教案需要具备明确的教学目标和清晰的教学步骤。教案的编写需要与学校的教学大纲和教学要求相匹配,确保教学的有效性和可操作性。以下是小编为大家收集的教案范文,仅供参考,希望能给大家一些启发。
倍数与因数教案篇一
(非零自然数中)。
1×36=3636÷1=3636÷36=1。
2×18=3636÷2=1836÷18=2。
3×12=3636÷3=1236÷12=3。
4×9=3636÷4=936÷9=4。
6×6=3636÷6=6。
36的因数有:1、2、3、4、6、9、12、18、36.
倍数与因数教案篇二
学生交流几种不同的摆法。随着学生交流一一演示。
师:12个同样大小的正方形能摆出不同的的长方形,可以用乘法算式来表示。千万别小看这些乘法算式,我们这节课的研究就从这些算式中开始。我们就以最后一道乘法算式为例,(板书:3×4=12,3和4在乘法算式叫(因数),那12呢?(积)因为:3×4=12,我们可以说3是12的因数,那4(也是12的因数,),3和4都是12的因数,反过来呢?12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力。这就是我们今天所要研究的两个重要的概念:因数与倍数。(板书课题)(齐说3、4、12)。
师:刚才这位同学的发言就象绕口令,你们听明白了吗?谁再来说说?
(4)质疑:如果我说12是倍数,1是因数,行吗?引导学生说出12是谁的倍数,1是谁的因数。
小结:倍数和因数是指两个数之间的关系,所以不能单独说谁是倍数,谁是因数。一定要说“谁是谁的倍数,谁是谁的因数。”
(5)举例内化。
1、同桌出题互说。
师:你能写一道乘法算式,让同桌说说( )是( )的倍数,( )是( )的因数吗?生汇报。
2、老师根据学生出的一道乘法算式随机得到一道除法算式让学生说一说:( )是( )的倍数,( )是( )的因数。
小结:看来,乘法算式和除法算式中都存在着倍数和因数关系。
师指明:,为了研究方便,我们在说倍数和因数时,所说的数一般指不是0的自然数。因此以后小数与分数就不讨论因数倍数关系。
(3)、小结:好了,刚才我们已经初步研究了因数和倍数,下面我们进一步来研究因数和倍数。
二、创设情境,自主探究找因数和倍数的方法.
(一)探索找因数的方法。
生说略。还有补充的吗?能不能说3是20的因数?
师:3、18、36都是36的因数,只有这3个吗?(1、2、……)。
师:看来要找出36的一个因数并不难,难就难在你能不能把36的所有因数既不重复又不遗漏地全部找出来呢?因为这个问题有点难度,你可以独立完成也可以同桌合作完成,请你选择你喜欢的方式,找出36的所有因数,想一想怎么找不会遗漏?如果你全部找到了,填在作业纸的横线上。同时将你找因数的方法写在横线的下方框内。
生写后小组内交流。学生填写时师巡视搜集作业。
2、交流作业。(略)。
出示学生的不同作业。交流找因数的方法。
师:出示36的因数有:1、36;2、18;3、12;4,9;6。
你知道这个同学是怎样找出36的因数的吗?看着这个答案你能猜出一点吗?
生:他是有规律,一对一对找的,哪两个整数相乘得36,就写上。
师:找到什么时候为止?那为什么算到6,你们就不往后找了呢?相同的只写一个6。
师:他是用乘法找的,其他同学还有补充吗? 。
师:老师发现不管是用乘法还是用除法,你们都是从几开始的啊?为什么?(板书:有序)。
师:36的因数还可以这样表示。(小黑板:板书集合圈图)。
4、启迪思考。
师:现在你找一个数的因数有办法了吗?怎样才能有序地、既不重复、又不遗漏地找出一个数的所有因数呢?在小组里说一说。
学生想到的方法可能是:从小到大找;一对一对找;找到两个数接近为止。
3、学生小结。好,我们已经说了那么多,谁能完整地说一说?
4、尝试练习:
5、发现一个数因数的特征。
师:刚才我们找了36、20、18和5的因数,请大家仔细观察这4个数的所有因数。你发现这些数的因数有什么共同的特点?把你的发现告诉小组里的同学。
(先思考,再交流)还有吗?36的因数除了这些还有吗?说明一个数因数的个数是(有限的)(板书)。
四、巩固练习。
1、判一判。(小黑板出示)。
2、填一填。
倍数与因数教案篇三
1、理解倍数和因数之间的关系是相互依存的。
2、根据具体的问题情景,能正确确定某个非零自然数的所有因数。
3、使学生体味数学的趣味性,激发学生对数学的探究热情。
理解倍数和因数之间的关系是相互依存的,能正确求一个数的倍数和因数。
能正确有序求一个数的倍数和因数。
师:同学们,在我们的日常生活中,人与人之间存在着许多相互依存的关系,如:丁爸是丁丁的爸爸,丁丁是丁爸的儿子。丁哥是丁丁的哥哥,丁丁是丁哥的弟弟。其实在我们的数学王国里,数与数之间也存在着这种相互依存的关系,请看大屏幕,认识这些数吗?(课件出示:0,1,2,3,4,5)。
生:自然数。
(课件去“0”)。
(研究范围:非零自然数中)。
(一)找一个数的因数。
1、(课件出示例1情境图)。
师:请看大屏幕,这是36人列队操练,每排人数要一样多,可以怎样排列?同学们可以先同桌讨论,作好记录,再汇报。(引导生说:可以站几排,每排站几个。)。
根据这些信息我们能列出哪些乘法算是呢?
板书:1×36=362×18=363×12=364×9=366×6=361。
师:在4×9=36这个算式中,4和9叫什么?(因数)36是?(积),这是我们以前学的乘法各部分名称。其实,在整数乘法中,因数和积之间还存在一种相互依存的关系,也就是说4是36的因数,36是4的倍数。,同样,在这个算式中,我们还可以说9是36的?(因数),36是9的?(倍数)。
2、谁能像老师这样,说一说3×12=36他们之间的关系。(先请一个学生站起来说一说)。
4、你能根据左边的乘法算式写出相应的除法算式吗?(师根据生的回答板书)。
我们现在就以36÷4=9为例,你能从这个除法算式中说一说谁是谁的倍数,谁是谁的因数?(说好后再让学生逐个说出除法算式中的关系)。
5、刚才同学们都说4是36的因数,那能单独说4是因数吗?(生发表意见)。
到底可以不可以这样说,请看大屏幕,(课件出示:4×9=362×2=4),请你说说4是倍数还是因数?(课件着重强调数字“4”)。
引导学生说:第一个式子中,4是36的因数,第二个式子中4是2的'倍数。(课件出示结果)。
师:从刚才的回答中你明白了什么?(引导生知道:因数和倍数是相互依存的,不能单独存在)。
6、师:下面,请同学们看这个式子,说一说谁是谁的倍数,谁是谁的因数。(课件出示:4×5=2014÷3=53+6=96-4=20.3×2=0.6)。
生回答后,引导生知道:通过后三个算式使生进一步理解,倍数和因数都是建立在乘法或除法的基础之上的,他们的研究范围在非零自然数中。
7、你能根据上面所写的乘法算式或除法算式说出36的所有因数吗?
师;那么你知道怎样找一个数的所有因数呢?(同桌商讨后,指名回答,课件出示。)。
找一个数的所有因数时,可以先写出用这个数作积的所有乘法算式,或者写出用这个数作被除数的所有除法算式,再写出它的所有因数。注意,最好按照顺序从小到大来写,这样不容易遗漏。
8、师:现在,我们来练习一下。同学们分组有序的找出15、16、24、25的所有因数吗?打开练习本,快速的写出来,开始。(师巡视指导困难学生)。
写完后生汇报,并说出你是怎样找出它们的因数的,课件出示。
9、引导归纳概括一个数的因数的特点。
师:看来同学们已经充分掌握了找一个数因数的方法,观察刚才我们找的这些数的因数,你有什么发现吗?(出示合作学习要求和目的)下面请小组合作,仔细观察、比较我们找出的这些数的因数,你从这几个例子中发现了什么?请把你的发现和小组的成员说一说,注意:当一个同学在说的时候,其他成员一定要认真听,不要打断别人的发言,开始。
(二)找一个数的倍数。
1、师:找了这么多数的因数,现在我们来找一个数的倍数,好不好?
(课件出示例2)。
生写,师巡视。
2、指明汇报后,并说出你是如何找一个数的倍数的?
归纳(出示找一个数的倍数的方法):找一个数的倍数从它本身开始,用非零自然数1,2,3···去乘,就可以得到。
那请大家观察这些数的倍数,你又能发现什么呢?同桌两个先互相说一说,开始吧。
生发言。
4、引导学生发现:一个数的倍数个数是无限的,其中最小的倍数是它本身,没有最大的倍数。(课件出示)。
师;同学们认识了倍数和因数,探索了因数和倍数的特点,并且能正确求一个数因数和倍数的,其实,这些这些知识就在课本125、126页,打开书本,看一看书上的老师是如何说的,并把需要填写的部分填写以下。
这节课同学们通过自己的努力又发现了数学海洋里的新知识,真让老师感到开心,在我们今后的学习中希望大家继续带着这些热情和精神去探索、去发现。
书本127页练习二十1、2、3题(课件出示)。
(非零自然数中)。
1×36=3636÷1=3636÷36=1。
2×18=3636÷2=1836÷18=2。
3×12=3636÷3=1236÷12=3。
4×9=3636÷4=936÷9=4。
6×6=3636÷6=6。
36的因数有:1、2、3、4、6、9、12、18、36.
倍数与因数教案篇四
学生交流几种不同的摆法。随着学生交流一一演示。
师:12个同样大小的正方形能摆出不同的的长方形,可以用乘法算式来表示。千万别小看这些乘法算式,我们这节课的研究就从这些算式中开始。我们就以最后一道乘法算式为例,(板书:3×4=12, 3和4在乘法算式叫(因数),那12呢?(积)因为: 3×4=12,我们可以说3是12的因数,那4(也是12的因数,),3和4都是12的因数,反过来呢?12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力。这就是我们今天所要研究的两个重要的概念:因数与倍数。(板书课题) (齐说3、4、12)
师:刚才这位同学的发言就象绕口令,你们听明白了吗?谁再来说说?
(4)质疑:如果我说12是倍数,1是因数,行吗?引导学生说出12是谁的倍数,1是谁的因数。
小结:倍数和因数是指两个数之间的关系,所以不能单独说谁是倍数,谁是因数。一定要说“谁是谁的倍数,谁是谁的因数。”
(5)举例内化
1、同桌出题互说。
师:你能写一道乘法算式,让同桌说说( )是( )的倍数,( )是( )的因数吗?生汇报。
2、老师根据学生出的一道乘法算式随机得到一道除法算式让学生说一说:( )是( )的倍数,( )是( )的因数。
小结:看来,乘法算式和除法算式中都存在着倍数和因数关系。
师指明:,为了研究方便,我们在说倍数和因数时,所说的数一般指不是0的自然数。因此以后小数与分数就不讨论因数倍数关系。
(3)、小结:好了,刚才我们已经初步研究了因数和倍数,下面我们进一步来研究因数和倍数。
(一)探索找因数的方法
生说略。还有补充的吗?能不能说3是20的因数?
师:3、18、36都是36的因数,只有这3个吗?(1、2……)
师:看来要找出36的一个因数并不难,难就难在你能不能把36的所有因数既不重复又不遗漏地全部找出来呢?因为这个问题有点难度,你可以独立完成也可以同桌合作完成,请你选择你喜欢的方式,找出36的所有因数,想一想怎么找不会遗漏?如果你全部找到了,填在作业纸的横线上。同时将你找因数的方法写在横线的下方框内。
生写后小组内交流。学生填写时师巡视搜集作业。
2、交流作业。(略)
出示学生的不同作业。交流找因数的方法。
师:出示36的因数有:1、36;2、18;3、12;4,9; 6
你知道这个同学是怎样找出36的因数的吗?看着这个答案你能猜出一点吗?
生:他是有规律,一对一对找的,哪两个整数相乘得36,就写上。
师:找到什么时候为止? 那为什么算到6,你们就不往后找了呢?相同的只写一个6。
师:他是用乘法找的,其他同学还有补充吗?
生:可以用除法找。用36除以1得36,36和1就是36的因数。再用36除以2……
师:老师发现不管是用乘法还是用除法,你们都是从几开始的啊?为什么?(板书:有序)
师:我也是跟你们一样很有顺序,从1开始找的`。我们一起来写出36的因数,好吗?根据算式,一对对找,找到了1就找到了36,找到了2就找到了18,依此类推,按从小到大的顺序排列。(板书:36的因数有:1、2、3、4、6、9、18、36。) 写的时候可以一头一尾地写。这样也可以做到答案的有序性。
师:36的因数还可以这样表示。(小黑板:板书集合圈图)
4、启迪思考。
师:现在你找一个数的因数有办法了吗? 怎样才能有序地、既不重复、又不遗漏地找出一个数的所有因数呢?在小组里说一说。
学生想到的方法可能是:从小到大找;一对一对找;找到两个数接近为止。
3、学生小结。好,我们已经说了那么多,谁能完整地说一说?
4、尝试练习:
5、发现一个数因数的特征
师:刚才我们找了36、20、18和5的因数,请大家仔细观察这4个数的所有因数。你发现这些数的因数有什么共同的特点?把你的发现告诉小组里的同学。
(先思考,再交流)还有吗?36的因数除了这些还有吗?说明一个数因数的个数是(有限的)(板书)
师(小结):一个非零自然数的最小因数是1,最大因数是它本身,因数的个数是有限的。
1、判一判。(小黑板出示)
2、填一填。
倍数与因数教案篇五
一、引入新课。
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12。
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)。
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。
师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)。
齐读p12的注意。
二、新授:
(一)找因数:
1、出示例1:18的因数有哪几个?
学生尝试完成:汇报。
(18的因数有:1,2,3,6,9,18)。
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)。
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:1,2,3,4,6,9,12,18,36。
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)。
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)。
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的一定是(),而最大的一定是()。
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示:如。
18的因数。
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……。
师:为什么找不完?
你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍数最小是几?最大的你能找到吗?
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报3的倍数有:3,6,9,12。
师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……。
你是怎么找的?(用3分别乘以1,2,3,……倍)。
5的倍数有:5,10,15,20,……。
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示。
2的倍数3的倍数5的倍数。
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)。
三、课堂小结:
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
四、独立作业:
完成练习二1~4题。
倍数与因数教案篇六
1.使学生初步掌握2、5的倍数的特征。
2.使学生知道奇数、偶数的概念。
能力目标。
1.会判断一个数是否能被2、5整除。
2.会判断奇数、偶数。
3.培养类推能力及主动获取知识的能力。
情感目标。
激发学生的学习兴趣。
倍数与因数教案篇七
1、通过“活动建构”,使学生领会因数和倍数的意义;通过独立思考、交流谈论,初步掌握求一个数所有因数的方法。
2、在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。
3、通过教学,让学生从中感受到数学思考的魅力,体验到数学学习的乐趣。
倍数与因数教案篇八
第四课时。
:1、经历探索3的倍数特征的过程,理解3的倍数的特征,能正确判断一个数是不是3的倍数。
2、在观察、猜测和小组合作学习讨论的过程中,提高探究问题的能力。
:1、经历探索3的倍数特征的过程,理解3的倍数的特征,能正确判断一个数是不是3的倍数。
2、在观察、猜测和小组合作学习讨论的过程中,提高探究问题的能力。
:图片。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)。
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)。
师:请观察这个表格,你发现3的倍数什么特征呢,把你的发现与同桌交流一下。
学生同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9能被3整除。
生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。
生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的数有规律吗?
生:也没有规律,1~9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?
生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这是一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。
生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。
学生先自己写数并验证,然后小组交流,得出了同样的结论。
练习:第7页的1、2题。
个性化教学思路。
:学生的判断方法就很多样了,学生对后面的这种方法接受很快,也很乐意运用。但在实际作业中,我感到学生对3的特征的运用不是很主动,不象2和5的特征来得快,似乎有些想不到。因此,要加强练习。
倍数与因数教案篇九
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的.方法,提高推理能力。
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。
活动1:利用数的奇偶性解决一些简单的实际问题。
让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。
本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。
活动2:探索奇数、偶数相加的规律。
[板书设计]。
数的奇偶性。
12+34=48偶数+偶数=偶数。
11+37=48奇数+奇数=偶数。
12+11=23奇数+偶数=奇数。
倍数与因数教案篇十
(1)能直接在方格图上,数出相关图形的面积。
(2)能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。
2、过程与方法
(1)在解决问题的过程中,体会策略、方法的多样性。
(2)学会与人交流思维过程与结果。
3、情感态度与价值观
积极参与数学学习活动,体验数学活动充满着探索、体验数学与日常生活密切相关。
1、重点是指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。难点是灵活运用方法。
2、借助图形,让学生动手,自主探索、合作交流解决问题的方法。
一、创设情境、揭示新课。
我要说班里每位同学都是优秀的设计师!因为大家都在设计着自己美好的将来,所以在很用功的学习。希望大家继续努力,使自己美好的设计成为现实。下面我们来看一看,我们的同行——一位地毯图案设计师,设计的图案。
展示地毯上的图形,让学生仔细观察图形特点,说发现。
地毯是正方形,边长为14米蓝色部分图形是对称的,……
师:看这副地毯图,请你提出数学问题。
根据学生的回答展示问题:“地毯上蓝色部分的面积是多少?”
师板书课题:地毯上的图形面积
二、自主探索、学习新知
如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?
1、学生独立解决问题
要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。
2、小组内交流、讨论
3、班内反馈
请学生汇报蓝色部分面积,重点汇报求蓝色面积的方法。对于每一种方法,只要学生说得合理都给以肯定。
学生的答案也许有:
(1)直接一个一个地数,为了不重复,在图上编号;(数方格法)
(2)因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4;(化整为零法)
(3)用总正方形面积减去白色部分的面积;(大减小法)
(4)将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)
4、学生总结求蓝色部分面积的方法。
三、巩固练习、拓展运用(课本第19页练一练)
1、第1题
(1)学生独立思考,求图1的面积。
(2)说一说计算图形面积的方法。引导学生了解“不满一格的当作半格数”。
2、第2题
独立解决后班内反馈。
3、第3题
(1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。
(2)学生观察结果,说发现。
第(1)题的4个图形面积分别为1、2、3、4的平方数;第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形 面积的一半。
四、全课小结,课后拓展
今天我们进行了那些活动,你收获了什么?
师:对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。如果没有方格图,我们该怎样解决一些图形的面积呢?明天的数学课上我们将继续学习。课后,有兴趣的同学可以在空白方格纸上设计一些你喜欢的图案,让你的同桌帮你算一算图案的面积。
倍数与因数教案篇十一
1、使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。
2、培养学生观察、比较、抽象、慨括的能力。
3、培养学生自主探究的精神和独立思考的能力。教学重点:质数和合效的概念。
质数、台数、济数、偶数的区别
给教室里的人分类。体会:同样的事物,依据不问的分类标准,可以有多种小_的分类方法。明确:分类的际准很重要。
说一说,在我们学习的空间,你可以得到那些数?(要求与同学说的尽也不重复)
给这些自然数分类。根据自然数能不能被2整除,可以分成新数和偶数两类。
板书对应的集合图。
自然数
(能不能被2整除)
把学生列举的数填写在对应的集合圈里。
问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)
说明:这是一种有价值的分类方法,在以后的学习中很有用。
问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?
今天我们就用找约数的方法来给自然数分类。
复习:什么叫约数?怎样找一个数所有的约数?
同桌合作。找出列举的各数的所有的约数。(同时板演)
引导学生观察:观察以上各数所含的数的个数,你能把它们分成几种情况‘!
根据学生的回答板书。
自然数
(约数的个数)
(只有两个约数)(有3个或3个以上的约数)
引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。
明确:这是一种新的分类方法。看厂集合圈,你想说什么?(学生看图说自己的想法,巩固寺数阳台数的知识)
猜一猜:奇数有多少个?合数呢?
明确:因为自然数的个数是无限的,所以,新数阳偶数的个数也是无限的。运用新知,解决问题。
出示例1下面各数,哪些是质数?哪些是合数?
15 28 31 53 77 89 1ll
学生独立完成。
问:你是怎么判断的?
明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。
说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。
完成练一练。
1、坚持下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。
22 29 35 49 51 79 83
2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)
学生操作后,提问:剩下的都是什么数?
告诉学生:古代的数学家就是用这样的方法来找质数的。
学到这里,一种新的分类方法,你掌握了吗?学生回答:相机揭示课题,质数和合数
讨论:质数、合数、奇数、偶数之间是这样的关系呢?
(略)。
倍数与因数教案篇十二
苏教版义务教育教科书《数学五年级下册第47~48页整理与练习“回顾与整理”和“练习与应用”第1~7题。
1.使学生加深认识因数和倍数,能找一个数的因数或倍数,进一步认识质数和合数;掌握2、5、3的倍数的特征,进一步认识偶数和奇数;加深理解质因数,能正确分解质因数。
2.使学生能整理因数和倍数的知识内容,感受知识之间的内在联系;能应用相关概念进行分析、判断、推理,进一步掌握思考、解决数学问题的方法,积累数学思维的初步经验,提高分析、推理、判断等思维能力;加深对数的认识,进一步发展数感。
3.使学生主动参与回顾、整理知识和分析、解决问题等活动,培养乐于思考的品质和与同伴互相交流、倾听等合作意识和能力;感受数学方面的知识积累和进步,提高学好数学的自信心。
整理、应用因数和倍数的知识。
应用概念正确判断、推理。
一、揭示课题
谈话:最近的数学课,我们学习了哪方面的内容?回忆一下,都学到了哪些知识?
揭题:我们已经学完了因数和倍数这一单元的内容,今天开始主要整理与练习这一单元内容。(板书课题)通过整理与练习,我们要进一多认识因数与倍数,2.5.3的倍数的特征,能熟练掌握找一个数的因数或倍数的方法;能判断偶数和奇数、质数和合数,了解这些概念之间的联系与区别,能正确分解质因数,提高对数的特征的认识,加深对数的认识。
二、回顾与整理
1.回顾讨论。
出示讨论题:
(1)你是怎样理解因数和倍数的?举例说明你的认识。
(2)2、5、3的倍数有什么特征?我们是怎样发现的?
(3)自然数可以怎样分类,各能分成哪几类?举例说说什么是质因数和分解质因数。
(4)什么是两个数的公因数和最大公因数,公倍数和最小公倍数?
让学生在小组里讨论,结合讨论适当记录自己的认识或例子。
2.交流整理。
围绕讨论题,引导学生展开交流,结合交流板书主要内容。
(1)提问:能说说什么是因数和倍数吗?可以用例子说明。(结合交流板书一两个乘法或除法算式)
(指名学生说一说,再集体说一说)
你能找出6的因数吗?(板书因数)6的倍数呢?(板书倍数)
能说说找一个数的因数或倍数的方法吗?
说明:一个数的因数可以从小到大一对一对地找,到中间两个因数之间没有因数为止;一个数的倍数可以用依次乘1、2、3……这样的方法找,注意一个数的倍数是无限的,写一个数的倍数要注意用省略号。
(2)提问:2、5、3的倍数各有什么特征?我们是怎样发现的?
自然数可以怎样分类,各可以分成哪几类?
你能举出偶数和奇数、质数和合数的一些例子吗?(学生举出各类数的例子)
说明:按是不是2的倍数可以把自然数分成偶数和奇数两类,是2的倍数的是偶数,不是2的倍数的是奇数;按因数的个数可以把自然数分成1和质数、合数三类,只有两个因数的是质数,有两个以上因数的是合数,1既不是质数也不是合数。
什么是质因数和分解质因数?6有哪些质因数?怎样把6分解质因数?(板书式子,并说明其中的质因数)
(3)提问:什么是公因数和最大公因数,什么是公倍数和最小公倍数?
说明:两个数公有的因数叫公因数,其中最大的叫最大公因数;两个数公有的倍数叫公倍数,其中最小的叫最小公倍数。
结合交流内容,逐步板书成:
l
质数质因数
合数分解质因数
因数公因数最大公因数
(互相依存)
倍数公倍数最小公倍数
2、5、3的倍数的特征
偶数
奇数
(4)引导:请同学们现在观察我们整理的这一单元学过的内容,了解知识之间的联系,同桌互相说说知识是怎样发展的。
学生互相交流,教师巡视、倾听。
交流:哪位同学能看黑板上整理的内容,说说我们怎样逐步认识这些知识的,知识是怎样发展起来的。
三、练习与应用
1.做“练习与应用”第1题。
指名学生交流,说说每组里因数和倍数关系。
提问:3和7有没有因数和倍数关系?为什么没有?
2.做“练习与应用”第2题。
(1)让学生独立写出前四个数的所有因数,指名两人板演。
交流:你是怎样找它们的因数的?(检查板演题)
(2)口答后三个数的因数。
引导:能说出后面每个数的全部因数吗?(学生口答,教师板书)
提问:一个数的因数有什么特点?
说明:一个数因数的个数是有限的,最小的是1.最大的是它本身。
3.分别说出下面各数的倍数。
581217
分别指名学生说出各数的倍数,教师板书。
提问:为什么要写省略号?一个数的倍数有什么特点?
说明:一个数倍数的个数是无限的,最小的是它本身,没有最大的倍数。
4.做“练习与应用”第3题。
(1)让学生独立完成填数。
交流:题里各是怎样填的?(呈现结果)填数时怎样想的?
提问:哪些数既是3的倍数,又是5的倍数?你是怎样想的?
同时是2和5的倍数的数有什么特征?
哪些数既是2的倍数,又是5和3的倍数?说说你的判断方法。
(2)这里哪些数是偶数?奇数呢?
你是怎样判断偶数和奇数的?
5.做“练习与应用”第4题。
要求学生独立思考,自己选出两张卡片,按各题的要求分别组成两位数,把能组成的数记录下来。
交流:同时是5和3的倍数的数有哪些?(板书:30)如果是三位数呢?
(板书:180810)
组成的两位数中最大的偶数是多少?(板书:80)最小的奇数呢?(板书:13)
6.做“练习与应用”第5题。
让学生把质数圈出来,在合数下面画线。
交流:哪些是质数,哪些是合数?(板书成两类)质数和合数是按什么分的?
说明:质数只有2个因数,合数至少有3个因数。
7.做“练习与应用’’第6题。
让学生选出质数和偶数。
交流、呈现结果。
提问:观察表里选出的质数和偶数,所有的质数都是奇数吗?请举出一个具体例子。
所有的合数都是偶数吗?你能举例子说明吗?
指出:如果要说明一个结论是错误的,只要举一个反例。比如,要判断质数都是奇数的说法是错的,只要举出质数2是偶数这个例子。这里质数2是偶数就是一个反例。要判断合数都是偶数是错的,也只要举一个反例,比如合数9就是奇数。
8.下面的说法正确吗?
(1)大于0的自然数不是奇数就是偶数。
(2)大于0的自然数不是质数就是合数。
(3)奇数都是质数,偶数都是合数。
(4)自然数中最小的偶数是2,最小的合数是4。
(5)一个数本身既是它的因数,又是它的倍数。
9.做“练习与应用”第7题。
(1)让学生填空,指名板演。交流并确认结果。
提问:这里填写的质数都叫积的什么数?为什么称它是积的质因数?
说明:这里把合数写成这种质数相乘的形式,叫什么?
(2)把30、42分别分解质因数。
学生完成,交流板书,检查订正。
四、全课总结
提问:这节课主要复习的哪些内容?你有哪些收获?
倍数与因数教案篇十三
【知识点】:
1、认识自然数和整数,联系乘法认识倍数与因数。
像0,1,2,3,4,5,6,…这样的数是自然数。
像-3,-2,-1,0,1,2,3,…这样的数是整数。
2、我们只在自然数(零除外)范围内研究倍数和因数。
3、倍数与因数是相互依存的关系,要说清谁是谁的倍数,谁是谁的因数。
补充【知识点】:
一个数的倍数的个数是无限的。
探索活动(一)2,5的倍数的特征。
【知识点】:
1、2的倍数的特征。
个位上是0,2,4,6,8的数是2的倍数。
2、5的倍数的特征。
个位上是0或5的数是5的倍数。
3、偶数和奇数的定义。
是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
4、能判断一个数是不是2或5的倍数。能判断一个非零自然数是奇数或偶数。
补充【知识点】:
既是2的倍数,又是5的倍数的特征。个位上是0的数既是2的倍数,又是5的倍数。
探索活动(二)3的倍数的特征。
【知识点】:
1、3的倍数的特征。
一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
2、能判断一个数是不是3的倍数。
补充【知识点】:
1、同时是2和3的倍数的特征。
个位上的数是0,2,4,6,8,并且各个数位上的数字的和是3的倍数的数,既是2的倍数,又是3的倍数。
2、同时是3和5的倍数的特征。
个位上的数是0或5,并且各个数位上的数字的和是3的倍数的数,既是3的倍数,又是5的倍数。
3、同时是2,3和5的倍数的特征。
个位上的数是0,并且各个数位上的数字的和是3的倍数的数,既是2和5的倍数,又是3的倍数。
找因数。
【知识点】:
在1~100的自然数中,找出某个自然数的所有因数。方法:运用乘法算式,思考:哪两个数相乘等于这个自然数。
补充【知识点】:
一个数的因数的个数是有限的。其中最小的因数是1,最大的因数是它本身。
找质数。
【知识点】:
一个数只有1和它本身两个因数,这个数叫作质数。
一个数除了1和它本身以外还有别的因数,这个数叫作合数。
3、判断一个数是质数还是合数的方法:
一般来说,首先可以用“2,5,3的倍数的特征”判断这个数是否有因数2,5,3;如果还无法判断,则可以用7,11等比较小的质数去试除,看有没有因数7,11等。只要找到一个1和它本身以外的因数,就能肯定这个数是合数。如果除了1和它本身找不到其他因数,这个数就是质数。
数的奇偶性。
【知识点】:
1、运用“列表”“画示意图”等方法发现规律:
小船最初在南岸,从南岸驶向北岸,再从北岸驶回南岸,不断往返。通过“列表”“画示意图”的方法会发现“奇数次在北岸,偶数次在南岸”的规律。
2、能够运用上面发现的数的奇偶性解决生活中的一些简单问题。
3、通过计算发现奇数、偶数相加奇偶性变化的规律:
偶数+偶数=偶数奇数+奇数=偶数。
倍数与因数教案篇十四
设计者:李庆辉(沈阳市大东区辽沈街第三小学)一、教学内容分析本节课是《新世纪(版)义务教育课程标准实验教科书•数学》(新世纪小学数学教材)五年级上册第一单元《倍数与因数》的第5小节《找质数》。本节课的主要内容是使学生掌握质数与合数的意义,并能正确判断一个数是质数或合数;使学生掌握一定的学习方法,从中感受数学文化的魅力。
本节课是在学生掌握了2,3,5的倍数特征以及如何找一个数的因数的基础上进行教学的。通过本节课的学习,可以为后续学习公因数、约分、公倍数、通分等打下坚实的基础。所以,本节课起到了承前启后的作用。教材在编写上提供了具有丰富现实背景的题材,使学生体会到数学与生活的紧密联系;在分类中认识质数与合数并关注知识、方法的形成过程;通过开展有特色的实践活动,提高学生解决问题的综合能力。
本教学设计结合了本地区的学生特点,对教材进行了大胆的改革,以“栏目录制”为切入点,以“快乐40分”为主线,其目的是为学生创设良好的学习情境。在教学质数与合数的意义时,我采用了按因数个数的不同进行分组的方法,并以“起名字”的方式使学生对抽象的概念产生一种亲切感,以充分体现学生的主体地位,同时采取“分组竞争”的方式,提高学生的参与意识,并通过小组交流的方式分析问题、解决问题,使数学核心思想得到充分体现。二、学生分析通过调查发现,学生课前已经掌握了2,3,5的倍数的特征以及熟练找一个数的因数的方法,初步掌握了合作交流的学习方法。
学生都非常喜欢看与本节课相类似的电视节目,如“七星大擂台”“非常6+1”等,可以说学生具备了一定的这方面的生活经验,同时学生的主动参与意识都比较强,在趣中学、在乐中学是学生所追求的。
质数与合数的概念比较抽象,因此学生接受起来会很困难,再有找质数不像找奇数、偶数,不像找因数那样规律性较强,因此在教学时要注重找质数的方法的多样性及灵活性。
通过课前调查发现,学生对于数学的学习兴趣不是很浓,原因是数学不同于其他学科,比较抽象,他们总以为数学是不可捉摸的“天外来物”,学生学习数学的方式比较单一,同时学生虽然已初步掌握了合作交流的学习方法,但大部分都是浮于表面,没有做到切实有效。
基于以上几点,在教学设计上我根据学生已有的知识经验,抓住了学生日常生活中喜闻乐见的事物,把抽象的数学概念与学生的生活实际紧密相连,这样大大地激发了学生的学习兴趣,使学生感受到数学并不陌生,它就在我们身边,就在我们的生活中。学生积极参与的同时,也使抽象的数学简单化了,同时也就减轻了接受上的难度。在找1~50中的质数这一环节,我给学生以充足的时间和空间,让学生独立思考,然后同桌、组内、组间充分交换意见,这样学习方式就变得多样化了,同时也使学生感受到了合作交流的重要性,从而自发地掌握了学习方法。
三、学习目标。
1.能够理解质数与合数的意义,能正确判断一个数是质数或合数。
2.掌握独立思考、合作交流的学习方法。
3.在研究过程中感受数学文化的魅力。
三、学习目标。
1.能够理解质数与合数的意义,能正确判断一个数是质数或合数。
2.掌握独立思考、合作交流的学习方法。
3.在研究过程中感受数学文化的魅力。
《3的倍数特征》教学案例研讨。
〖教学过程〗。
生1:个位上是3、6、9的数是3的倍数。
生2:不对,个位上是3、6、9的数不定是3的倍数,如l3、l6、19都不是3的倍数。
生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)。
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)。
师:请观察这个表格,你发现3的倍数什么特征呢,把你的发现与同桌交流一下。
学生同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9能被3整除。
生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。
生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的数有规律吗?
生:也没有规律,1~9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?
生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这时一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。
生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。
学生先自己写数并验证,然后小组交流,得出了同样的结论。
〖案例点评〗。
本案例主要有以下几个特点。
1.以学生原有认知为基础,激发学生的探究欲望。教师利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到解决“3的倍数特征”的问题,产生认知冲突,萌发疑问,激发强烈的探究欲望。本案例中,学生很快进入问题情境,猜测、否定、反思、观察、讨论,大部分学生渐渐进入了探究者的角色。
2.以问题为中心组织学生展开探究活动。在上面案例中,教师注意突出学生的主体地位,教师依据学生年龄特征和认知水平设计具有探索性的问题,引导学生紧紧围绕“3的倍数有什么特征”这个问题来开展学习活动,指导学生围绕问题展开探究活动,并不断组织师生之间、生生之间的交流和讨论,逐步发现、归纳规律、得出结论,培养了学生的探索意识和分析、概括、验证、判断等能力。
〖讨论与思考〗。
1.在学生探究问题中“碰壁”或遇到困难时,教师如何发挥“导”的作用?
2.如何为学生提供有利于观察、探索的学习材料?
倍数与因数教案篇十五
1.我能理解什么是质数和合数,掌握了判断质数、合数的方法。
2.我知道100以内的质数,记住了20以内的质数。
3.我能在自主探究中独立思考,合作探究时畅所欲言。
能理解质数、合数的意义,正确判断一个数是质数还是合数。
用恰当的方法找出100以内的质数;会给自然数分类。
一、导入新课。
二、检查独学。
1.互动分享收获。
2.质疑探讨。
3.试试身手:第23页做一做。
三、合作探究。
1.小组合作,利用课本24页的表格,用恰当的方法找出100以内的质数,做一个质数表。
2.展示、交流:你们是怎样找出100以内质数的?
3.小组讨论:
(1)有没有最大的质数或合数?
(2)根据因数的个数,可把非零自然数分成哪几类?
4.我能很快熟记20以内的质数。
5.独立思考:
(1)是不是所有的`质数都是奇数?
(2)是不是所有的奇数都是质数?
(3)是不是所有的合数都是偶数?
(4)是不是所有的偶数都是合数?
6.组内交流。
倍数与因数教案篇十六
:p70~72的例题及相应的试一试、想想做做中的1—3题。
1、使学生初步理解倍数和因数的含义,知道倍数和因数相互依存的关系。
2、使学生依据倍数和因数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数倍数和因数的方法,能在1—100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。
3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。
:理解因数和倍数的含义,知道它们的关系是相互依存的。
探索并掌握找一个数的因数的方法。
:12个小正方形片、每个学生的学号纸。
1、操作活动。
(1)明确操作要求:用12个同样大的正方形拼成一个长方形。每排摆几个?摆了几排?用乘法算式把自己的摆法记录下来。
(2)整理、交流,分别板书4×3=1212×1=126×2=12。
2、通过刚才的学习,我们发现用12个同样的小正方形可以摆出3种不同的长方形,由此,还得出3道不一样的乘法算式。4×3=12可以说12是4的倍数,12也是3的倍数;反过来,4和3都是12的因数。
(1)那其它两道算式,你能说出谁是谁的倍数吗?你能说出谁是谁的因数吗?
指名回答后,教师追问:如果说12是倍数,2是因数,是否可以?为什么?
小结:倍数和因数是指两个数之间的关系,他们是相互依存的。
指出:为了方便,我们在研究倍数和因数时,所说的数都是指不是0的自然数。
二、探索找一个数倍数的方法。
1、从4×3=12中,知道12是3的倍数。3的倍数还有哪些?从小到大,你能找到几个?同桌交流自己的思考方法。
3、议一议:你发现找3的倍数有什么小窍门?
明确:可以按从小到大的顺序,依次用1、2、3……与3相乘,乘得的积就是3的倍数。
4、试一试:你能用学会的窍门很快地写出2和5的倍数吗?
生独立完成,集体交流。注意用……表示结果。
5、观察上面的3个例子,你发现一个数的倍数有什么特点?
根据学生的交流归纳:一个数的倍数中,最小的是它本身,没有最大的倍数,一个数倍数的个数是无限的。
6、做“想想做做”第2题。
1、学会了找一个数倍数的方法,再来研究求一个数的因数。
你能找出36的所有因数吗?
2、小组合作,把36的所有因数一个不漏的写出来,看看哪个组挑战成功。并尽可能把找的方法写出来。教师巡视,发现不同的找法。
3、出示一份作业:对照自己找出的36的因数,你想对他说点什么?
4、交流整理找36因数的方法,明确:哪两个数相乘的积等于36,那么这两个数就是36的因数。(一对一对地找,又要按次序排列)。
板书:(有序、全面)。正因为思考的有序,才会有答案的全面。
5、试一试:请你用有序的思考找一找15和16的因数。
指名写在黑板上。
一个数的因数最小是1,最大是它本身,一个数因数的个数是有限的。
7、“想想做做”第3题。
生独立填写,交流。观察表格,表中的排数和每排人数与24有怎样的关系。
四、课堂总结:学到这儿,你有哪些收获?
五、游戏:“看谁反应快”。
规则:学号符合下面要求的请站起来,并举起学号纸。
(1、)学号是5的倍数的。
(2、)谁的学号是24的因数。
(4、)谁的学号是1的倍数。
2、在得出这些乘法算式以后,先根据4×3=12说明12是3和4的倍数,3和4都是12的因数,使学生初步体会倍数和因数的含义。在学生初步理解的基础上,再让他们举一反三,结合另两道乘法算式说一说。在这一个环节中,我设计了一个练习。即“根据下面的算式,同桌互相说说谁是谁的倍数,谁是谁的因数”第一个是20×3=60,根据学生回答后质疑“能不能说3是因数,60是倍数”,从而强调倍数和因数是相互依存的。第二个是36÷4=9,让学生根据除法算式说出谁是谁的因数,谁是谁的倍数,并追问:你是怎么想的?使学生知道把它转化为乘法算式去说。
在学生有了倍数、因数的初步感受后,再向学生说明:我们在研究倍数和因数时,所说的数一般指不是0的自然数,明确了因数和倍数的研究范围。
3、p71例一:找3的倍数,先让学生独立思考,“你还能再写出几个3的倍数?你是怎样想的?”在学生交流的基础上,适时提出:什么样的数就是3的倍数?你能按照从小到大的顺序有条理地说出3的倍数吗?使学生明确:找3的倍数时,可以按从到大的`顺序,依次用1、2、3……与3相乘,而每次乘得的积都是3的倍数。在此基础上,引导学生进一步思考:你能把3的倍数全都说完吗?从而使学生学会规范地表示一个数的所有倍数,并初步体会到一个数的个数是无限的。随后,让学生试着找出2和5的倍数,并正确表达2和5的所有倍数。最后引导学生观察写出的3、2和5的所有倍数,发现一个数的倍数的特点,即:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。
4、例二:找36的所有因数,准备让学生独立尝试,但这部分内容对学生来说是个难点,所以我采用了四人小组合作的方式让学生试着找出36的所有因数。在找36的因数时,无论想乘法算式还是想除法算式,学生一般都从无序到有序,从有重复或遗漏到不重复不遗漏。所以,我在教学时允许他们经历这样的过程。先按自己的思路、用自己的方法写36的因数,能写几个就写几个,是什么顺序就什么顺序。然后在交流中互相评价,让他们知道一组一组地找比较方便,可以利用乘法算式,按一个因数从小到大的顺序,同时又让他们掌握按次序地书写。此外,结合例题和试一试,通过比较和归纳,使学生明确:一个数的因数的个数是有限的,一个数的因数中最小的是1,最大的是它本身。
5、教材p72第2题让学生解决实际问题在表里填数,把4依次乘1、2、3、……得出“应付元数”,然后思考下面的问题,可以使学生进一步认识把4依次乘1,2,3,……所得的积,就是4的倍数,进一步理解找倍数的方法。第3题也是解决实际问题填写表里的数,并提出问题让学生思考,使学生明确两个相乘的数都是它们积的因数,求一个数的所有因数,可以想乘法一对一对地找出来,理解找一个数的因数的方法。
为了提高学生学习兴趣,巩固所学的知识。最后安排了一个游戏,让学生在游戏中进一步练习找一个数倍数或因数的方法。
倍数与因数教案篇十七
在教完本单元,并测试联系后,我发现"倍数和因数"这一内容与原来教材比有了很大的不同,也出现了很多教学的困惑.老教材中是先建立整除的概念,在此基础上认识因数倍数。
本单元主要采用的小组或同桌进行交流,合作学习。在教学过程中教师的引导起着很关键的作用,因为对学生来说,这是一个完全陌生的知识,而且是比较抽象的概念性知识,有些知识就必须由教师来教学,很直白的告诉学生,这是不可避免的。而能让学生去探索发现的,教师的引导很重要,在让学生去交流时一定要明确要求,在学习过程中,找一个数的所有因数很困难,因为很多学生都会无序的去找,这样就造成遗漏。
一、“自然数的定义”让我困惑。
老教材里只说像1,2,3,4,5,6......这样的数叫自然数,而新教材则把0也放进去了,接下去又说研究(零除外的)自然数的倍数和因数。让我有点搞不清楚.又如书上什么地方都没出现素数的说法了,试卷联系上却有了,要不是新老教材都教过,对什么是素数可要去大查一番了.
二、为什么本册书上在讲“倍数与因数”的时候不提整除。
我的头脑也许还受以前书的影响,我认为说到“倍数与因数”必须要谈到整除,似乎只有谈到了整除,才有资格说到“倍数与因数”,但是我在实际上课的过程中,也没体会到书上在这里不提整除到底好处在哪儿,而作业中却出现了,到底是教呢,还是不教。真感到困惑。
五年级上册第一单元"倍数与因数"教学反思来自本站。
倍数与因数教案篇十八
[教学内容]。
数的世界。
[教学目标]。
1、结合具体情境,认识自然数和整数,联系乘法认识倍数和因数。 。
2、探索找一个数的倍数的方法,能在1-100的自然数中,找出10以内某个自然数的所有倍数.
3.培养学生综合应用的能力。
教具准备。
多媒体课件、图片。
[教学重、难点]。
探索找一个数的倍数的方法,能在1-100的自然数中,找出10以内某个自然数的所有倍数。
[教学过程]。
创设“水果店”的情境,呈现了生活中的数有自然数、负数、小数。在比较中认识自然数、整数,使对数的认识进一步系统化。
先让学生观察情境图,说说图中有哪些数,并给它们分类。
学生汇报观察结果,通过比较认识自然数、整数,使学生对数的认识进一步系统化。
1、在解决书上提出的问题的过程中引出算式。
5×4=20(元)。
以这个乘法算式为例说明倍数和因数的含义,即20是4的倍数,20也是5的倍数,4是20的因数,5也是20的因数。引导学生认识倍数与因数,体会倍数与因数的含义。
在利用乘法算式说明倍数和因数的含义的基础上,出示一个除法算式,如:18÷6=3启发学生思考:根据整数除法算式能不能确定两个数之间的倍数关系。
说明:在研究倍数和因数,范围限制为不是零的自然数。
2、你写我说。
让学生同桌间互相写算式,再说一说。算式可以是乘法算式,也可以是除法算式。
三、找一找。
1、判断题目中给的数是不是7的倍数。
先让学生用自己的方法判断,再组织学生交流,使学生逐步体会可以通过想乘法算式或除法算式的方法来判断。
2、找7的倍数:
四、练一练:
第2题:先让学生自己找一找4的倍数和6的倍数,并用不同的符号做好记号。然后组织学生交流,并让学生说说找倍数的方法。最后,说说哪几个数既是 4的倍数有是6的倍数。
第3题:先让学生独立写一写,再组织学生交流各自的方法,并在交流比较的过程中体会怎样做到不重复、不遗漏。体会到像这样找一个数的倍数,一般用乘法想比较方便。
[板书设计]。
像0、1、2、3、4、5、…这样的数是自然数。
像-3、-2、-1、0、1、2、…这样的数是整数。
5×4=20(元) 20是4和5的倍数。
第2课时。
[教学内容]。
2、5的倍数特征。
[教学目标]。
1、经历探索2、5倍数的特征的过程,理解2、5倍数的特征,能判断一个数是不是2或5的倍数。
2、知道奇数、偶数的含义,能判断一个数是奇数或是偶数。
3、在观察、猜测和讨论过程中,提高探究问题的能力。
[教学重、难点]。
探索2,5的倍数的特征。
[教学准备]。
多媒体课件1到100的数字表格。
[教学过程]。
一、5的倍数的特征的探究。
让学生在100以内的数表中找出5的倍数,用自己的方式做记号,并观察、思考5的倍数有什么特征。在此基础上组织学生交流。
引导学生归纳。
5的倍数的特征:个位上是0或5的数是5的倍数。
试一试:
尝试用5的倍数特征来判断一个数是不是5的倍数。
二、2的倍数的特征的探究。
让学生在100以内的数表中找出2的倍数,用自己的方式做记号,并观察、思考2的倍数有什么特征。在此基础上组织学生交流。
引导学生归纳2的倍数的特征:
个位上是0、2、4、6、8的数是2的倍数。
在学生理解2的倍数的特征后再揭示偶数、奇数的含义,并进行你问我答的。
判断练习。
偶数:是2的倍数的数叫做偶数。
奇数:不是2的倍数的数叫做奇数。
四、练一练:
第2题:引导学生先独立思考,然后组织学生交流自己的思考方法。在引导学生判断时,应根据2、5的倍数特征说明理由。如“因为85不是2的倍数,所以不能正好装完”;又如:“因为85是5的倍数,所以能正好装完。”
五、数学游戏:
这是围绕“2、5的倍数的特征”设计的数学游戏,通过游戏加深学生对2、5的倍数的特征的理解。
[板书设计]。
2、5的倍数的特征。
5的倍数的特征:个位上是0或5的数是5的倍数。
2的倍数的特征:个位上是0、2、4、6、8的数是2的倍数。
是2的倍数的数叫偶数。
不是2的倍数的数叫奇数。
第3课时。
[教学内容]。
[教学目标]。
1、经历探索3倍数的特征的过程,理解3倍数的特征,能判断一个数是不是3的倍数。
2、发展分析、比较、猜测、验证的能力。
3、渗透集合思想和不完全归纳法。
[教学重、难点]发展分析、比较、猜测、验证的能力。
[教具准备]。
多媒体课件和1到100的数字表格。
[教学过程]。
一、3的倍数的特征的猜想。
我们研究了2、5的倍数的特征,那么3的倍数有什么特征呢?引导学生提出猜想。学生可能会猜想:个位上能被3整除的数能被3整除等,老师引导学生进行讨论、研究。
二、3的倍数的特征的探究。
3的倍数的特征每个数位的各个数字加起来是3的倍数。
试一试:
尝试用3的倍数特征来判断一个数是不是3的倍数。
三、练一练:
第2题:
让学生准备几张卡片:3、0、4、5边摆边想,再交流讨论思考的过程。
(1)30、45、54(2)30、54 (3)30、45 (4)30。
四、实践活动:
[板书设计]。
3的倍数的特征:这个数各位数字之和是3的倍数。
第4课时。
[教学目标]。
1、用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有条理思考的习惯和能力。
2、在1-100的自然数中,能找到某个自然数的所有因数。
3、培养学生的分析能力和不完全归纳的数学思想。
[教学重、难点]。
用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有条理思考的习惯和能力。
[教学准备]。
多媒体课件和边长是1厘米的小正方形纸片。
[教学过程]。
1。动手拼长方形。
用12个小正方形拼成长方形有几种拼法。让学生自己先尝试着拼一拼,再交流不同的拼法。
学生一般会用乘法思路思考:哪两个数相乘等于12?然后找出:
1×12、2×6、3×4。这种思路就是找一个数的因数的基本方法,要引导学生关注有序思考,并体会一个数的因数个数是有限的。
2。试一试。
找因数的基本练习:找9和15的因数。让学生独立完成,注意引导学生有序思考。
3.练一练。
第2题:先让学生自己找一找18的因数和21的因数,并用不同的符号做好记号,然后让学生说说找因数的方法。最后,说说哪几个数既是18的因数,又是21的因数。
第3题;
利用数形结合,进一步体会找因数的方法。
第5题:可以引导学生用找因数的方法进行思考,鼓励学生将想到的排列方法列出来,在交流的基础上,使学生经历有条理的思考过程。48=1×48=2×24=3×16=4×12=6×8,48有10个因数,就有10种排法。如每行12人,排4行;每行4人,排12行等。37只有两个因数,只有两种排法。
【板书设计】。
找因数。
面积是12的长方形有:6种图形 1×12=12。
2×6=12。
3×4=12。
第5课时。
[教学内容]找质数。
[教学目标]。
1、用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数和合数的意义。
2、能正确判断质数和合数。
3、在研究质数的过程中丰富对数学发展的认识,感受数学文化的魅力。
[教学重、难点]。
1、用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数和合数的意义。
[教学准备]。
多媒体课件和边长是1厘米的小正方形纸片。
[教学过程]。
一、动手拼长方形,揭示质数、合数的意义。
1、用小正方形拼成长方形有几种拼法。让学生自己先尝试着拼一拼,边拼边填写书上的表格。
2、引导学生观察并提出问题:“这些小正方形有的只能拼成一种长方形,有的能拼成两种或两种以上的长方形,为什么?”
3、揭示质数、合数的意义。
组织学生观察、比较、分析逐步发现特征,并把几个自然数分类,揭示质数和合数的意义。
从概念出发理解“1既不是质数,也不是合数。”
二、讨论判断质数、合数的方法。
1、尝试判断:2、8、9、13、51、37、91、52是质数还是合数。
先让学生独立判断,再组织交流“怎样判断一个数是质数还是合数”
2、归纳方法:
只要找到一个1和本身以外的因数,这个数就是合数。如果除了1和它本身找不到其他的因数,这个数就是质数。
三、探索活动:
第1题:
用“筛法”找100以内的质数。引导学生有步骤、有目的地操作、观察和交流,找出100以内的质数。
介绍这种方法是两千多年前希腊数学家提出的研究质数的方法,称为“筛法”。现在随着计算机的发展,这种操作方法可以编成程序让计算机进行操作。这样,可以使学生了解数学发展的历史,感受到数学文化的魅力,丰富学生对数学发展的认识,激起学生探究知识的欲望和兴趣。
第2题:
本题引导学生通过操作、观察,探索规律。
第(1)、(2)题,学生会发现这些质数都分布在第1列和第5列,为什么?
[板书设计]。
找质数。
一个数除了1和它本身以外还有别的因数,这个数就叫合数。 一个数只有1和它本身两个因数,这个数叫做质数。
1既不是质数,也不是合数。
第6课时。
[教学内容]数的奇偶性。
[教学目标]。
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。
[教学重、难点]。
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。
[教学过程]。
活动1:利用数的奇偶性解决一些简单的实际问题。
让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。
试一试:
本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。
活动2:探索奇数、偶数相加的规律。
[
[板书设计]。
数的奇偶性。
例子: 结论:
【本文地址:http://www.xuefen.com.cn/zuowen/14590324.html】