很多的不确定的事件,我们现在一起来研究它们的可能性大小。

二、新课学习。

1、出示主体图,感受等可能性事件的等可能性。

观察主体图,你得到了哪些信息?

在击鼓传花中,谁得到花的可能性大?掷硬币呢?

生:击鼓传花时花落到每个人的手里的可能性相等,抛一枚硬币时正面朝上和反面朝上的可能性也是相等的。

在生活中,你还知道哪些等可能性事件?生举例…..

2、抛硬币试验。

(1)分组合作抛硬币试验并做好记录(每个小组抛100次)。

抛硬币总次数正面朝上次数反面朝上次数。

(2)汇报交流,将每一组的数据汇总,观察。

(3)出示数学家做的试验结果。

试验者抛硬币总次数正面朝上次数反面朝上次数。

德摩根409220482044。

蒲丰404020481992。

费勒1000049795021。

皮尔逊24000111988。

罗曼若夫斯基806403969940941。

观察发现,当实验的次数增大时,正面朝上和反面朝上的可能性都越来越逼近。

3、师生小结:

掷硬币时出现的情况有两种可能,出现正面是其中的一种情况,因此出现正面的可能性是。

三、练习。

1、p.99.做一做。

2、练习二十第1---3题。

四、课内小结。

通过今天的学习,你有什么收获?

人教版可能性教学设计篇四

教学目标:

1、初步感受事件发生的可能性是有大小的,了解影响可能性大小的因素,会比较事件发生的可能性大小。

2、学会记录事件发生的结果;形成动手操作能力,以及归纳、判断能力。

3、经历观察、猜想、实验和分析实验结果的过程,体验事件发生的可能性大小。

4、进一步感受数学与实际生活的紧密联系,体会数学在现实生活中的应用。

教学重难点:

重难点:理解事件发生的可能性是有大小的并会根据影响因素判断可能性大小。

教法与学法:

教法:引导演示法。

学法:合作交流,实验验证法。

教学准备:课件、扑克牌等。

教学过程:

一、复习铺垫,迁移导入。

课件出示图片:

生:从a盒摸。

师:为什么不建议我从b盒或者c盒摸呢?

生:b盒与c盒可能摸出白球,但都不一定一次就能摸出白球。

(生独立思考,小组交流)(生可能回答b盒白球更多一些)。

师:真的如此吗?可能性真的有大小吗?可能性大小又与什么有关呢?今天我们就来研究这个问题。

二、探索新知。

1、体验可能性是有大小的。

(1)课件出示教材第45页情境图。

师:今天老师带来了一个盒子,盒子里有四个红棋子和一个黑棋子。

问:从中摸出一个棋子,可能是什么颜色?

生:可能是红色,也可能是蓝色。

师:摸出一个棋子,那摸出哪种颜色的可能性大呢?

学生思考,猜测。

师:刚刚只是同学们的猜测,而猜测并不能作为依据,我们需要通过实验来证明。我们来试一试吧!

(2)安排实验过程。

请一名学生摸棋子,底下的同学们将棋子的颜色大声说出来,一名学生记录。所有学生边观察边思考。

要求:摸出一个棋子,记录它的颜色,然后放回去摇匀再摸,重复20次。

讲解记录方法:制作像这样的一个表格(出示表格),在记录这一竖列用“正”字笔画去记次数,在次数一列用数字写出记录的总结果。

(3)交流记录结果。

师:通过实验结果,你们现在有什么想法?

学生交流、讨论。

(4)小结:取出红棋子的次数要多些,也就是取出红棋子的可能性要大一些。

(5)讨论:再取一次取出哪种颜色的可能性最大?

2、进一步证实、总结规律。

(1)提出猜想。

在每一小组,老师都放了十张扑克牌,其中八张黑的,两张红的,从中摸出一张,摸出的是红色可能性大还是黑色可能性大?为什么?(学生猜想)。

(2)实验证明。

这仅仅只是同学们的猜想,还需要大家用实验来证明它。

实验要求:组内同学做好分工,其中一个人负责洗牌,一人负责记录,一个人负责汇报,其他组员轮流抽牌,共抽20次。

(3)汇报实验结果。

(4)引导小结:从这些实验结果中,你发现了什么规律?

(学生独立思考,小组交流)。

教师小结:因为黑桃在总数中占得多一些,所以取出黑桃的可能性要大些。

3、知识总结师设疑:可能性大小与什么因素有关?

(生思考回答)。

师总结:以摸棋子为例,可能性的大小与在总数中所占数量的多少有关,在总数中占得数量越多摸到的可能性也就越大;占得数量越少,摸到的可能性越小。

三、巩固练习(课件出示)。

四、课堂小结学完这节课后,你们能否准确判断可能性的大小?

人教版可能性教学设计篇五

教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师则是组织者、引导者与合作者。

动手实践、自主探索、合作交流是学生学习数学的重要方式。本节课根据学生的心理特点和教材实际,让学生在猜一猜、摸一摸、想一想、说一说等充满童趣的情景中玩数学、学数学,亲身体验知识的形成过程。

1.重视创设情境,让学生从现实生活中学习数学。

标准中指出,要充分利用学生的生活经验,设计生动有趣、直观形象的教学活动,激发学生的学习兴趣,让学生在生动具体的情境中理解和认识数学。

教学反思。

当学习的内容和学生的生活实际越接近,学生自觉接纳知识的程度就越高。通过情境的创设,不仅使学生对“一定”、“可能”和“不可能”有了初步感受,而且能领悟数学与现实生活的联系。

2.重视操作实践,让学生在数学活动中学习数学。

数学教学是数学活动的教学,因此在教学过程中应十分重视学生的实践活动和直接经验,充分让学生动手、动口、动脑,在活动中自己去探索数学知识与数学思想方法,在活动中体会成功的喜悦。

课堂上,先让学生预测摸出的球的颜色,并用“一定”、“不可能”“可能”来描述摸出的结果,然后让学生亲自摸一摸,体验事件发生的确定性和不确定性,并注重对不确定性和可能性的直观感受。给学生提供了比较充足的活动的空间、探索的空间和创造的空间,使每一个学生都动起来,去感悟、去体验、去认知。

3.关注学生情感与态度,帮助学生获得成功体验,树立学好数学的信心。

标准把情感与态度作为四大总体目标之一,是因为把数学课堂看成是素质教育的课堂,数学教学不仅仅是传授知识,培养能力,更重要的是使学生能积极参与数学学习活动,对数学充满好奇心和求知欲,要获得成功的体验,有克服困难的信心。

4.需加强:合作交流,引导学生自主探索学习。

标准中指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式。”好多教师在课堂上都比较注重学生的合作学习,但合作学习并不是简单地把学生分成几个小组,让学生围在一起坐就行。低年级学生自我管理能力差,还没有形成合作的意识和能力,往往出现分组学习时,学生的参与程度不均衡,学生合作的主动性还不够。

在安排学生进行合作学习时,要重视教给学生合作的策略,及时对合作的好的学生作出公正合理的评价。例如让学生找同伴说说事件发生的可能性,这是两个学生之间的交流;小组讨论可能摸出的是什么颜色的球,这是小组内学生间的交流。通过合作与交流,让学生加深了对所学知识的认知。

5.紧密联系生活。在课的最后,我让学生把今天所学的知识和我们的生活联系起来,想一想生活中哪些事是一定会发生的,哪些事是不可能发生的,而哪些事是可能发生,也可能不发生的,并且举出一些例子,用“一定”“可能”、“不可能”说一说。

人教版可能性教学设计篇六

邮编:312090。

电话:13017726662。

电子信箱:shenxiaojuan3@。

一、设计思想:

教学中利用二、三位数乘一位数8个小题的笔算,让学生再次经历了乘法的算理。练习中鼓励学生分类,进一步区分笔算乘法的进位不叠加、进位叠加的不同算法;鼓励学生展示错误,让学生带着思考、讨论、亲自体验,进一步深化了“进位叠加”的计算理念。这样的设计不但巩固了学生的笔算方法,还突破了“某一位上的乘积加上进来的数字要进位的”难度,提高了学生计算的正确力,大大降低错误率。利用应用练习的开放性,让学生灵活利用口算、估算、笔算去解决实际问题,这样也更好地加强了“算法多样化”的计算理念,既培养了学生“能为解决问题而选取适当方法”的能力,从而有利于发展学生的数感。

二、教材分析:

教学这个练习,教师必须重视学生掌握二、三位数乘一位数的笔算方法,巩固笔算过程中对算理的理解。在解决实际问题时教师还应鼓励学生合理利用笔算、口算、估算三种方法,让他们懂得算法多样的合理选择。教材中1~4是安排的是一次进位的乘法笔算练习题,其中有进位叠加。5~10有连续进位的乘法笔算计算题。11~12是两步计算应用题,提倡一题多解。13题是趣味数学,培养学生归纳推理的能力。教材这一系列的安排是学生已学习了万以内的笔算加法,也初步学习了笔算乘法中一位数乘二、三位数的进位不叠加和进位叠加的笔算方法。教材安排练习十八,主要是对前面例3、例4知识的进一步巩固和突破,通过计算练习和实际应用练习的训练,帮助学生提高多位数乘一位数的计算速度和正确力;也为下一节课学习乘的过程中处理“0”带来了方便;更为学习二、三位数的乘法打下良好的笔算基础。(因为在多位数乘法中始终分解成用几个多位数乘一位数的方法)。

三、学情分析:

学生已经掌握了万以内的加法计算,对万以内的加法计算已具备了计算能力,并初步学习了二、三位数乘一位数的进位不叠加和进位叠加的笔算。可是由于学生对多位数乘一位数还是刚新接授,计算起来还有这样那样的困难,他们还需要更多的练习与巩固,特别是最多可能发生的错误是:忘记加后而进上来的数;进位时加错(因为这里又要算乘又要算加);或错用进上来的数去乘另一个因数等。针对学生可能发生的错误,教师应对学生每计算一步,都看看有没有进位,进的是几,把进上来的数记在竖式相应位置的横线上。算前一位的积时,要想想有没有漏加后面进上来的数,算完以后,再查一两遍。为了让学生更有效地解决学习过程中的困惑,我有意在学生笔算时引导学生对这些笔算题进行分类,这样做是为了对连续进位笔算乘法有一个系统的整理,还鼓励学生勇于展示错误,从而分辨各种形式的计算问题,进一步降低难度,减少各种错误的出现。同时在解决实际问题的活动中渗透笔算、估算、口算,让学生不但掌握了计算技能,并能利用计算技能更有效地解决实际问题。

四、教学目标。

1、知识技能目标:巩固对一位数乘二、三位数的笔算方法,强化连续进位中的“进位叠加”的算理,并能通过计算解决一些生活中的实际问题。

2、过程与方法目标:培养学生自觉检查计算错误的意识,通过现实的数学问题,培养学生合理选择口算、笔算、估算的方法,正确有效地解决实际问题。

3、情感态度与价值目标:通过小组合作培养学生合作精神,并在数学实践活动中体验到数学的生活性和趣味性,体会到学数学的快乐。

五、重点和难点。

重点是进一步加强学生进行多位数乘一位数的“进位叠加”的笔算乘法。

难点则是“某一位上的乘积加上进来的数又要进位”的连续进位情况。

六、教学策略与手段:

整堂课我安排了:口算练习,笔算练习、应用练习、综合练习这几个环节,通过比较性的口算去降低“进位不叠加”和“进位叠加”的笔算难度,通过笔算练习进行分类与错误展示,巩固学生的笔算算理。利用应用练习的开放性进一步深入笔算,并能合理选择口算、笔算、估算三合一去解决具体问题。教学过程中还为学生创设了小组讨论、合作交流、相互竞争等学习环境。学生们在这种自由轻松的学习活动中勇于质疑,大胆展示错误,合理解决问题,感受了成功的喜悦。

七、课前准备:

(1)完成口算题和万以内的加法题若干。

(2)小黑板、课件。

八、教学过程:

(一)、口算练习,明确学习内容。

1、引入口算题。

师:小朋友,小精灵今天又来了,他带来口算题想考考同学们,你们愿意吗?请小朋友注意看,知道答案的就站起来回答。

(课件出示口算题)。

6×7=4×5=7×8=2×4=6×8=9×3=。

6×7+5=4×5+6=7×8+4=2×4+5=6×8+7=9×3+5=。

(学生口算时,有几组口算的速度快点,而有的则慢点)。

2提问。

师:口算有难度吗?通过口算你能联想到什么呀?(学生们纷纷反馈,很明显他们体会到有些乘加比较容易,而有些乘加比较复杂)。

生举例:老师6乘7得42加上后面的跟着的5,做起来比较简单,而6乘8得48加上后面跟上来的7,做起来很容易出错。

3、课题出示。

【设计意图】:通过比较性的口算练习让学生有易到难地去感受进位不叠加和进位叠加的计算过程,这样的训练方式不但可以在笔算中减少错误率,还能提高计算速度,有利于学生的计算效果。

(二)、计算练习,巩固笔算方法。

生:愿意。

1、计算并分类。

12×759×852×468×9314×4426×2459×7238×9。

(学生进行小组合作计算,老师让先完成计算组的学生上来板演)。

师:刚才的这些题我们可以怎样进行分类,谁能说给大家听(学生纷纷说开了)。

生1:我觉得可以这样分:

第一类:12×752×459×868×9。

第二类:314×4426×2459×7238×9。

理由是:第一类是二位数乘一位数,第二类是三位数乘一位数。

生2:我觉得可以这样分:

第一类:12×752×4314×4426×3。

第二类:59×868×9459×7238×9。

理由是:第一类是乘起来进位,加起来不进位,第二类是乘起来进位,加起来再次进位。

生3:我还可以这样分:

第一类:12×7314×4426×3。

第二类:314×4426×3。

第三类:59×868×9459×7238×9。

理由是:第一类是一次进位,第二类是隔位进位,第三类是连续进位。

生4:老师我还有一种:可以按一次进位,二次进位,三次进位来分类。

……。

【设计意图】通过分类进一步让学生对连续进位笔算乘法有了一个系统的整理,学生不但从外形上了解笔算乘法的结构,还从计算方法上区别了进位叠加与进位不叠加的不同算法,让学生在分类的过程中分辨各种形式的计算问题,为进一步降低难度,减少错误情况作了充分的准备。)。

2、寻找错误,强调算理。

师:通过刚才的计算与分类,你认为最大的困惑是什么?你想得到什么帮助?

生1:我发现刚才的笔算题比前几天的要复杂了:有的是一次进位;有的连续进位,而且每乘一位都需要向前进位。而前些天的题没那样难。

生2:我在做题中遇到的困难是:每乘一位都向前进位,每乘一位都要加上进上来的数,一共用了3次乘法和2次加法,等于做了5道口算题,特别复杂。

……。

师:你们观察得真仔细,别看一道小小的一位数乘法,这里面包含的步骤可多啦,更需要你们用耐心和细心去算。就是我们今天要进一步巩固的地方。

(学生展示自已的错误)。

(1)12(2)52(3)426(4)459。

×7×4×3×7。

----------------。

742812683223。

(学生相互找错误原因)。

生1:第一题的错误是忘记了后面2乘7进上来的数1。

生2:第二小题的错误是4与十位上的5相乘,乘得的积应是200,2要写在百位上,十位上只能写0,而这位同学把2却写在了十位上,所以错了。

生3:第四小题是进位时加错了,因为这里又要算7乘5,还要算加个位上9乘7的进上来的6。

生4:第三小题的错误与第一小题相差无几,2乘3得6后却忘加了6乘3进上来的1。

(从学生分析错误的过程中,教师要极时引导学生对笔算算理的深入理解)。

3、小结:

多位数乘一位数的计算题中,同学们要注意计算中的每一步,都要看有没有进位,进的是几,把进上来的数记在竖式相应位置的横线上;算前一位积时,要想想有没有漏加后面进上来的数;算完后再检查一两遍。

【设计意图】:寻找错误,让学生展示错误,是进一步巩固算理的一个重要途经,学生在错误面前可以认识到在计算过程中哪一点没有做到位,而教师则针对学生的错误作进一步的沟通和指导,通过师生互动,学生就会意识到我是因为忘记加后面的进上来的数;还是进位时加错;或是错用进上来的数去乘另一个因数等等。

(三)、应用练习,扩大思维范围。

谈话引入:刚才小朋友那么认真,在计算中出现的错误都能诚实地说出来,而且还能把这些错误纠正过来。小精灵看在眼里,他表扬我们小朋友是个诚实懂事的好孩子,老师真为大家高兴!希望继续努力,会有更出色的表现哦。

1、课件出示课本p/80页的第4题。

蓝球足球羽毛球中国橡棋球拍。

78元60元36元10元24元。

师:观察表你看懂了什么?能提哪些数学问题吗?并解答。

学生提出了这样的问题:

(1):买3个蓝球要多少无钱?解答:78×3=234元。

(2):买5个足球要多少元?解答:60×5=300元。

(3):买4个球拍要多少元?解答:24×4=96元。

(4):买9副中国橡棋要多少元?解答:10×9=90元。

……。

(学生除了提出了乘法问题,还有加法和减法问题,老师都必须加以肯定)。

生1:我是用笔算的。

生2:有2题我是用口算的,还有2题是用笔算的。

师:你为什么又用笔算又用口算啊?

生2:因为60×5、10×9直接用口算能说出得数,那我们只要用口算就够了。

师:说得多好呀!小精灵又要夸小朋友了,他告诉小朋友如果可以口算的题目我们尽量用口算,只有自已不会口算的又要知道准确结果的必须用笔算,小朋友听到了吧!

【设计意图】:这是一个开放题的练习,老师特意改变了一些练习中的几个数据,让学生在练习提问机会的同时,让他们充他体会到在解决实问题时,会选择合理的算法,既巩固了多位数乘一位数的计算法则,也能体验到用口算很快能求得结果的快活。

2、课件出示p/82第11题。

300个同学乘车去郊游,如果每辆车可以坐78个同学,3辆车够吗?如果不够的话第4辆车需要坐多少个同学?(课件出示情景图)。

师:小朋友你们认为这道题该怎么解决?

(有的学生马上回答了问题的结果,有的则还在思考和计算之中。为了更有效地组织学生解决实际问题,我要求学生解决数学问题必须有足够的证据。)。

师:说说你是怎么想的吗?

生1:因为我是用计算3辆车能坐234个同学,就能算第4辆车要坐66个同学了。

生2:我是先估计每辆车约可以坐80人,那么3个80就能估计出3辆车只能坐240个同学。

生3:因为一辆车坐78个同学,那我只要一个一个减下去就能知道3辆车够不够,当然第4辆车还要坐多少个同学也马上可以算出来了。

3、小结:

刚才三位小朋友能用不同的方法来解决同一个问题,小精灵看到我们小朋友能力可强呢!许多同学不但掌握了计算方法,还会合理选择方法来解决数学中的问题,如有的同学会用口算,有的同学会用估算。瞧小精灵在旁边为你们鼓掌呢!(课件表示拍手的动作)。

【设计意图】:在练习三位乘一位数的笔算乘法时,让学生意识到在解决实际问题不但可以笔算,也可以用估算或口算,让他们懂得凡是只需要知道大略的结果或无法求得准确结果的,可以选择估算,凡是能够口算的题目尽量用口算,只有自已不会口算、又要得到准确结果的就必须进行笔算。这样做不但更好掌握了多种算法,还更快速有效地去解决实际问题。

(四)、综合训练激发笔算趣味。

师:小精灵看着同学们在课堂上表现很出色,他想带同学们到了趣味王国玩一玩,小朋友想吗?我们一起跟着小精灵去吧!

1、小组比赛计算。

(出示p/81第8小题)。

学生集体计算,最后师生统计结果。

2、出示数学趣味题。

(课件出示p/82第13题的找规律)。

(教师组织学生小组讨论,从中找出规律)。

【设计意图】:课尾带给学生一份趣味与快乐,让他们劳累了一节课之后来感受数学的快乐。这样的设计不但激发了学生的学习兴趣,还丰富了数学思维。

八、板书:

多位数乘一位数的笔算练习。

12×759×852×468×9314×4426×2459×7238×9。

(1)12(2)52(3)426(4)459。

×7×4×3×7。

----------------。

742812683223。

忘记加后面的进上来的数。

进位时加错。

错用进上来的数去乘另一个因数。

人教版可能性教学设计篇七

教学内容:

教科书第106~107页的内容。

教学目标:

1.通过活动,让学生更加理解东、西、南、北、东南、西南、东北、西北八个方位。

2.通过让学生自主调查、讨论,寻找解决问题的方法,最后设计出自己喜欢的校园。

3.培养学生从多角度观察、分析问题的习惯,逐步提高解决问题的能力。

教学重、难点:

自主调查、寻找解决问题的方法,设计出自己喜欢的校园。

教具、学具准备:

电脑投影仪。

教学过程:

师生活动。

一、复习铺垫。

1、早晨起来,面向太阳,前面是什么方位?后面、左面、右面呢?

2、说说本校校园里八个方位都有哪些建筑物?如果把它画在纸上一般按什么规律来画?(上北下南、左西右东)。

二、情景导入,激发兴趣。

电脑展示某校校园平面示意图,说说校园的各个方位都有哪些建筑物或教学设施。

师:这个校园设计得漂亮吗?合理吗?你有什么建议?

师:如果能在设计漂亮、合理的学校里面学习,你们会有什么感想呢?你们想不想也自己设计校园呢?今天我们就自己来设计校园。(板书课题)。

三、小组活动。

1、小组交流:说说每人调查的本校和其他学校都有哪些设施。

2、集体反馈:请几个同学说说的情况。(用学过的东、西、南、北、东南、西南、东北、西北八个方位来叙述。)。

3、小组讨论:本校还有哪些地方需要改进的?必须添置哪些设备等。

4、集体反馈:请几个同学说说自己的看法。

5、出示本校的校园示意图,讨论:

(1)应该在什么地方添置什么设备?

(2)绿化上面你有什么见解?

(3)操场的大小或形状如何?

(4)你还有哪些设想?

6、利用手中的画笔来设计自己的校园。(以小组为单位,学生合作动手设计,教师巡视指导。)。

7、每个小组各派一名同学介绍自己设计的校园示意图。(利用学过的东、西、南、北、东南、西南、东北、西北八个方位来描述。)。

8、展示每个人的设计图,让同学们去参观交流。

四、全课总结:

同学们,通过这节活动课,你们有什么收获?(多请几个同学发言。)。

师:同学们,生活中有许多问题都跟数学有关,如设计校园。只要我们细心观察,认真思考,运用我们学过的知识认真分析,一定能找到解决问题的好方法,不断提高自己分析问题和解决问题的能力,设计出自己满意的校园。

人教版可能性教学设计篇八

转动转盘,决定哪个组回答。

2、师:恭喜你们获得了第一面红旗。我们看下一题,指针停在这四种颜色区域的可能性各是多少?(课本练习二十第2题的第1题)。

先让学生独立思考,把答案写在练习纸上,再在小组中交流。转动转盘,决定谁回答。

3、师:看来难不倒你们,继续看下一题,如果转动指针100次,估计大约会有多少次指针停在红色区域呢?(课本练习二十第2题的第2题)。

先让学生独立思考,把答案写在练习纸上,再在小组中交流。转动转盘决定哪个组回答。

4、师:请看下一题,6个同学玩“老鹰捉小鸡”的游戏,小强在一块长方体橡皮的各面分别写上1、2、3、4、5、6,每人选一个数,然后任意掷出橡皮,朝上的数是几,选这个数的人就来当“老鹰”。你认为小强设计的方案公平吗?(课本练习二十第3题)。

先让学生独立思考,再在小组中交流。转动转盘决定哪个组回答。

5、师:今天的智力大比拼到此结束。看看哪个组获胜?

师:如果我们的智力大比拼继续下去,一定是这个组获胜吗?

师:为什么不一定呢?你能用今天学到的知识来说一说吗?

四、收获与感受。

[总评]本课教学设计体现如下几个特点:

1、在活动中领悟新知。

《数学课程标准》指出:“要让学生在参与特定的数学活动中,在具体情境中,理解并掌握数学知识。”通过让学生经历抛硬币(40次),抛长方体等实验活动,使学生深刻领悟到事件发生的等可能性及游戏规则的公平性。在这过程中培养学生的交流能力和小组合作能力,激发他们探究数学的兴趣。

同时,在活动中,教师还正确地处理了教学手段与目的的关系,重活动,更重思维含量!多次引导学生透过游戏展开思考,把操作活动和思维活动结合起来,提升了数学活动的价值。

2、用数学的眼光看世界。

《数学课程标准》中指出:“素材要密切联系学生的现实生活,运用学生关注和感兴趣的实例作为学习背景,激发学生的求知欲,使得学生感受到数学就在自己的身边,与现实世界密切联系”。足球比赛、抛硬币实验、飞行棋游戏、转盘游戏、老鹰抓小鸡游戏等都是学生在现实生活中所喜闻乐见的游戏,学生学习起来兴趣盎然,能够充分激发了学生的学习热情和主动探究的精神。透过这些常见的活动,能够充分感受到数学与生活的密切联系。

3、让学生喜欢数学。

使用学生自己设计的游戏转盘开展智力大比拼的游戏,整个课堂充满生机与活力,让学生感受到每一次游戏活动都富有深刻的数学内涵,让学生在玩中学,在学中悟,让学生在愉悦的情境中应用拓展新知识,真正体验到数学学习的快乐。

人教版可能性教学设计篇九

1、五年级的“可能性”第一课时,属于小学数学课程标准中《统计与可能性》中的范畴。本课主要教学内容是让学生认识事件发生的等可能性以及游戏规则的公性,会求简单事件发生的概率。

2、“可能性”是建立在三年级“可能性”初步知识的基础上,要求学生通过学习来体验事件的等可能性,对“可能性”的认识和理解从定性向定量过度。

同学们经常在玩游戏,却从不考虑输赢的可能性,通过本节学习让学生真正感受到数学与生活的联系,同时也为以后概率的学习打下了基础。

1、体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的.可能性。

2、能按照指定的要求设计简单的游戏方案。

3、通过多种活动,感受可能性在生活中的作用。

教学重点:体验事件发生的可能性和游戏规则的公平性,会用分数几分之一表示事件发生的可能性。

教学难点:根据制定的要求设计游戏方案,并能对简单事件发生的可能性作出预测。教、学具准备:硬币、实验记录表等。

人教版可能性教学设计篇十

1.使学生初步本验有些事情的发生是确定的,有些则是不确定的,初步能用一定可能不可能等词语描述生活中一些事情发生的可能性。

2.能够列出简单实验中所有可能发生的结果。

3.培养学生学习数学的兴趣,形成良好的合作学习的态度。

体验事件发生的确定性和不确定性。

击鼓传花游戏,鼓声停时一位同学上台抽签,签中内容有礼物、唱歌、猜谜。

猜猜他抽中了什么签?

(引出用可能、不可能等词来表达,揭示课题:可能性)。

(一)教学例题1。

请同学们看前面,这里有个盆:1号盆、2号盆。(实物:例题上的装有不同颜色小球的盆)咱们来看看里面都有些什么颜色的球。

展示两盆中球的颜色、数量。

1、从1号盆里面任意摸出一个球,一定是红球吗?为什么?

学生讨论,教师巡视指导。

各小组都已讨论好了,谁想代表小组发言?(依次指名学生说)。

(依次板书:一定可能不可能)。

师:小朋友讨论得都非常好。下面,我们实际来摸一摸,验证一下。1号盆,谁来?(学生摸出3个后提问,如继续摸下去,结果怎么样?)。

2、从2号盆里任意摸一个呢?请小组讨论。

请学生摸一摸(摸出3个后提问,如继续措下去,能摸到红球吗?那可能摸出什么球?为什么?)(老师可根据盆里剩下的球随机提问,如:接下去可能摸出什么颜色的球?接下去一定能摸到什么球?)。

3、活动小结。

(二)教学例题2。

例如:(请学生举例几个)。

2、自已阅读书本例题2。

谁理解题目意思了,给大家解释一下。

独立完成。

3、汇报、讲评。

4、练习。

108页练习二十四第一题。

这节课我们学习了有关可能性的知识,把今天所学的知识和我们的生活联系起来,想一想生活中哪些事是一定会发生的,哪些事是不可能发生的,而哪些事是可能发生,也可能不发生的呢?你能举出一些例子,用一定可能、不可能说一说吗?请同学们先下位和你的好朋友说一说。(学生说)。

学生说完后全班交流。

p1082、3。

教材p106107。

1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

2、通过实际操作活动,培养学生的动手实践能力。

3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。

能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

用自己的话说一说什么是可能性举例子说明。

今天我们继续学习关于可能性的知识。

1、教学例3(比较两种结果的可能性大小)。

(1)观察、猜测。

出示小盒子,展出其中的小球色彩、数量,(四红一蓝)。

如果请一位同学上来摸一个球,你们猜猜他会摸到什么颜色的球?

和同桌说一说,你为什么这样猜?

(2)实践验证。

学生小组操作、汇报实践结果。

汇总各小组的实验结果:几组摸到红,几组摸到了蓝色。

从小组汇报中你发现了什么?为什么会有这样的情况?

小结:摸到红色多,摸到蓝色的少,因为盒中球红多蓝少。

人教版可能性教学设计篇十一

背景:课标把“统计与概率”作为四大内容之一,并在第一学段就对可能性作出了明确的要求:

1.初步体验有些事件的发生是确定的,有些则是不确定的。

2.能够列出简单试验所有可能发生的结果。

3.知道事件发生的可能性是有大小的。

4.对一些简单事件发生的可能性作出描述,并和同伴交换想法。

概率发生的基础是随机现象,这就涉及到确定事件(肯定与不可能两种,概率分别是1和0)与不确定事件,在不确定事件中,有很多种可能出现的结果,虽然每种结果都是随机出现的,但出现的次数在统计上存在一定的规律性(这也决定了概率与统计是不可分的,在本册教材中也基本上是以实验数据的统计为基础来探讨可能性的大小),概率就是以此为基础进行数学定义的:某一结果发生的次数占所有可能结果发生的总次数的比。要注意的是,概率是一个人为定义的概念,实验结果只能作为一种辅助的证明手段,严格的概率只能通过公式求得。

在本册,还不是要精确地计算某个结果发生的可能性,只是对可能性的大小有个初步的理解和判断就可以了。

一、教学内容。

1.事件的确定性和不确定性。

2.可能性的大小(两种结果、三种结果)。

二、教学目标。

1.使学生初步体验事件发生的确定性和不确定性。

2.使学生学会列出简单试验所有可能发生的结果。

3.使学生知道事件发生的可能性大小是不同的,能对一些简单事件发生的可能性大小进行比较。

三、编排特点。

1.选取学生熟悉的生活情境帮助学生理解抽象的数学知识。

主题图选取学生熟悉的抓阄表演节目的活动。

例2选取了学生熟知的自然现象来描述事件的确定性与不确定性。

2.设计丰富的游戏活动,使学生通过观察、猜想、实验验证等过程来体会可能性大小。

摸棋子、摸球活动、转盘游戏、涂色活动、掷硬币、猜硬币游戏、抽签游戏。

四、具体编排。

1.主题图。

提供了一个抓阄表演节目的情境,学生都非常熟悉。通过贴近学生生活的游戏活动,学生很容易理解在抓阄过程中,抓到的结果是不定的。如果预先知道哪种节目的纸条多,学生也能初步感知自己表演哪种节目的可能性大。

教师还可以利用买体育彩票、抽奖等现实题材来引入可能性的内容。

2.例1(确定事件与不确定事件)。

(1)通过摸球活动让学生体验肯定、不可能与可能等概念。虽然肯定与不可能都是确定事件,但不要求学生掌握这一点,只要能用上面三个词描述一下就可以了。

(2)教学时,可以让学生先猜测,再用实验验证一下,并用自己的语言叙述一下判断的理由。

(3)提问的方式可以多样。可以像教材上说的“哪个盒子肯定能摸出红棋,不可能摸出绿棋,可能摸出绿棋?”也可以问“第一个盒子肯定能摸出什么颜色的棋子,不可能摸出什么颜色的棋子?第二个盒子不可能摸出什么颜色的棋子,可能摸出什么颜色的棋子?”(最后一问也是为后面列出所有可能结果做准备。)。

3.例2。

借助于生活中的自然现象使学生进一步巩固对确定事件、不确定事件的理解。因为这些都是学生利用常识就能判断的,所以教材上只给出一个答案,让学生判断其他几个事件。

4.例3(比较两种结果的可能性大小)。

(1)两个层次:列出所有的可能结果,比较这些结果出现的可能性大小。

(2)通过先观察、猜测,再用小组实验验证的方式来展开活动。

(3)实验时要注意以下几点:

a.实验所用的东西除了颜色以外,其他特性完全一致,否则不能保证结果的随机性。

b.要有足够多的实验次数,这样才有统计学的意义。

c.每一次实验的状态都一样(摸出的球要放回去)。

(4)实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝棋的次数比红棋多。

(5)出示两组的实验结果,虽然两组的数据不一致,但呈现的规律是相同的,在这儿,其实也是让学生巩固收集数据的过程。

(6)教学时可以问一下学生,为什么都是摸出蓝棋的次数比红棋多,引导学生把摸出某种结果次数的多少和棋子的数量多少联系起来,这就可以了。

(7)最后提问“再摸一次,摸出哪种颜色棋子的可能性大?”实际就是利用前面的统计结果所表现出来的趋势进行判断(在二年级下册的统计部分已经学习了利用统计结果进行预测),虽然摸出蓝球的可能性大,但在实际操作时,由于单次实验的结果是随机的,如果是一个小组摸的话,摸出来的结果仍可能是红球,此时,可以让所有小组同时摸一次,看摸出来的红棋多还是蓝棋多。

5.“做一做”

利用转盘游戏,可以先让学生不转圆盘来判断,通过摸棋子游戏的类推,让学生把指针停留在哪种颜色的可能性大小和不同颜色占整个圆面的区域大小联系起来。如果学生发现不了这一结论,可以让学生通过实验来验证。实验时同样要注意几点:圆盘的重心正好在中心,以使转动后停留在任意位置的机会均等,实验的次数要足够多。

6.例4(三种结果的可能性大小)。

此时,可以不用实验加以验证,直接让学生运用例3的知识加以类推,直接判断。

7.例5(可能性大小的逆向思考)。

通过不同结果出现的次数多少来判断不同颜色棋子数量的多少,主要是让学生作理论的思考。也可以让学生验证一下,如小组内先由两人把不同数量的两种颜色的球(或棋子)放进纸袋或盒子,让另两人摸,根据摸的结果来判断哪种颜色的球多,再来验证一下。

8.“做一做”

左图每种颜色都在一起,右图中每种颜色进行了分割,此时学生可以用数份数的方法来看三种颜色所占的区域大小。教学时教师也可以利用前面学过的分数的知识让学生说一说每种颜色占整个圆面的几分之几,为以后学习可能性的精确值做铺垫(因为概率与这些分数相等)。

8.练习二十四。

第2题,是一种逆向思维。并体现开放性,如第2小题,只要不涂蓝色,就能满足条件。第3小题,只要涂黄色的数量在1个到4个之间,都满足条件。

第3题,让学生利用生活经验说说生活中的确定事件和不确定事件。

第4题,编排意图和第2题相同。

第5题,通过实验来巩固可能性的大小。

第6题,渗透等可能性,在这儿只是让学生初步感受一下,而且两面朝上的学生人数不一定很接近,都没关系。(因为掷硬币这一事件的独立性和随机性,全班每人掷一次和每人掷很多次的效果是一样的。)。

第7题,其实是把可能性和某种颜色的球在所有球所占的比例联系起来(第一个盒中是2/15,第二个盒中是9/15),在这儿,两个盒里的球的总数相等,所以绿球占的比例大小与绿球的数量是一致的。学生只要能用自己的语言大致说出道理来就可以了,不必分析以上原理。

第8题,让学生列出所有可能出现的结果,并初步体会每面朝上的可能性是相等的。

第9题,与主题图相对应,借助于学生熟悉的活动理解可能性的大小,把可能性的大小与每种签的数量对应起来。

第10题,变换形式,让学生巩固可能性的大小,其中隐含了“每个人猜哪个盒里有硬币这一事件是随机的”这一原理。

第11题,可能性大小的逆向思考的练习,又体现开放性,只要红色比蓝色多就可以。

第12题,可能性大小的逆向思考的练习,又体现开放性,只要保证10张卡片中“1”的张数最多,“5”的张数最少即可。

1.引导学生借助观察、猜测、实验等来体验事件的确定性与不确定性,感受可能性的大小。

但也要注意一点,虽然在这儿都是借助于实验来验证,但也要逐渐引导学生从实验结果所呈现的规律性来认识可能性的大小与某一结果次数占总结果次数的比例之间的关系,逐渐过渡到从理论的角度来加以判断。

2.把握好教学要求。

只要学生有初步的体验就可以了,对于确定事件、不确定事件、等可能性以及概率的具体值,还不要求。

人教版可能性教学设计篇十二

摘要:一直以来课堂都是学校教学的主阵地,是数学教学任务和目标高效完成的主要场所。如何充分利用课上45分钟,提高小学数学的课堂教学质量,是大家一直关心的问题。近几年,素质教育在小学教育中深入开展,新课程标准对小学数学课程教学做了重点指导,提高学生的综合素质、培养学生自主探究数学的能力成为其核心要求。众多一线数学教师深刻反思现代教学思想,钻研各种教学方法,进行了一系列教学改革与试验。在此过程中,我们力求博采众长,在教学交流中取其精华、去其糟粕,广泛汲取营养,将理论与实际相结合,边试验,边改进,边筛选。俗话说:“教无定法,贵在得法。”虽然在小学数学教学中还没有找到固定的模式,但是本人根据多年的教学经验,提出了一些设想,以期引起大家的重视。

关键词:小学数学;教学;提高;效率

由于长期应试教育的影响,传统的小学数学观念认为,要想提高教学效率,课堂秩序是首要的保证,这使得数学教育与整个普通教育一样偏离了素质教育的轨道。教师在台上教,学生在下面听,要求学生正襟危坐,“竖起耳朵”认真听,不许交头接耳,不许随意讨论,否则将会受到老师的批评甚至惩罚。教学把学生当作消极、被动地接受知识的容器。如此学生的数学素质得不到实质性的提高,削弱了数学素质在人的综合素质中所占的成分。现代的教学观相比较传统的教学观,发生了翻天覆地的变化,教师从教学的主体转变成为课堂的引导者和组织者,有效、合理地组织学生的学习活动;单一的“满堂灌”“填鸭式”的教学模式转化为自主合作探究式教学,授课形式生动活泼,使所有的学生都能学得主动,学得心甘情愿。数学教学大纲规定的数学教学目的是使学生掌握数学基础知识与基本技能,形成数学能力。要提高数学课堂教学效率,教师在数学教学中,要从整体教育观上,挖掘专业素质教育的内涵与外延,运用现代教学模式进行教学。

教法制约学法,是影响教学效率的最重要的因素。因此,选择一种科学、合理的教学模式,能够有效地启发学生积极思维,使教师的教法富有艺术性,具有强烈的吸引力和感染力,使数学课堂氛围变得轻松和谐,有助于激发学生的学习兴趣,促使他们主动地参与到教学中,充分体现学生的主体地位。传统落后的教学模式已经不能满足当代小学教育的需要,教师应转变教学理念,变“教”的课堂为“学”的课堂,把以教师为主体的课堂变为以学生为主体的课堂。据报道,美国中小学学校的许多教师每节课只利用10分钟讲解基础知识,剩下的时间教师将主动权交给学生,组织他们相互交流、探讨、消化,教师在一旁作为引导者进行引导,必要的时候予以提醒和纠正,结果教学效果事半功倍。无独有偶,国内很多地区,尤其是发达地区的小学,已有很多教师采取这种合作探究式教学模式,一节课最多只讲15分钟,其余的时间组织学生发挥主观能动性,针对自己在学习中发现的问题进行探究,教师引导学生独立思考,独立分析,培养他们的创新意识和发现问题、解决问题的能力。

教学手段是师生为达到教学目的、实现教学目标而相互结合的手段方式,其中包括教师的教法和学生的学法,而学生的学法的形成关键在于教师采取何种教学手段进行引导培育。课堂教学手段多种多样,教师单靠粉笔和黑板讲解,势必影响小学数学教学质量和学生的素质提高。在现实教学实践中,一节课中只采用一种教学手段的极少,通常都是教师根据不同的教学内容、不同的授课类型,结合学生的个性心理,采取不同的教学手段。单一地运用某一教学方式,久而久之,学生会产生乏味感,容易产生厌学心理,影响学生大脑智力的发展。因此,在数学教学中要灵活运用各种教学手段,做到综合交叉,做到丰富多彩、趣味十足,这样既能吸引学生的听课兴趣,调动他们学习的积极性,又能体现时代的特点和教者的风格,提高教学实效。多媒体作为一种现代较为普及的教学手段,其本身所具有的灵活多样性能够充分满足当代小学教育需求。在教学中恰当地运用多媒体既能准确直观地传递信息,使学生视、听触角同时并用,将学到的知识深刻地印在大脑中,又能节省不必要的讲解时间,大大提高课堂教学效率。

人教版可能性教学设计篇十三

1、使学生联系分数的意义,初步掌握用分数表示具体数量中简单事件发生的可能性的方法。会用分数表示可能性的大小,进一步加深对可能性大小的认识。

2、在理解用分数表示可能性大小的意义中体会统计概率的随机现象,感受到试验的次数越多频率越接近概率。

3、使学生在学习用分数表示大小的过程中,进一步体会数学知识间的内在联系,感受数学思考的严谨性与学习数学的兴趣。

理解并掌握用分数表示可能性大小的方法。

理解用分数表示可能性大小的意义。(这个地方我的意思是理解用分数表示可能性的大小和用分数表示他的事物的大小是不一样的。)。

一、在情境中,体会用分数表示可能性大小的必要性。

师直接出示书中的情景:依次出示书中的五个盒子(1)两个红球(2)两个白球(3)一个红一个白(4)三个白5个红(5)5个红3个白(这个地方把教材的数字稍作了改动,主要是为了后面的实验更有利于学生发现,试验次数越多频率越接近概率。)。

问题:分别从这些盒子中任意摸出一个球,说一说从不同的盒子里摸出白球的可能性。

预设:学生可能会。

1、利用学过的不可能、一定、可能性相等、可能性小、可能性比较大来回答。

2、也可能直接用分数来回答。

师根据不同的情况作不同的导入。

1、可能性大有多大呢?具体大到什么程度呢?就向说你已经很大了,到底有多大呢?你需要告诉人家你今年11了。一样可能性的大小也可以用一个数来表示,这就是我们这节课重点要来研究的问题。板书:用数来表示可能性的大小。

2、这位同学不但知道了摸到白球的可能性有大有小,还能用一个数来具体表示可能性的到底有多大,那么他说的有没有道理呢?这就是这节课我们要来重点研究的问题。板书:用数来表示可能性的大小。

设计意图:给学生独立思考的空间,学生根据学过的可能性知识或者结合自己的生活经验来解答,在解答的过程中了解学生学习新知的起点:或者直接用不可能、一定、可能等语言来表达;或者直接用数据分数来表达。教师及时地调整教学的策略。另这个地方同时使学生体会到进一步学习用分数表示可能性大小的必要性。用语言来表达可能性有局限性,需要进一步学习把可能性的语言转化为数据来表示。

二、会用分数表示可能性的大小。

1、理解不可能事件用数据0来表示。

师:不可能摸到白球我们可以用几来表示呢?你同意吗?为什么?

2、一定能摸到白球用数据1来表示。

设计意图:先处理不可能和一定两个确定的事件用数据如何表示的目的是。

1、通过这种描述语言转化为数据表示的过程,为后续用分数表示可能性作了铺垫。

2、初步感受到,不确定可能性事件用分数表示的范围在0—1之间。

3、用二分之一表示等可能性。

师:红、白球各一个摸到白球的可能性占多少呢?为什么呢?

设计意图:从最简单的事件入手理解用分数表示可能性大小的方法。

如果我再往里放一个红球,这个时候摸到白球的可能性又是多少呢?

(及时巩固练习用分数表示可能性的方法)。

师:为什么?那摸到红球的可能性是多少呢?你是怎么想的?

预设:1、观察知道红球占三分之二2、推理知道白球占三分之一红球就是三分之二。

设计意图:理解三分之一加三分之二等与1。

4、你能自己用一个数来表示后两个盒子摸到白球的可能性的大小吗?

5、那可能性最大是多少?最小呢?也就是说可能性总是在0—1之间发生变化。

三、体会概率现象中的随机性。

摸到白球的可能性是8分之3,是不是摸8次球就一定能摸到3次白球呢?肯定有说是有说不是的。这时候在孩子们需要试验的需求上进行试验。讲好试验的要求。

1、同桌合作一个摸一个做好记录。我发给他们记录的表。

2、每人摸四次,每次摸一个,在放回盒中摇匀。

全班交流。

师板书学生的数据:看到这些数据你有什么想法?

是我们的推理错了吗?引导学生把班级的实验数据相加感受次数越多越近概率。

设计意图:用分数表示可能性大小的内容属于统计与概率的领域。主要的特性应该是随机性,如何培养孩子的随机意识?我通过了让学生亲自试验来感受它的随机性,发现试验的.结果和我们推理的不一样。进一步反思追问为什么?逐步理解试验次数越多,频率就越接近概率。

师:通过实验和讨论现在你能解释一下8分之3表示什么了吗?

设计意图:在试验与反思过后再来理解用分数表示可能性大小的意义。明确和用分数表示可能性的大小和用分数表示其他事物的大小是不一样的,它是不确定的。

师:既然不确定那我们用分数表示可能性的大小有什么价值呢?过渡到下一个环节。

四、联系生活实际,体现用分数表示可能性的价值。

师:生活中不确定得现象太多了,所以我们应该学会用变化的眼光看这个世界,学会根据可能性的大小去进行选择和判断。

设计意图:体会学习用分数表示可能性的价值。

五、总结。

人教版可能性教学设计篇十四

本单元主要是教学事件的不确定性和可能性,使学生初步体验现实世界中存在着的不确定性现象,并知道事件发生的可能性是大小的。本单元教材在编排上有下面几个特点。

1、选取学生熟悉的生活情境及感兴趣的活动作为教学素材,帮助学生理解数学知识。

2、设计丰富的活动,为学生提供探索与交流的时间和空间。

1、使学生初步体验有些事件的发生是确定的,有些事件是不确定的。

2、使学生能够列出简单试验所有可能发生的结果。

3、使学生知道事件发生的可能性是有大小的,能对一些简单事件发生的可能性作出描述,并和同伴交换想法。

不确定现象是这一部分内容的一个重要研究对象,从不确定现象中去寻找规律,学生较难建立这一观念。

本单元共安排4课时。

教学内容:教材104~105页。

教学目标:

1.使学生初步本验有些事情的发生是确定的,有些则是不确定的,初步能用“一定”可能”“不可能”等词语描述生活中一些事情发生的可能性。

2.能够列出简单实验中所有可能发生的结果。

3.培养学生学习数学的兴趣,形成良好的合作学习的态度。

教学重、难点:

体验事件发生的确定性和不确定性。

教学过程:

一、活动引入新课。

击鼓传花游戏,鼓声停时一位同学上台抽签,签中内容有礼物、唱歌、猜谜。

猜猜他抽中了什么签?

(引出用可能、不可能等词来表达,揭示课题:可能性)。

二、自主探索,获取知识。

(一)教学例题1。

请同学们看前面,这里有个盆:1号盆、2号盆。(实物:例题上的装有不同颜色小球的盆)咱们来看看里面都有些什么颜色的球。

展示两盆中球的颜色、数量。

1、从1号盆里面任意摸出一个球,一定是红球吗?为什么?

学生讨论,教师巡视指导。

各小组都已讨论好了,谁想代表小组发言?(依次指名学生说)。

(依次板书:一定可能不可能)。

师:小朋友讨论得都非常好。下面,我们实际来摸一摸,验证一下。1号盆,谁来?(学生摸出3个后提问,如继续摸下去,结果怎么样?)。

2、从2号盆里任意摸一个呢?请小组讨论。

请学生摸一摸(摸出3个后提问,如继续措下去,能摸到红球吗?那可能摸出什么球?为什么?)(老师可根据盆里剩下的球随机提问,如:接下去可能摸出什么颜色的球?接下去一定能摸到什么球?……)。

3、活动小结。

(二)教学例题2。

`1、生活中有许多的“可能性”

例如:……(请学生举例几个)。

2、自已阅读书本例题2。

谁理解题目意思了,给大家解释一下。

独立完成。

3、汇报、讲评。

4、练习。

108页练习二十四第一题。

三、全课总结,课外延伸。

这节课我们学习了有关可能性的知识,把今天所学的知识和我们的生活联系起来,想一想生活中哪些事是一定会发生的,哪些事是不可能发生的,而哪些事是可能发生,也可能不发生的呢?你能举出一些例子,用“一定”“可能”、“不可能”说一说吗?请同学们先下位和你的好朋友说一说。(学生说)。

学生说完后全班交流。

教学内容:教材p106—107。

教学目的:

1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

2、通过实际操作活动,培养学生的动手实践能力。

3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。

教学重、难点:

能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

教学过程:

一、引入。

用自己的话说一说什么是“可能性”举例子说明。

今天我们继续学习关于“可能性”的知识。

二、实践探索新知。

1、教学例3(比较两种结果的可能性大小)。

(1)观察、猜测。

出示小盒子,展出其中的小球色彩、数量,(四红一蓝)。

如果请一位同学上来摸一个球,你们猜猜他会摸到什么颜色的球?

和同桌说一说,你为什么这样猜?

(2)实践验证。

学生小组操作、汇报实践结果。

汇总各小组的实验结果:几组摸到红,几组摸到了蓝色。

从小组汇报中你发现了什么?为什么会有这样的情况?

小结:摸到红色多,摸到蓝色的少,因为盒中球红多蓝少。

(3)活动体验可能性的大小。

小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。

活动汇报、小结。

实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝的次数比红多。

(4)小组实验结果比较。

比较后,你发现了什么规律?

出示多组的实验结果,虽然数据不一致,但呈现的规律是相同的。

(1)出示盒内球(一绿四蓝七红)。

(2)猜一猜,摸出哪种颜色的球可能性最大,摸出哪种颜色的球的可能性最小?为什么?

3、p106“做一做”

图中每种颜色进行了分割,此时学生可以用数份数的方法来看三种颜色所占的区域大小。

利用前面学过的分数的知识让学生说一说每种颜色占整个圆面的几分之几,为以后学习可能性的精确值做铺垫(因为概率与这些分数相等)。

人教版可能性教学设计篇十五

2、通过丰富的游戏活动和对生活中几种常见游戏(或现象)剖析与解释,使学生初步体会数学与生活的紧密联系。

体验事件发生的等可能性以及游戏规则的公平性,会用分数表示事件发生的可能性。

能按要求设计公平的游戏方案。

教、学具准备:cai课件;硬币;实验记录表;骰子;六个面上分别写上数字1-6的长方体等。

一、情境导入

师:同学们,你们看过足球比赛吗?还记得足球比赛开始前用什么方法决定哪个队先开球吗?请同学们看屏幕。

课件演示:如下图情境(教科书第99页的情境图)。

师:请观察图片,你们能不能说一说他们是用什么方法决定哪个队先开球的?

二、探究新知

1、动手实验,获取数据。

师:在开始实验之前,同学们要弄清楚实验要求哦,请看屏幕。

课件出示实验要求:1、抛硬币40次,抛硬币时用力均匀,高度适中;2、以小组为单位分别统计相关数据,填入实验报告单(如下表);3、小组成员分工协作,看哪个小组合作最好,完成得最快!

出现的情况正面朝上反面朝上总次数

出现次数

师:很好,我们要得到正面朝上的次数和反面朝上的次数,老师建议你们最好用画“正”字的方法来统计,那就动手开始实验吧!

师:大家做完实验了吗?请各个小组汇报实验结果。

课件出示统计表(如下表),根据学生的汇报教师填入数据。

小组正面朝上反面朝上总次数

1

2

3

4

5

合计

2、分析数据,初步体验。

师:请你们认真观察实验数据,发现正面朝上的次数和反面朝上的次数相等吗?

师:对,既有相等的也有不相等的,但正面朝上的次数和反面朝上的次数接近吗?

教师把所有小组的正面朝上次数、反面朝上的次数、总次数分别求和。

师:通过分析,我们发现正面朝上的次数和反面朝上的次数仍然是非常接近的。

3、阅读材料,加深体会。

师:如果我们继续抛下去,会是怎样的结果呢?历史上有很多数学家就做过抛硬币的实验。请看屏幕。

课件出示几位数学家的实验结果(如下表)。

数学家总次数正面朝上反面朝上

德摩根409220482044

蒲丰404020481992

费勒1000049795021

皮尔逊240001201211988

罗曼列夫斯基806403969940941

让学生观察数据,发现正面朝上次数和反面朝上次数很接近。

4、分数表示,科学验证。

师:对,它们的可能性相同的,你们能用一个分数表示它们相同吗?

师:通过做实验,你们认为抛硬币决定谁先开球公平吗?为什么?

三、应用拓展

师:好,请看第一题,正方体的各面分别写着1、2、3、4、5、6.掷出每个数的可能性都是……?(出示教科书练习二十第1题)

课件出示方案一(如下图):转盘上红色占一半,蓝色、黄色各占。

方案一

师:你们觉得这个转盘设计得公平吗?

师:既然大家都认为这个转盘不公平,那怎样设计转盘才公平呢?

师:就按照你们的修改意见,改成三种颜色各占的转盘。

课件出示方案二(如下图)。

方案二

师:设计好转盘后,我们就开始转动转盘决定哪个组来回答第一题,好吗?

转动转盘,决定哪个组回答。

2、师:恭喜你们获得了第一面红旗。我们看下一题,指针停在这四种颜色区域的可能性各是多少?(课本练习二十第2题的第1题)

人教版可能性教学设计篇十六

1.关注学生的亲身体验,创设学生熟悉和感兴趣的问题情境。

“实践出真知”,在亲身体验和动手实践中获得的认知才是最真切的。教材首先创设了元旦联欢会抽签表演节目的情境,让学生在抽签活动中初步体会事件发生的确定性和不确定性,然后让学生通过“摸棋子”的试验进一步体会事件发生的确定性和不确定性,这样收到的效果胜过单纯地说教。

2.关注学生的情感体验,创设宽松和谐的学习氛围。

《数学课程标准》中将发展学生的情感、态度放在了与发展学生的知识技能同等重要的位置,体现了现代教育新的理念。本节教学设计创设了一些有用而且有趣的情境,激发了学生对知识的渴求,使他们享受从事数学活动的喜悦,使每位学生在动手实践、解决问题的过程中都能获得成就感。

教师准备ppt课件。

学生准备1个纸盒、4个红棋子、1个蓝棋子。

课件出示“乌鸦喝水”的三幅图,请学生用“一定”“可能”和“不可能”分别说一说这三幅图上的故事。

师:在日常生活中,有些事件不能确定它发生的结果,有些事件能确定它发生的结果,类似的例子还有很多。这节课就让我们一起来研究事件发生的可能性。(板书课题)。

设计意图:“乌鸦喝水”是小学语文一年级课本中的一篇文章,是学生耳熟能详的故事。借助这个故事,让孩子们用“一定”“可能”和“不可能”进行描述,可以充分了解他们对“一定”“可能”和“不可能”这三个词语的理解以及孩子们对可能性知识的已有认知水平。

1.教学主题图。

(2)小组讨论后,派代表汇报。

小结:每名同学表演什么节目是不确定的,因为有些事件的发生具有不确定性。

(1)观察图(1),请学生说说图意。

师:三张卡片分别写着唱歌、跳舞、朗诵,小明可能会抽到什么节目?

预设生1:可能是唱歌。

生2:也可能是朗诵。

生3:三种情况都有可能。

师:小明抽到三种情况都有可能,这说明了什么?

(事件的不确定性)。

人教版可能性教学设计篇十七

1、认识1格表示1个单位的条形统计图,经历简单数据的统计过程,会制作简单的统计图,能根据统计表和统计图回答一些简单的数学问题。

2、培养学生统计的操作能力和解决问题的能力。

会进行数据的统计,会制作统计图,能解决简单的实际问题。

数据的统计过程。

教师活动学生活动。

一、近视眼发病率。

1、出示明光小学20xx年一年级至六年级近视眼发病情况统计表。

2、制作统计图。

(1)先让学生观察这张统计图,说一说统计图的横行表示什么?竖列表示什么?

(2)观察竖列,看一看一格表示几?

(3)要求。让学生说说在制作统计图的过程需要注意些什么,有什么要提醒大家的?

3、回答问题。

(1)问题:几年级的发病人数最多,达到()人。

(2)问题:全校的近视眼人数共多少人?要求学生列式计算。

(3)问题:六年级发病人数是一年级的几倍?要求学生列式计算。

二、1分钟跳绳。

1、出示三(1)班男同学1分钟跳绳的成绩情况。

2、统计数据。

有的学生可能说通过同桌合作完成,也有学生可能一个一个进行统计……。

(2)建议大家同桌合作完成:一个学生报成绩,另一个学生用“正”字的方法进行统计。

(3)交流统计的结果。

3、制作统计图。

(1)观察统计图的横行和竖列分别表示什么?1格代表几?

4、回答问题。

(1)问题:三(1)班男同学跳绳成绩最好的是几号同学,跳了几个?

让学生观察这张统计表,说一说你看了以后想要发表什么意见或建议?

学生独立制作统计图。完成后先与同桌进行交流,然后再集体交流。

学生独立完成后汇报。

让学生说一说看到这些数据后你有什么感想?

(1)让学生思考通过怎样的方式对这些数据进行统计?

让学生思考:如何检验统计的结果是否正确:把统计结果的人数加起来看是否等于原先的人数。

独立完成其制作。完成后同桌交流,再集体交流。

2

1、根据统计表,解决一些简单的问题;知道事件发生的不确定性,能够列举结果,并能描述事件发生的可能性大小。

2、培养学生的思维能力和解决问题的能力。

解决问题,在可能性中能列举结果和可能性的大小。

解决实际问题。

教师活动学生活动。

一、回收报纸的.统计表。

1、出示三(1)班同学回收废报纸的情况统计表。

2、根据统计表回答问题。

(1)问题:全班共回收报纸多少千克?

要求学生列式完成。

25+28+30+18+24+25=150(千克)。

(2)问题:平均每个小组回收废报纸多少千克?

(3)问题:如果每千克废报纸值6角,这次回收的共值多少元?

在解决过程中,引导学生注意单位的换算。

150×6=900(角)=90(元)。

(4)你还能提出哪些数学问题?

二、掷小正方体。

2、实验。每个同学抛20次,并记录每次出现的数字,记在书上。

6、观察这些数据后,你想说说什么?

三、摸一摸、猜一猜。

1、口袋里有一个红球和一个黄球,从中任意拿出一个球,可能是什么球?

2、口袋里有8个红球和2个黄球,从中任意拿出一个球,拿出什么球的可能性大些。

要求学生列式完成:

150÷6=25(千克)。

学生讨论汇报。

要求学生能够罗列出现的结果。

学生操作,教师巡视。

3、个人汇总。将自己抛了20次的结果进行汇总,出现每个数字的次数分别是多少次。

4、小组汇总。每个小组的成员将自己的结果汇报给小组长,小组长进行统计。

5、全班汇总。教师对每个小组的情况进行全班汇总,将结果出示在黑板上。

人教版可能性教学设计篇十八

2、小结:生活里可能性的事情还有很多很多,有些事情一定会发生,有些事情可能会发生,有些事情不可能会发生。希望同学们做生活中的有心人,找一找生活中的可能性。

共5课时总第55课时。

教学目标:

1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

2、通过实际操作活动,培养学生的动手实践能力。

3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。

教学过程:

一、复习引入。

1、用自己的话说一说什么是“可能性”举例子说明。

2。、谈话导入:今天我们继续学习关于“可能性”的知识,板书课题。

二、探究体验。

1、出示例3,观察、猜测。

(1)出示小盒子,展出其中的小球色彩、数量(四红一蓝)。

(2)如果请一位同学来摸一个球,你们猜猜他会摸到什么颜色的球?

(3)和同桌说一说,你为什么这样猜?

2、实践验证。

(1)学生小组操作、汇报实践结果。

(2)汇总各小组的实验结果:几组摸到红,几组摸到了蓝色。

(3)从小组汇报中你发现了什么?为什么会有这样的情况?

(4)小结:摸到红色多,摸到蓝色的少,因为盒中球红多蓝少。

(1)小组成员轮流摸一个球,记录它的颜色,再放回去,重复20次。

(2)活动汇报、小结。

(3)实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝的次数比红多。

4、小组实验结果比较。

(1)比较后,你发现了什么规律?

(2)展示多组实验结果,虽然数据不一致,但呈现的规律是相同的。

三、实践应用。

1、完成p106“做一做”

(1)学生可以用数份数的方法来看三种颜色所占的区域大小。

(2)利用分数的知识让学生说一说每种颜色占整个圆面的几分之几,为以后学习可能性的精确值做铺垫(因为概率与这些分数相等)。

2、生独立完成p109第4、5题,然后集体讲解交流。

四、全课总结。

1、通过今天的学习,你学到了什么新的知识?

2、师总结。

共5课时总第56课时。

教学目标:

1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

2、通过实际操作活动,培养学生的动手实践能力。

3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。

教学过程:

一、引入。

2、谈话导入,揭示板书课题。

二、探究体验。

(1)出示盒内球(一绿四蓝七红)。

(3)学生小组操作、汇报实践结果。

(4)汇总各小组的实验结果:几组摸到红色,几组摸到了蓝色,几组摸到了绿色?

(5)从小组汇报中你发现了什么?为什么会有这样的情况?

(6)师生齐小结。

(1)每小组一个封口不透明袋子,内装红、黄小球几个。(学生不知数量、颜色)小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。

(2)活动汇报、小结。

(3)袋子里的红球多还是黄球多?为什么这样猜?小组内说一说。

(4)总数量有10个球,你估计有几个红,几个黄?

(5)开袋子验证。

三、实践应用。

1、生独立完成p107“做一做”,集体汇报交流。

2、生分小组完成p109第6题。

(1)学生说说掷出后可能出现的结果有哪些?猜测实验后结果?

(2)实践、记录、统计。

(3)小组讨论:从统计数据中发现什么?

(4)小结:两种结果出现的可能性是相等的。

3、生独立完成p109第7题。

四、全课总结。

1、通过今天的学习,你学到了什么新的知识?

2、师总结。

共5课时总第57课时。

教学目的:

1、通过练习让学生进一步感受可能性,知道事件发生的可能性是有大小的。

2、通过实际操作活动,培养学生的动手实践能力,合作交流能力。

3、巩固本单元知识。

教学过程:

一、复习导入。

1、按要求说一说盒子里是什么颜色的球?

(1)摸出的一定是红色。

(2)摸出的不可能是绿色。

2、谈话导入,板书课题。

二、探究体验。

1、完成练习二十四第8题。

(1)生分组进行掷骰子游戏。

(2)全班汇报交流,使学生进一步感受事件发生的等可能性。

2、完成练习二十四第9题。

(1)通过有趣的抽签游戏,让学生体会不确定事件发生的可能性的大小。

(2)让学生用“最不可能”和“最有可能”说一说其他两个事件发生的可能性。

3、完成练习二十四第10题。

(1)出示四个盒子,生猜硬币在哪个盒子里。

(2)简单统计猜测情况。

(3)揭示结果。

(4)说说为什么猜错的比猜对的多。

三、实践应用。

1、完成练习二十四第11题。

(1)开放题,学生会有多种涂法,只要涂色后正方体的红面比蓝面多就可。

(2)小组合作,说一说自己的想法和实验情况,在全班交流。

2、独立完成练习二十四第12题。

四、全课总结。

1、通过今天的练习,你有什么新的收获?

2、师总结。

教学反思:

人教版可能性教学设计篇十九

1、学生初步体验有些事件的发生是确定的,有些则是不确定的。

2、能结合已有的经验对一些事件的可能性用一定、可能、不可能作出判断,并能简单地说明理由。

3、培养学生的表达能力和逻辑推理能力。

重点是让学生初步体验事件发生的可能性。难点是用一定、可能、不可能等词语来描述生活里的事情。

学具:红色、黄色纸牌各一张。

活动一:老师这儿有两个神秘的口袋,1号和2号,每个口袋里有6个球。老师请12个小朋友分两组来摸,看谁能摸到代表幸运的红球。在摸的过程中引导“怎么第一组的小朋友个个那么幸运,每人都能摸到红球呢?这两个口袋里究竟有什么秘密呢?哪个小朋友敢猜一猜?打开口袋验证。并小结:1号口袋里全是红球,所以任意摸一个球一定是红球,2号口袋里没有红球所以任意摸一个不可能是红球。(板书:一定不可能)。

继续观察2号口袋里面的球,想一想,任意摸一个,会摸到什么颜色的球?(板书:可能)。

活动二:小朋友,通过刚才的摸球游戏,我们学会了用一定、可能、不可能来交流结果。下面我们继续来玩游戏。打开课件竞猜一栏,玩举牌游戏。

1、一定能摸出黄色的球。

2、可能摸出黄色的球,可能摸出红色的球。

3、不可能摸出黄色的球。

活动三:选取生活中的事例来做一下判断。

1、下周五会下雨吗?

2、今天是4月2日,明天是4月3日。

3、从小不好好学习,长大了成为科学家。

4、因为破环了环境,地球上的人类都消失了。

活动四:讨论。

1、什么事情一定会发生?

2、什么事情可能发生?

3、什么事情不可能发生?

1、箱子里要放4个球,摸到黄球有奖,该怎么放?

通过这节课的学习你有什么收获?(学生交流)。

作业:练习册自练自测。

【本文地址:http://www.xuefen.com.cn/zuowen/14491460.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档