通过总结,我们可以发现自己的优势和不足,为未来的发展提供参考。学习一门新技能,需要耐心和恒心,同时也要寻找正确的方法。以下为大家整理了一些写作总结的要点,希望对大家有所帮助。
烙饼问题教学设计篇一
数学广角中的《烙饼问题》, 其教学目标主要是使学生通过简单的实例,初步体会运筹思想在解决实际问题中的应用,认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识,培养学生解决问题的能力。
“烙饼”是一节渗透统筹优化思想的数学课,它通过简单的优化问题渗透简单的优化思想。在教学设计和教学过程中,我以“烙饼”为主题,以数学思想方法的学习为主线,围绕“怎样烙饼,才能尽快吃上饼?”展开教学,设计了烙1张、2张、3张----单张,双张饼的探究过程。以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中小圆片代替饼,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程。感觉效果不错。
重点:优化的思想——“同时”“节省时间”
小学生关于“烙饼”并无过多的生活经验,大多数都局限于“一张一张地烙”。因此,在教学中我借助所给的条件“一口平底锅内可以放两张饼”,让学生进行比较,明白“同时烙两张”会“节省时间”,从而渗透“优化的思想”。同时也为后面探究“三张饼”“四张饼”……的“最优方案”打好基础,使学生“保证每次都能烙两张饼”。
难点:规律的得出——“饼的张数×烙一张饼的时间=烙饼所需最少的时间”
突破这个难点时,我把“力气” 都使在“烙三张饼”的问题上。确实,在让学生认识到“同时烙两张饼可以节省时间”后,三张饼的问题是教学难点的“突破口”。在此,我给学生提供充分的时间和空间,鼓励学生借助手中学具试一试,探究“烙三张饼最少用多长时间”。之后组织学生交流汇报,教师相机引导,使学生认识到“保证锅内每次都能烙两张饼”才是最优方案,所用时间“9分钟”才最少。
“两张饼”“三张饼”的问题做为重点,让学生弄清楚后,在后面的探究中,学生自然会认识到“张数为双时,两张两张的烙”“张数为单时,先两张两张烙,剩下的三张同时烙”,那么烙再多张数的饼学生也不再会有问题。同时,根据烙2、3、4……张饼所用的时间,学生很快会得出“饼的张数×烙一张饼的时间=烙饼所需最少的时间”的规律,所有的问题迎刃而解。
数学广角给学生提供了一个亲近生活的机会,一个体验生活的平台。但因为大多数学生缺少生活经验,所以学起来比较难。我们老师应发掘更多的生活数学问题让学生在实际生活中去解决。
四年级数学下册《烙饼问题》教学设计
人教版四年级上册数学第105页例2。
1、通过操作学具模拟烙饼过程,让学生感悟统筹思想,初步了解统筹的含义,掌握烙饼问题的统筹方法,并能实际应用。
2、在问题探究中,动手模拟、交流争辩等学习活动中,提高学生探究能力和解决问题的能力。在规律探寻中,培养学生的观察能力与独立思考能力,发展学生的思维。
3、使学生理解优化的思想,形成从多种方案中寻找最优化方案的意识,提高学生解决问题的能力。
重点:能够用优化思想解决生活中的问题。
难点:在烙饼优化的过程中三张饼的烙法。
多媒体课件、圆形纸片若干。
一、直奔主题
同学们,今天我们一起来研究一个有趣的数学问题。
二、探究新知
1、出示情境图(条件中只出示:每次最多只能烙2张饼,两面都要烙,每面3分钟)。师问:“从中你获取了什么信息?”学生口答。
2、研究烙一张饼需要的时间。
师问“烙一张饼需要多长时间?”学生口答说想法。
3、研究烙两张饼需要的时间。
师问:“烙两张饼需要多长时间?”学生口答说想法。
4、对比烙一张饼和烙两张饼需要的时间。
师问:“为什么烙两张饼和烙一张饼所需要的时间相同呢?”
生口答可能有:烙1张饼时,锅里空出1个位置,烙两张饼时,锅里没有空位置。
5、研究烙三张饼所需要的时间
师问:“烙三张饼需要多长时间呢?请同学们用手中的三个圆片代替三张饼来烙一烙,想一想。”
学生借助手中的圆片摆、思考、小组交流、汇报,可能有:先同时烙两张需6分钟,再烙1张需6分,6+6=12分。师对此启发引导:“第二次烙1张饼时锅里有空位置,这样会浪费时间,怎样才能做到每次都烙两个面,不让锅闲着?”学生再次摆、思考、交流,得到最节省时间的烙法。
学生先演示,师再示范摆。
小结并强调:每次总烙两张饼,别让锅闲着,这样最节省时间。
6、研究烙四——七张饼所需要的时间。
教师依次提出问题,生或口算或演示。
7、寻找规律
师:认真观察上面的表格,你能发现什么?
学生可能有:除了一张饼,无论饼的个数是双数还是单数,所需的时间都等于烙饼的张数*烙一面饼所需的时间。
8、点明课题
师:这就是我们这节课要研究的烙饼问题(板书课题)
在学生解释图意的基础上用投影整理出以下三条:
生1:每次最多只能同时放两张饼。师:什么意思?
生2:一个饼的两面都要烙,烙一面需要花3分钟。
2.思考烙2个饼
这时,来了一位顾客,他要买3张饼。怎样才能尽快把3张饼都交给顾客呢?今天,我们就一起来研究有关烙饼的问题。(板题:烙饼问题)
二、合作实践,探究新知
实践活动(一):探究烙3个饼(13分钟)
(1)小组合作,摆一摆。
师:同学们,请你来当大厨,你想怎样烙?
先独立思考,然后4人小组讨论交流,说说你是怎样安排的,你的方案一共需要多长时间烙完,可以拿出烙饼卡,把书本当平底锅烙一烙。开始。(师巡视)
1.一张一张烙。(板书用时)
2.先烙两张,再烙一张。
(最优方法没有出现)
师;我想采访一下大家:对这两种方法,你有什么看法?为什么第二种比第一种省时间?
生:第一次放两张饼,更好的利用了锅的空位。 师:那烙第三张饼的时候呢?引导发现有一个空位没利用起来,这里可能浪费了时间。
师:想一想,会不会还有更好的方法呢?
启发学生发现:让锅里每次都烙2张饼。
同桌合作探究最优烙法,汇报(交替烙)。
1.一张一张烙。(板书用时)
2.先烙两张,再烙一张。
3.用三张饼的最优方法烙。(交替烙)
师:谁还能再说一次这种烙法?(课件演示)
你们有好几种烙饼的方法,真是爱思考的孩子,这说明解决问题的方式可以是多种多样的。(板书:方法多样)
但是我想采访一下大家:对这三种方法,你有什么看法?
师小结:看来,充分利用锅的空间,不留空位,就能节省时间。
其他同学也能像这样用9分钟烙好3张饼吗?
同桌两人合作,用这种方法再试一试。师巡视
理解并掌握烙3张饼的最优方法。
小结:同学们通过思考、操作,不但想出了多种解决问题的方法,还会通过比较,找出最优的方法,真是爱动脑、会动手的好孩子!你们让我想起了一句话:条条大路通罗马。我想给它接下半句——可能有条路最近。最节省空间、时间的路,就是最近、最优的路。(板书:寻求最优)
实践活动(二):探究烙4、5张饼(6分钟)
这时又来了两位顾客,分别要买4张、5张饼,怎样尽快把饼给他们呢?小组合作,讨论一下怎样安排,需要的时候也可以用卡片摆一摆,把相关的内容填入表格中。
1.请同学上台,展示烙4张饼的过程。还有没有别的方法?(板书用时)
师小结:4张饼,能两张、两张的同时烙就不交替,是最方便的方法。
2. 说说怎样烙5张饼,(板书用时)引导明确:先同时烙两张再交替烙三张,即分成2+3,最方便最省时间。
师:刚才我们边活动边把学习成果整理成了一个表格,同学们,相信你们已经找到了解决烙饼问题的钥匙。 (课件出示)
实践活动(三):算出烙6、7、8、9、10张饼的时间(6分钟)
1.填表。接下来,烙6、7、8、9、10张饼的最短时间,能与小组成员合作直接填在这张表中,并说说怎么烙吗?汇报最短用时,并说烙法。
2.优化。我要向你们请教一下,为什么你们填得这么快?你们发现了什么?
那现在,谁能快速地说出烙15张饼最少需要多长时间?怎么烙?20张饼最少需
要多长时间?怎么烙?真是反应迅速的小机灵!
三、结合生活,知识拓展。(2分钟)
刚刚我们找到了3张饼的最优烙法,可有人觉得把饼拿来拿去太麻烦,还想出了更好的办法,知道是什么吗?当当当当,就是它——电饼铛。上下两面可以同时加热,实现了1个饼只需烙3分钟。对工具进行改造,也能更好的利用空间,节省时间。希望你们将来也能创造出节省时间的新发明,那我会很高兴的!
四、课堂总结(4分钟)
师:同学们,这节课你有什么体会和收获?
小结:在生活中,我们经常会碰到类似的问题,例如出门旅行要考虑选择怎样的路线和交通工具,才能使旅行花钱更少或者花的时间最短;在各行各业,选择最优的方法也能大大提高效率。这种想法是我国数学家华罗庚爷爷提出来的,有兴趣的同学可以在课后继续去了解和研究。
希望大家在今后的学习和生活中,也能用自己的慧眼多发现问题,解决问题,更好的利用时间。下课!
烙饼问题教学设计篇二
1、通过生活中的简单事例,使学生初步体会到。
优化思想在解决问题中的应用。
2、使学生认识到解决问题中的策略的多样性,
初步形成寻找解决问题最优化方案的意识。
过程与方法:使学生理解优化的思想,形成从多种方案中寻找。
最优方案的意识,提高学生解决问题的能力。
情感、态度和价值观:使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。教学难点:探究解决问题的最优方案。
教具准备:硬币、若干张圆纸片(涂上正反不同颜色)、多媒体课件。
教学时间:一课时。
同学们早上你们的家人给你们做了什么好吃的?老师的家人给老师烙的饼。你们知道吗厨房里也有数学问题。想知道是什么吗?(课件出示例1图)小华妈妈正在为全家人做自己的拿手绝活——烙饼。(板书课题:数学广角——烙饼问题)。
(一)师:从图上你能得到哪些信息?学生观察、理解图中的内容。(目的让学生了解一个锅可以烙两张,每面都需要烙。)。
师:妈妈烙饼的一面需要几分钟?一张饼最少需要几分钟?
生:3分钟、6分钟(学生对饼需要烙两面有直接的了解)。
师:“如果妈妈要烙2张饼最少需要几分钟,怎样烙?”
生:12分钟、6分钟(让学生讨论出6分钟是对的)。
让学生用圆纸片在黑板演示。(其他学生用硬币操作)。
师:那么烙4张饼那?
生讨论并让同学黑板演示。(其他同学用硬币操作)。
师引导6张饼、8张饼、10张饼需要多少分钟。(将上述张数和总用时对应板书黑板上)。
师:同学们看黑板上的这些张数和总用时,你们发现了什么?
生讨论总结出双张数×3=总用时。
(二)师:爸爸、妈妈和小丽各吃一张饼,一共要烙3张饼呢,烙3张饼需要多少时间,看看谁用的时间最短,能最早让他们吃上饼。(提示学生每次锅里同时能烙两张饼)。
1、学生操作,探究烙3张饼的方法。(让学生用发的硬币烙一烙,同桌之间、小组之间说说用了几分钟,是怎样烙的。)。
2、学生演示烙饼法。
师:谁愿意把你烙饼的方法介绍给大家。(几位不同意见的学生上黑板动手烙,边烙边解说)让大家来比较:“这些烙法,哪一种能让大家尽快地吃上饼?”生得出结论:9分钟是烙3张饼所用的时间最短的。
师:谁能再把如何9分钟就能烙好饼的方法再和同学们分享一下。(学生黑板边演示边解说)。
师:使用这种方法时,你发现了什么?(使用快速烙饼法,锅里面必须同时放2张饼。)。
让学生用烙3张饼的快速烙饼法再烙一次,边烙边给同桌解说(烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)。
师引导:那么烙5张饼需要多少分钟那?7张、9张那?
学生自己动手并同桌间讨论,得出结论。教师板书张数与总用时。(生得出5张饼可以先烙2张,再烙3张。7张、9张同理)。
师提问:同学们发现黑板上单数饼与总用时存在怎样的关系?
生总结出单张数×3=总用时。
(由3是单面时间)进一步总结出张数×单面时间=总用时。
课件出示114页做一做第1题。
教师:“现在美味餐厅的厨师也遇到了难题,餐厅里来了三位客人,每人点了两个菜,而餐厅里只有两位厨师,假设两个厨师做每个菜的时间都相等,怎样安排炒菜的顺序才比较合理呢?”
1、引领理解题意。
2、全班交流(一般会从等待时间考虑,可以提示中间桌子是一位老伯伯。)。
1、这节课你学到了什么?(让学生自己总结)。
2、师:同学们回家后可以找一找生活中还有哪些问题可以用今天所学的知识来解决。
烙饼问题教学设计篇三
教学内容:
义务教育课程标准实验教科书人教版四年级上册“数学广角—烙饼问题”。
教学目标:
1、通过对烙饼问题的研究,掌握烙饼问题的最优方案,体会解决问题策略的多样性,初步形成寻找解决问题最优方案的意识。
2、经历探究过程,体会化归、转化等是解决问题的重要方法,学会用画图等方法分析问题。
3、感受数学在日常生活中的广泛应用,体会合理安排的重要性。
教学重点:
探究烙3张饼的最优方案。
教学难点:
理解烙不同张数饼的最优方案的关键是“让锅里始终都烙2张饼”。
教学准备:
教具饼、学具饼、课件。
教学过程:
一、问题研究,从“小”入手。
1、观察情境图,理解烙饼规则。
师:今天这节课我们一起来研究和烙饼有关的数学问题,(板书,数学广角—烙饼问题)。
(观察指着大屏幕)小红家正在烙饼,同学们能从图上得到那些信息?(课件呈现烙饼要求:“每次只能烙2张饼,两面都要烙,每面3分钟,要烙3张饼”)。
生:锅里一次只能烙2张饼,饼的两面都要烙,每烙好一面需要3分钟,一共需要3张饼。
师:说得真好,真棒!
2、演示操作,直观感知。
生:需要6分钟,先烙饼的正面,再烙饼的反面,一共需要6分钟。
教师配以课件演示并适时板书:1张饼,6分钟。
师:如果要烙2张饼,需要几分钟?
生:需要6分钟,先烙饼a和饼b的正面,需要3分钟,再烙饼a和饼b的'反面,也需要3分钟,一共需要6分钟。
师:那请同学们思考一下为什么烙2张饼与烙3张饼的时间是相等的?
生:因为一张锅里可以同时烙2张饼,烙1张饼需要6分钟,2张饼同时烙也需要6分钟。
教师配以课件演示适时板书:2张饼,6分钟。
二、合理安排,分类思考。
1、优化策略,理解省时的道理。
师:现在让我们试着烙烙3张饼最少需要几分钟?可以分小组边烙边记录时间。
生:需要9分钟、12分钟。
师:请用时最少的同学到黑板前给大家展示烙法。
生:先烙饼a和饼b的正面,需要3分钟,再把饼a取出,把饼c放进去,烙饼c的正面和饼b的反面,需要3分钟,最后饼b烙熟后,把饼b取出,把饼a和饼c的反面放进去,需要3分钟。一共烙了3次,每次3分钟,共需要9分钟。
师:课件演示9分钟烙法便于增加印象。
2、实践探究,解决3张烙饼法。
师:课件演示其他及其他两种费时方法,请同学们考虑这两种方法与9分钟烙法相比有何不妥?比较三种不同的方法,你会选择哪种?对比交流中追问。
师:仔细观察第一种和第二种方法,得出浪费资源,又节省时间。并再次用列表方式再次解释烙3张饼需要9分钟时间。得出第三种方法烙饼的最优方案是:每一次尽可能地让锅里按要求放最多的饼,这样既没有浪费资源,又节省时间。表扬刚才黑板前烙饼正确的同学。
3、更多张饼、学生演示烙饼法。
思考:如果烙4张饼呢?5张饼呢?怎样最节省时间?
生:烙2张饼、4张饼、是两张两张烙的;烙3张饼、5张饼先是两张两张烙,然后是按照“烙3张饼”的方法去烙。
师:课件演示规律:如果烙饼的张数是双数,两张两张烙就可以。
烙饼的张数是单数,可以先两张两张地烙,最后3张按“烙3张饼”的最优方案去烙,最节省时间。
师:提问并根据学生回答课件演示6张饼、7张饼按最优方发怎样烙。
师:再次根据记录表上的总时间以及黑板上烙1、2、3张饼的时间发现什么规律?
生:每张饼都加3.
师:课件演示规律:每面烙的时间×饼数=总共要花的时间。
(烙一张除外)。
4、练习题:美味餐厅同时来了三位客人,每人点了两个菜,但餐厅里只有两位厨师可以做菜,假设两个厨师做每个菜的时间都相等,应该按怎样的顺序炒菜?请说说你的理由。
师:今天我们学会了如何用最快的时间烙饼,生活中处处有数学,希望同学们都做一名有心人,去观察和发现我们身边的数学问题。
烙饼问题教学设计篇四
教学目的:
1、使学生通过简单的事例,初步体会运筹思想和对策论方法在解决问题中的运用。
2、是学生认识到解决问题策略的多样性,形成寻找解决问题的最优方案的'意思。
3、让学生感受到数学在日常生活中的广泛运用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意思和解决问题的的能力。
4、是学生逐渐养成合理安排时间的良好习惯。
教学重点:
合理安排最节省时间的操作,体会在解决问题中的最优化思想的应用。
教学关键:
合理利用时间烙三张饼的方法。
教具准备:
多媒体课件、扑克牌。
教学过程:
一、情境导入:
1、同学们喜欢吃烙饼吗?谁烙过饼,或看家长烙过?能给大家说说烙烙饼的过程吗?
2、烙饼中有许多数学知识,这节课我们就去探寻有关烙饼的知识。
板书课题:烙饼中的数学问题。
二、探究新知。
1、出示主题图。
师:“从图上你能得到哪些信息?”师:“妈妈烙一张饼最少需要几分钟?”
师:“如果妈妈要烙2张饼最少需要几分钟,怎样烙?”
小结:我们烙两张饼时,可以先同时烙饼的正面,用了3分钟再同时烙饼的反面,用了3分钟这样烙两张饼就需要6分钟。
2、学生操作,探究烙3张饼的方法。
让学生用发的扑克牌烙一烙,同桌说说用了几分钟,是怎样烙的。【设计意图】在引导学生烙一张饼、2张饼的基础上,留给学生具有探索价值的“3张饼烙法”进行自主探究、合作交流,遵循学生认知的发展规律,有利于学生体验与理解、思考与探索;恰当地处理了直接经验与间接经验的关系,符合《课标》对课程内容的要求。
3、学生演示烙饼法。
师:谁愿意把你烙饼的方法介绍给大家。(学生上台动手烙,边烙边说)。
让大家来比较:“这些烙法,哪一种能让大家尽快地吃上饼?”
4、师生演示小结烙饼三张饼的方法:速烙饼法。
师:观察思考:你发现了什么?
(
1、使用快速烙饼法,锅里面必须同时放2张饼。
2、用的时间短。)让学生用烙3张饼的快速烙饼法再烙一次,边烙边说给你的同桌听。【设计意图】烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。
5、迁移运用。
学生发言。班内交流,并比较哪个小组的方法最好。
教师小结后提问:“如果要是烙5张饼,怎样才能让大家尽快地吃上饼?需几分钟”
小组活动,通过小组交流,使学生找到最佳方法。教师小结后提问:“如果要是烙6张饼,怎样才能让大家尽快地吃上饼?需几分钟”
学生发言。班内交流,并比较哪个小组的方法最好。
教师小结后提问“如果要是烙7张饼、8张饼10张饼最少需几分钟?”
5、探究规律。
让学生仔细观察表格、小组讨论交流,说一说自己的发现。
(1)仔细观察烙饼的张数和烙饼所需要的时间,你发现了什么?
(2)仔细观察烙饼的张数不同烙饼的方法有什么不同?
学生在充分交流探讨的基础上,得出结论:
1、如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张用快速烙饼法最节省时间。
【设计意图】通过拓展性的设问,既是对前面所学知识进行巩固和运用,也是为了让学生找到最优方法,一方面为学生思维能力的培养提供了时间和空间,另一方面让学生在实践中体会了优化思想在解决实际问题中的应用。
二、拓展延伸。
课件出示114页做一做第1题。
教师:“现在美味餐厅的厨师也遇到了难题,餐厅里来了三位客人,每人点了两个菜,而餐厅里只有两位厨师,假设两个厨师做每个菜的时间都相等,怎样安排炒菜的顺序才比较合理呢?”
1、引领理解题意。
2、全班交流。
三、全课总结。
1、这节课你学到了什么?
2、师:同学们回家后可以找一找生活中还有哪些问题可以用今天所学的知识来解决。
烙饼问题教学设计篇五
1、通过操作学具模拟烙饼过程,让学生感悟统筹思想,初步了解统筹的含义,掌握烙饼问题的统筹方法,并能实际应用。
2、在问题探究中,动手模拟、交流争辩等学习活动中,提高学生探究能力和解决问题的能力。在规律探寻中,培养学生的观察能力与独立思考能力,发展学生的思维。
3、使学生理解优化的思想,形成从多种方案中寻找最优化方案的意识,提高学生解决问题的能力。
重点:能够用优化思想解决生活中的问题。
难点:在烙饼优化的过程中三张饼的烙法。
多媒体课件、圆形纸片若干。
同学们,今天我们一起来研究一个有趣的数学问题。
1、出示情境图(条件中只出示:每次最多只能烙2张饼,两面都要烙,每面3分钟)。师问:“从中你获取了什么信息?”学生口答。
2、研究烙一张饼需要的时间。
师问“烙一张饼需要多长时间?”学生口答说想法。
3、研究烙两张饼需要的时间。
师问:“烙两张饼需要多长时间?”学生口答说想法。
4、对比烙一张饼和烙两张饼需要的时间。
师问:“为什么烙两张饼和烙一张饼所需要的时间相同呢?”
生口答可能有:烙1张饼时,锅里空出1个位置,烙两张饼时,锅里没有空位置。
5、研究烙三张饼所需要的时间。
师问:“烙三张饼需要多长时间呢?请同学们用手中的三个圆片代替三张饼来烙一烙,想一想。”
学生借助手中的圆片摆、思考、小组交流、汇报,可能有:先同时烙两张需6分钟,再烙1张需6分,6+6=12分。师对此启发引导:“第二次烙1张饼时锅里有空位置,这样会浪费时间,怎样才能做到每次都烙两个面,不让锅闲着?”学生再次摆、思考、交流,得到最节省时间的烙法。
学生先演示,师再示范摆。
小结并强调:每次总烙两张饼,别让锅闲着,这样最节省时间。
6、研究烙四——七张饼所需要的时间。
教师依次提出问题,生或口算或演示。
7、寻找规律。
师:认真观察上面的表格,你能发现什么?
学生可能有:除了一张饼,无论饼的个数是双数还是单数,所需的'时间都等于烙饼的张数*烙一面饼所需的时间。
8、点明课题。
师:这就是我们这节课要研究的烙饼问题(板书课题)。
1、求烙40张饼和41张饼所需的时间。
2、把上面烙一面饼的时间“3分钟”,改为“4分钟”、“5分钟”,学生解答。
[设计意图:变式练习更有利学生思维的深入理解。]。
3、课本105页做一做第2题。
[设计意图:同种类型的习题有助于培养学生举一反三的能力。]。
师:通过这节课的学习,你有什么收获?
小结:我们做任何事情的时候都要开动脑筋,寻找最佳方案,合理安排时间,这样就能取到事半功倍的效果。我希望同学们都能做一个勤于思考、珍惜时间的好孩子。
烙饼问题教学设计篇六
《烙饼问题》是数学广角中“优化问题”的第一课时的内容,主要通过讨论烙饼时怎样合理安排操作最节省时间,让学生体会在解决问题中优化思想的应用。这部分知识对学生来说是比较抽象、不易理解的,虽然学生在生活中接触过烙饼,但缺乏烙饼的实际经验,所以在这节课的教学中,我通过演绎、例举、观察、合作讨论、优化等方法,由直观到抽象,帮助学生理解“怎样烙饼才最合理”的实践策略,从而培养学生初步的优化意识。
教学目标:
1.知识目标:通过简单事例,使学生初步体会优化思想在解决问题中的应用,形成寻找解决问题最优化方案的意识,并尝试寻找解决问题的最优化方案。
2.能力目标:通过观察、操作、比较、讨论、思考等活动,寻找规律,培养学生解决实际问题的能力和科学探究的精神。
3.情感目标:通过探究活动,让学生体验探索和合作的乐趣,充分感受数学与生活的密切联系,培养学生合理安排时间的良好习惯。
教学重点:初步体会优化思想的应用。
教学难点:寻找解决问题最优方案,提高学生解决实际问题的能力。
教学准备:课件、纸锅、彩色圆形图片、表格、练习题纸。
教学过程:
问题导入煮熟一个鸡蛋需要5分钟,你知道煮熟8个同样的鸡蛋需要多少分钟吗?
预设一:40分钟(一个一个煮的)。
预设二:5分钟(5个同时煮的)。
其实在生活中我们能够遇到很多这样的数学问题,只要我们安排合理,就能达到既能节约能源,又能节约时间的效果。今天我们就来学习数学广角中的烙饼问题。
二、动手操作,探究新知。
吃过烙饼吗?知道饼是怎样烙出来的吗?
看看小红的妈妈是怎样烙饼的?
引导学生看烙饼的方法:每次只能烙两张饼,两面都要烙,每面3分钟。
每次只能烙两张饼?(锅子一次同时最多可以放两个饼。)。
两面都要烙?(两面都烙了才烙好了。)。
每面3分钟。?
如果小红的妈妈要烙一个饼,需要多长的时间?
生:6分钟(演示)。
说明:如果我们把饼的这一面叫着正面,另一面就叫做反面,正面3分钟,反面3分钟,所以一共要6分钟。
那如果要烙2个饼呢?需要多长时间?
预设一:一个一个烙,6+6=12(分钟)。
预设二:两个同时烙:6分钟。
问:1、为什么烙2个饼和烙1个饼用的时间一样多?
2、比较这两种方法那种更好?我们把这种用时最少的方法叫做烙两个饼的最优方法。
生讨论:说一说;预设一:6+6+6=18分钟预设二:6+6=12分钟。
两人一小组合作摆一摆:演示用时9分钟烙3个饼的过程。并将过程记录下来。
饼1。
饼2。
饼3。
第一次。
正
正
第二次。
反
正
第三次。
反
反
小结:我们把这种烙3个饼用时至少的方法叫做烙3个饼的最优方法。
那如果要烙4个饼呢?至少要用多少时间?5个、10个甚至100个呢?
饼数。
烙饼的过程。
烙饼的次数(次)。
用的时间(分钟)。
1
1正、1反。
2
2×3=6。
2
1正2正、1反、2反。
2
2×3=6。
3
1正2正、1反3正、2反3正。
3
3×3=9。
4
两张两张的烙,2+2。
4
4×3=12。
5
2+3。
5
5×3=15。
6
2+2+2或3+3。
6
6×3=18。
7
2+2+3。
7
7×3=21。
8
2+2+2+2。
8
8×3=24。
9
2+2+2+3。
9
9×3=27。
10。
2+2+2+2+2。
10。
10×3=30。
仔细观察上表,我们能有什么发现?
生讨论:
师在汇报的基础上总结:饼的数量为单数时,先两个两个的烙,最后3用3个最优法烙,当饼数为双数时,两个两个的烙就可以了。
烙饼的次数×烙一面的时间=最优总时间。
巩固练习。
妈妈用平底锅炸鱼,这个平底锅一次最多只能炸两条鱼,炸好一面需要3钟,两面都要炸,要炸5条同样的鱼至少用多少分钟?妈妈用平底锅炸鱼,这个平底锅一次最多能炸5条鱼,炸好一面需要3钟,两面都要炸,要炸15条同样的鱼至少用多少分钟?课堂总结生畅谈收获(略)。
烙饼问题教学设计篇七
一、激情导课。
1、创设情境。
老师刚刚买了一个电饼铛,所以想中午烙饼吃,可中午的时间不长,咱们一起来想想到底怎么烙才能省时间。
二、探究新知。
1、研究烙饼方法。
(!)如果烙一张需要多长时间呢?(生思考后回答)。
出示表格:
饼数烙饼方法最少需要时间(分)。
(2)如果烙两张呢?
生:3×2=6分钟,因为每次能烙2张饼,(同时烙2张)3+3=6分钟。
师:如果要烙3张饼,最少需要多少分钟?适时提醒,如果想要更省时间,就要保证锅别闲着,总让里面放两块。
预设:生:先两张两张烙,最后烙剩下的一张,需要12分钟。
生:演示,讲述:正1正2正3反2反1反33+3+3=9分钟。
师点评,谁的方法比较好。
2、拓展探究。
然后继续烙4张,5张饼…说说发现了什么?
饼数烙饼方法最少需要时间(分)。
9103、探究规律。
1)仔细观察表格,思考:烙饼的张数不同烙饼的方法有什么不同?
得出结论:1、如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张用快速烙饼法最节省时间。
得出结论:每多烙一张饼,时间就增加3分钟。
用饼数乘烙一面饼所用的时间,就是所用的最短时间。
板书:(饼数×3=所需最少的时间。)(饼数1。
三、课堂检测。
1、如果饼数是双数,用什么方法烙饼?如果饼数是3张,用什么方法烙饼?
如果9张饼用什么方法烙饼?2、烙5张饼需要多少分钟?9张饼呢?11张饼呢?
烙饼问题教学设计篇八
人教版四年级上册第七单元“数学广角——烙饼问题”。
【教学目标】。
1、让学生通过简单的烙饼问题,初步体会运筹思想在解决问题中的应用。
2、让学生认识到解决问题策略的多样性,形成寻找解决问题的最优方案的意识。
3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中简单的问题。
4、使学生逐渐养成合理安排时间的良好习惯。
【教学重点】。
寻找合理、快捷的烙饼方案。
【教学难点】。
初步培养学生形成从多种方案中寻找最优方案的意识,提高解决问题的能力。
【教学准备】。
课件、三张圆纸片。
【教学过程】。
一、创设情境,导入新课。
课件多媒体出示图片:鸡蛋。
师:同学们,请看,这是什么?(鸡蛋)如果煮熟一个鸡蛋大约要用4分钟的时间,那么煮熟10个鸡蛋大约用多长时间呢?(学生作答)。
师:同学们,在日常生活中有许多事情都要讲究方式方法,才能达到事半功倍的效果。这节课我们就一起从数学的角度来研究烙饼的方法吧!
师:随机板书课题——烙饼问题。
二、自主探索,探究烙法。
(一)解读信息,理解烙饼规则。
课件出示情境:同学们,图中妈妈已经开始烙饼了,你们从图中得到了哪些数学信息?(生答)。
师:每次只能烙两张饼是什么意思?两面都要烙又是什么意思?(生答)。
(二)观察学习,探究两张饼的最佳烙法。
1、明确烙一张饼的时间。
师:想一想,如果烙一张饼,需要多少时间?(生:6分钟)。
师:为什么是6分钟?(生答)。
师:根据学生的回答,老师用流程图把刚才这位同学的烙饼过程板书下来。
板书:一张:正反。
3分钟3分钟(6分钟)。
2、探究烙两张饼的最优方法。
师:同学们,想一想:如果烙两张饼,怎么烙?有几种可能?(同桌合作,用圆纸片代替饼进行实践并作好记录)。
汇报交流:学生回答并上台演示,教师板书。
第一种:12分钟。
板书:两张:(1)正(1)反(2)正(2)反。
3分钟3分钟3分钟3分钟(12分钟)。
第二种:6分钟。
板书:两张:(1)正(2)正(1)反(2)反。
3分钟3分钟(6分钟)。
师:同学们,通过合作演示同样烙两张饼出现了两种不同的答案,你们认为那种烙法最快?为什么第一种烙法多用了6分钟呢?(学生展开讨论)。
师生共同小结:就是说本来可以两张放在一起烙,而第一种每次只烙了一张,浪费了空间,也浪费了时间,所以多用了6分钟。
师:如果我们要尽快的把饼烙熟,你会选择哪种烙法呢?(生答)我们给第二种烙法取一个名字,就叫做“两饼同烙”。(板书)。
(三)动手操作,探究3张饼的最优烙法。
师:同学们,请看大屏幕,现在妈妈烙几张饼?(3张)瞧瞧小精灵提的什么问题,谁来读一读?(生读)那怎样才能尽快吃上饼呢?(生答)。
师:回答得很好。现在我们来分组动手烙一烙吧。看看怎样才能把3张饼最快的烙熟,在动手之前,我们先看清要求。(课件出示数学信息:探究要求)。
师:请小组长拿出3张圆纸片当作3张饼,小组进行合作,动手操作烙饼。(生操作,师巡视)。
学生展示自己的成果,教师板书。
第一种:3张(1)正(2)正(1)反(2)反。
3分钟3分钟。
(3)正(3)反。
3分钟3分钟(12分钟)。
第二种:3张(1)正(2)正(1)反(3)正。
3分钟3分钟。
(2)反(3)反。
3分钟(9分钟)。
师:同学们,请你们比较一下这两种不同的烙法,为什么都是3张饼一种需要4次,另一种需要3次?(同桌相互交流说说)。
教师引导归纳:常规的烙法,先把两张饼放进去,正反面烙完后,再烙第3张。第3张饼的两面得一面一面烙,浪费了其中一个位置。经过合理安排,烙饼的时候尽可能使锅里有两张饼在那里一起烙。这样就不会浪费空间,最省时间。所以我们在平时解决问题时,不同的问题要用不同的方法来解决,它的效果是不一样的。像这种轮流交换着烙确实很快。这种烙法帮我们解决了数学难题,我们也可以给它取个名字叫“交替烙”或“轮流烙”(板书)。
师:同学们,不管做什么事情,我们都要事先做好安排、想好策略,这样就能节省时间和空间,提高办事效率。所以,日常生活中我们要合理安排时间,充分利用空间。
三、总结方法,探究规律。
师:下面我们来研究烙4张饼,条件不变。谁能不能动手摆摆就知道怎样烙最节省时间?大家先想一想,你来当小老师给同学们讲清楚。(实在想不出来的可以借助学具帮忙)。
1、反馈烙4张饼的方法。
师:如果烙4张饼,怎样烙?(生答)师板书4张分成2张2张。能不能说得更简单一些?(可以说2张2张烙)最少需多少时间?现在老师请一位同学上台烙一烙,大家帮他数一数烙饼的次数好吗?(观察后生答:4次12分钟)。
2、反馈烙5张饼的方法。
师:如果烙5张饼,怎样烙?你能不能很快说出烙5张饼最少烙几次?最少需多少时间?
生:上台演示、讲解:先烙2张再烙3张共5次,需15分钟。
3、出示烙6、7、8、9、10张饼的课件。
师:同学们,请你们仔细观察大屏幕上的表格,如果烙6、7、8、9、10张饼,分别至少要烙几次,需要多长时间?(生答完成表格)。
师:请仔细观察这个表格,你发现了什么?(引导学生归纳总结)。
得出:最短的总时间=烙饼的次数x烙每一面饼的时间(1除外)烙饼的次数=烙饼的张数(1除外)。
师:找到了规律我们解决问题就容易了。因此,在日常生活中,我们更应该合理地安排时间,才能去做更多的事情。
四、结合实际,实践应用。
师:同学们,我们已经找到了烙饼的规律,总结出了公式,我们就利用这个规律和公式来计算一下给我们班的每一位学生烙一张饼至少需要几次?最少需要多长时间?(同桌讨论,全班交流)。
五、课堂总结。
师:通过这节课的学习,你想说些什么?(同桌互说)。
师:老师也希望大家能够运用我们今天所学的知识,合理地安排好自己的时间,在以后的学习和生活中提高效率,做一个珍惜时间的人!
烙饼问题教学设计篇九
教材简析:
本课所学内容就是通过日常生活中的简单事例,让学生尝试从优化的角度在经济问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用,以及在解决问题中的运用。
学情分析:
1:教师主观分析:优化问题是人们经常要遇到的问题,本课的教学设计力求从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察、操作、实验、推理交流等活动寻找解决问题的方法,从不同的方法中选择最佳方案,在解决问题中初步体会数学方法的应用价值,初步体会优化思想,培养学生良好的数学思维能力。
2:学生认识发展分析:学生对优化问题可能在生活、学习中只是一点朦胧的了解,根本说不上什么是优化,因此在教学过程中尽可能地从实际出发,从学生原有的生活出发,让学生感受优化的价值,从而培养学习数学的兴趣。
3、学生认知障碍点:“优化”的理解。
教学目标:
1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。
2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。
3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。
4、使学生能积极地参与数学学习活动,体会到学习数学的乐趣。
教学重点:
体会优化思想。教学难点:探究解决问题的最佳方案。
教学过程:
一、教学环节:
1、谈话引入;
2、情境引入,学习新知;
3、实践应用;
4、全课总结,寻找规律。
二、教师活动:
1、制作课件(妈妈为家人烙饼);
2、三张圆纸片。
三、预设学生行为:
1、可能见过烙饼,可能没见过;
2、学生演示烙饼(怎样快));
3、学生讨论小结,怎样烙饼快,最佳方法是什么(在学生解决问题中得出);
4、探究规律(可能学生不可能一下总结出规律,可在老师帮助下得出)。
四、设计意图:
从学生亲眼看到或亲身经历的问题入手,创设情境,让学生进一步通过观察、操作、推理、交流等寻找解决问题,在解决问题中体会数学在实际生活中的价值,初步体会优化思想。
板书设计:
快速烙饼法。
饼速x3=所需最少的时间。
烙饼问题教学设计篇十
“烙饼”是一节渗透统筹优化思想的数学课,它通过简单的优化问题渗透简单的优化思想。在教学设计和教学过程中,以“烙饼”为主题,以数学思想方法的学习为主线,围绕“怎样烙饼才能尽快吃上饼?”展开教学。设计了烙1张、2张、3张――――单张,双张饼的探究过程。以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中小圆片代替饼,经历了从提出数学问题――解决数学问题――发现数学规律――建构数学模型的过程,整节课渗透了以下理念:
1、放手让学生操作实践。
《课数课程标准》指出:学生的数学学习内容应当是现实的,有意义的,富有挑战性的。课中老师让学生明确要求以圆形纸片替代饼,与同桌进行烙饼活动。这一环节让学生参与到知识的生成过程中来,在操作中感知,在实践中升华。并要求学生用学具同桌模拟烙饼,一人烙饼,一人记录。
2、放口让学生畅所欲言。
上课时,老师让学生以小组为单位,进行交流、展示、再全班交流,这一环节实现了生生之间,师生之间的平等对话,它既是生生之间的互动也是师生之间的互动。通过相互交流取长补短,不断完善自己的认知体系,形成条理化,规律化的知识结构。在研究“烙3张饼需要多少时间”(这是本课的教学重点也是难点)时,大家都未曾用一个饼一个饼烙的方法,出现两个烙好后烙一个的方法比较多,个别组想到交替烙饼法。教师通过让学生动手演示、讲解,大家也基本理解,后面都知道充分利用“每次能烙两张饼”这个条件。
本人认为本堂课如果能再给孩子一个发展的课堂,在课的最后能安排“如果要烙的是4张饼,5张饼……n张饼呢?你发现了什么”。直接发现“饼数×3=时间”这一规律,得出其结果是:如果要烙的`饼的张数是双数,2张2张地烙就可以了,如果要烙的饼的张数是单数,可以先2张2张地烙,最后3张饼按上面的最优方法烙,这样做最节省时间”就更好。学生的发现其实更简单,更直观。数学教学不仅是传授知识的结果,更重要的是探究知识的形成过程,它不仅仅是承载数学知识的地方,它更是学生全面发展的场所,教师只有不断加强学习,不断提升专业技能,才能给学生一个创新的课堂,一个发展的课堂。
烙饼问题教学设计篇十一
二、 教学目标。
1、 通过对生活中简单事例的分析研究,初步体会运筹思想在解决实际问题的应用,初步认识到解决问题策略的多样性,培养寻找解决问题的最优方案的意识。
2、 感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决生活中的简单问题,培养合理安排时间的意识和习惯。
3、 能积极地参与数学学习活动,体会到学习数学的乐趣。
三、 教学准备:
多媒体课件;教师准备3个圆片代饼;每组3个圆片;
四、 教学过程。
(一)、谈话导入。
同学们,大家喜欢吃饼吗?你知道怎么烙饼才能最节约时间吗?今天我们研究烙饼问题。板书课题:烙饼问题。
(二)新课。
1、自主学习。
(1)出示本节课的学习目标,请同学们朗读。
(2)在预习的过程中,同学们阅读了教材主题图,说一说烙饼的前提是什么?
(3)请同学们汇报:烙一张饼和烙两张饼分别用来多长时间?
(4)在小组内交流:烙三张饼最短用多少时间?
(5)小组汇报:如何烙三张饼用时最短?
第一张第二张第三张所花时间。
第一次。
第二次。
第三次。
2、探究烙饼最佳方法。
(1)烙4张饼最快要 分钟,烙5张要 分钟,烙6张要 分钟,烙7张要 分钟,烙8张要 分钟,烙9张要 分钟,10张要 分钟。
(2)你发现了什么?
(3)学生思考、观察、发现、汇报。
烙的方法所花时间。
3张饼。
4张饼。
5张饼。
6张饼。
7张饼。
8张饼。
9张饼。
(三)过关检测。
出示三道小题,请同学们解决,说一说解决的方法。
(四)、小节。
师:这节课我们一块儿研究了烙饼问题,大家有什么收获?
小结:老师也希望大家能用我们今天所学的知识,合理的安排自己的时间,在以后的生活和学习中提高效率。
烙饼问题教学设计篇十二
本节课立足于培养学生良好的思维能力,从学生的生活经验和知识基础出发,创设问题情境。根据新课程标准,让学生借助学具操作,经历探索“烙饼”中数学知识的过程,逐步掌握烙饼的最佳方法,在解决问题中初步体会数学方法的应用价值,初步体会优化思想。
1、以生活经验出发,激发学生的学习兴趣。
在这节课的教学中,结合“‘客人到了,请客人吃东西’这常见的招待客人之礼”来导入,让学生有一种亲切感,激发了学生的学习兴趣。另外,让学生经历数学化的过程,让学生充分地感受到数学不是凭空而来的,它是生活的需要。
2、创造学习机会,体现“以人为本”。
一个个具体事例组织一系列的观察、思考、操作、交流等活动,使学生在解决问题中体会数学方法的应用价值,体会优化思想,而不是以老师的想法代替学生的思维。比如,为客人烙饼。如何用最短的时间完成烙饼这件事,让学生在观察、对比的过程中,为学生提供了充分从事数学活动的机会,不断说出自己的想法,在学生发表自己看法的过程中,发现合理安排时间的能力,使学生的主体地位落到实处,真正使学生成为学习的主人。
3、充分发挥引导作用,促进学生的发展。
注重体现数学教育面向全体学生的基本理念。在解决问题的过程中,特别注意运用不同的方式让每个学生了解解决问题的方法与结果,帮助学生理清思路、提升认识。
课堂上,我主要以组织者、引导者、合作者的角色出现,把学生推上学习的主体地位,让学生在自主探索、合作交流中体会运筹的数学思想方法,滋生优化意识,学生在自主探索、合作交流中积累从事数学活动的经验,提高解决问题的能力。学生在自主探索、合作交流中体验成功、感受数学的应用价值、感受数学的魅力,学生的知识、能力、情感得到了同步发展。
4、以生活事例为切入口,加强学生的思想教育。
在解决“怎样让三位顾客都能尽快吃上菜”这个问题时,有意识地对学生渗透“尊老爱幼”等方面的思想教育。
以上是我自己对本堂课教学之后的一些感想。当然,从中也有很多不足之处值得自己深思。例如:
(1)生活经验对数学学习有较好的帮助,但有时也有负作用。例如,在小组交流“三个饼如何烙,能尽快吃上饼?”时,有位小朋友竟这样问我:其中一个饼烙了一面后拿下,过了3分钟就要冷了,再烙另一面3分钟就不够了。实际情况是这样的,但若把它当成一个数学模型来研究时,这些就忽略不计了,这就是数学与生活的区别。所以对这种情况,我私下及时对他作出回应,并给予解释。
(2)数学是理性的,抽象的,更是严谨的。教学中如何把握课堂每一个细节,从而来培养学生思维的深刻性。例如,在提升烙饼的时间与所烙饼的个数的关系时,我应该及时提问:“烙2个饼需6分钟,烙3个饼需9分钟……,每个饼需3分钟,有没有不符合规律的?”而事实上是有特例的:当饼的个数是1个时,就不符合此规律。所以我觉得自己在这方面还有欠缺,应抓住时机拓展延伸,从而来引发学生的思维冲突,并通过辨析来修正此规律。
在解决“怎样让三位顾客都能尽快吃上菜”这个问题时,有意识地对学生渗透“尊老爱幼”等方面的思想教育。
以上是我自己对本堂课教学之后的一些感想。当然,从中也有很多不足之处值得自己深思。例如:
(1)生活经验对数学学习有较好的帮助,但有时也有负作用。例如,在小组交流“三个饼如何烙,能尽快吃上饼?”时,有位小朋友竟这样问我:其中一个饼烙了一面后拿下,过了3分钟就要冷了,再烙另一面3分钟就不够了。实际情况是这样的,但若把它当成一个数学模型来研究时,这些就忽略不计了,这就是数学与生活的区别。所以对这种情况,我私下及时对他作出回应,并给予解释。
(2)数学是理性的,抽象的,更是严谨的。教学中如何把握课堂每一个细节,从而来培养学生思维的深刻性。例如,在提升烙饼的时间与所烙饼的个数的关系时,我应该及时提问:“烙2个饼需6分钟,烙3个饼需9分钟……,每个饼需3分钟,有没有不符合规律的?”而事实上是有特例的:当饼的个数是1个时,就不符合此规律。所以我觉得自己在这方面还有欠缺,应抓住时机拓展延伸,从而来引发学生的思维冲突,并通过辨析来修正此规律。
烙饼问题教学设计篇十三
烙饼是一种传统的中国食品,而解决烙饼问题是一项非常有趣的数学问题。通过研究烙饼问题,我们不仅可以锻炼逻辑思维能力,还可以提高解决问题的效率。在本文中,我将分享我在解决烙饼问题过程中得到的一些心得体会。
第二段:分析和探讨。
在解决烙饼问题时,我们需要将一堆烙饼按照大小顺序翻转,使得它们从大到小排列。为了达到这个目标,我们可以采用不同的策略。其中一种策略是每次翻转最大的烙饼,然后再翻转整堆烙饼,使得最大的饼变到最底下。这样,我们就可以将最大的烙饼归位,然后递归地解决剩下的烙饼问题。通过不断重复这个过程,直到所有的烙饼都归位。
第三段:实践和总结。
在实践中,我发现这种策略在解决烙饼问题时非常有效。首先,翻转最大的烙饼可以将其移到最底下,使得解决问题的范围被缩小。其次,在归位最大的烙饼后,我们可以利用相同的策略解决剩下的烙饼问题。这种递归的思维方式可以使我们快速解决问题,提高效率。
此外,通过实践,我还发现了一些优化的方法。例如,我们可以在翻转最大烙饼后,将次大的烙饼翻转到最上面,然后再翻转整堆饼,使得次大的烙饼变到最底下。这样,我们可以将次大的烙饼归位,再递归地解决剩下的烙饼问题。这种方法可以减少翻转次数,并提高解题的效率。
第四段:反思和启示。
通过解决烙饼问题,我深刻体会到了思维的重要性。在解决问题时,我们需要善于分析和归纳,找出问题的关键点,然后采取合适的策略解决问题。同时,我们还需要保持耐心和坚持,在遇到困难或挫折时不放弃,继续探索解决问题的方法。除此之外,解决烙饼问题还锻炼了我的团队合作能力。在与其他人一起解决问题时,我们需要相互合作,互相协调,共同完成任务。
第五段:结论和展望。
通过对烙饼问题的解决,我深刻地认识到了数学在解决实际问题上的重要性。数学不仅可以帮助我们提高解决问题的能力和效率,还可以培养我们的逻辑思维能力和团队合作精神。希望未来我能够继续学习和应用数学知识,不断提升自己的问题解决能力,并将这些能力应用于更加复杂和实际的问题中。
烙饼问题教学设计篇十四
1、创造多种形式,突破重、难点。为了突破难点,很短的时间让学生了解烙一张、两张饼至少需要的时间,为探究三张饼的最佳烙法作好铺垫。在探究三张饼的最佳烙法时,学生首先想到的是要12分钟,我就问:“还有更省时的方案吗?”激发学生的求知欲,迫使他们重新思考和操作。于是出现了两种方法:第一种先烙烙两张,再烙一张,学生提出异议,并让他进行板演,出现我们预设的第二种方法:三张轮换烙。并通过多媒体课件直观展示两种轮换烙的过程,直观比较出第一种要烙4次,而第二种只需烙三次,节省3分钟,又通过表格的填写加深三张轮换烙的方法。为什么第二种三张轮换烙方法会比第一种方法节省3分钟呢,通过再现直观图,学生得出:保证每次锅子里总有两张饼呀。并培养空间想象能力,从而达到突破难点的目的。为了突出“如何用优化思想解决生活中的问题”这一教学重点,我是这样做的:首先,在探究烙两张饼至少需要几分钟时,有的学生说要12分钟,有的学生说6分钟,从而引发分歧,激起学生争辩及思维的碰撞。再通过各自陈述理由后对比发现:锅子里同时烙两张饼更省时省资源,让学生初步感受到从多种方案中寻找最优方案的重要性。其次,在探究三张饼至少需要几分钟的时候,有的学生说要12分钟,有的学生说要9分钟。再次引导学生对比发现:两张同时烙法操作起来简单,三张轮换烙法虽然复杂,但更省时,也符合题意。进一步加深了学生对“选择优化思想解决问题”重要性的印象。另外,在探究6张饼的最佳烙法时,也许有的学生会选择用同时烙法烙三次,有的学生会选择用三张轮换烙法烙两次。虽然两种方案都是需要18分钟,但通过引导学生对比发现,用同时烙法烙三回操作起来更简便。让学生再次感受到在时间相同的情况下,还要选择操作过程的最优化。
2、解放学生的手,让学生操作实践。《课数课程标准》指出:学生的数学学习内容应当是现实的,有意义的,富有挑战性的。如,我让学生明确要求以圆形纸片替代饼,与家人或小伙伴进行烙饼活动。这一环节让学生参与到知识的生成过程中来,在操作中感知,在实践中升华。我要求用学具同桌模拟烙饼,一人烙饼,一人记录。有多种方案的请轮流记录。并且,这一环节,紧密联系学生生活实际,从学生的生活经验和原有的知识出发,创设了生动,现实的情境让学生在兴趣盎然的活动中感受到生活中处处有数学,数学时时为我们生活服务,从而让学生更好的学习数学。
3、解放学生口,让学生畅所欲言。上课时,我让学生以小组为单位,进行交流、展示、再全班交流,这一环节实现了生生之间,师生之间的平等对话,它既是生生之间的互动也是师生之间的互动。通过相互交流取长补短,不断完善自己的认知体系,形成条理化,规律化的知识结构。在研究“烙3张饼需要多少时间”(这是本课的教学重点)时,由于有小精灵的要求“怎样才能尽快吃上饼”这句话,所以在实际的课堂里,虽然出现像教材中提到的烙一张饼要6分时间,烙3张饼要18分这一方案,但很快被孩子们自己给否定了,因为四年级学生能充分利用“每次能烙两张饼”这个条件。
4、给孩子一个发展的课堂。教材在最后安排了“如果要烙的是4张饼,5张饼……9张饼呢?”你发现了什么“。在课堂中,学生能根据表格中的'烙饼方法渗透数学转化的思想,把多张饼都转化成两张同时烙或三张轮换烙,还有的孩子还从表格中发现双数饼了两张两张的烙,单数饼先两张两张烙,最后三张轮换烙的规律;还根据表格中的烙饼张数和烙饼的时间之间的关系得出。”饼数×3=烙饼总时间“这一规律,使整节课得到升华,数学教学不仅是传授知识的结果,更重要的是探究知识的形成过程,它不仅仅是承载数学知识的地方,它更是学生全面发展的场所,教师只有不断加强学习,不断提升专业技能,才能给学生一个创新的课堂,一个发展的课堂。
烙饼问题教学设计篇十五
数学广角中的《烙饼问题》,其教学目标主要是使学生通过简单的实例,初步体会运筹思想在解决实际问题中的应用,认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识,培养学生解决问题的能力,《烙饼问题》教学反思。
“烙饼”是一节渗透统筹优化思想的数学课,它通过简单的优化问题渗透简单的优化思想。在教学设计和教学过程中,我以“烙饼”为主题,以数学思想方法的学习为主线,围绕“怎样烙饼,才能尽快吃上饼?”展开教学,设计了烙1张、2张、3张----单张,双张饼的探究过程。以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中小圆片代替饼,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程。感觉效果不错。
小学生关于“烙饼”并无过多的生活经验,大多数都局限于“一张一张地烙”,教学反思《《烙饼问题》教学反思》。因此,在教学中我借助所给的条件“一口平底锅内可以放两张饼”,让学生进行比较,明白“同时烙两张”会“节省时间”,从而渗透“优化的思想”。同时也为后面探究“三张饼”“四张饼”……的“最优方案”打好基础,使学生“保证每次都能烙两张饼”。
难点:规律的得出——“饼的张数×烙一张饼的时间=烙饼所需最少的时间”
突破这个难点时,我把“力气”都使在“烙三张饼”的问题上。确实,在让学生认识到“同时烙两张饼可以节省时间”后,三张饼的问题是教学难点的“突破口”。在此,我给学生提供充分的时间和空间,鼓励学生借助手中学具试一试,探究“烙三张饼最少用多长时间”。之后组织学生交流汇报,教师相机引导,使学生认识到“保证锅内每次都能烙两张饼”才是最优方案,所用时间“9分钟”才最少。
“两张饼”“三张饼”的问题做为重点,让学生弄清楚后,在后面的探究中,学生自然会认识到“张数为双时,两张两张的烙”“张数为单时,先两张两张烙,剩下的三张同时烙”,那么烙再多张数的饼学生也不再会有问题。同时,根据烙2、3、4……张饼所用的时间,学生很快会得出“饼的张数×烙一张饼的时间=烙饼所需最少的时间”的规律,所有的问题迎刃而解。
数学广角给学生提供了一个亲近生活的机会,一个体验生活的平台。但因为大多数学生缺少生活经验,所以学起来比较难。我们老师应发掘更多的生活数学问题让学生在实际生活中去解决。
烙饼问题教学设计篇十六
1、初步掌握优化思想。
2、能够用优化思想解决生活中的问题。
3、感受数学的魅力。
重点:能够用优化思想解决生活中的问题。
难点:在烙饼优化的过程中三张饼烙法。
学具准备:圆形纸片、多媒体课件。
一、引入。
师:同学们,你知道吗?我们的许多数学问题都来源于生活,今天我们就来研究一个生活中有趣的数学问题。(板书课题:烙饼问题)。
师:见过烙饼的吗?有同学可能说了不就是一口锅,放进饼去,把它烙熟吗?其实这里面有许多值得研究的数学问题呢!
二、新授。
生:6分钟。
师:为什么?
生:因为一张饼一面是3分钟,两面就是6分钟。
生:(提出疑问)不对,应该是6分钟。
师:为什么是6分钟呢?
生:因为里面两张饼都同时在烙。烙熟了这两个面用了3分钟之后,我再把饼翻过来又用了3分钟,所以一共是6分钟。
师:同意吗?很好。锅里两张饼同时在烙,可以同时烙熟两个面,所以两次一共用了6分钟。(注意强调同时,讲解的时候注意解释。)。
2、突破难点。
师:现在如果我想烙三张饼,你准备怎么个烙法?说说你的想法?
生:先烙两张,再烙一张,一共需要12分钟。
师:你们都的这样烙的吗?那还有没有更好的方法呢?
(若没有)下面,我们就来试一试,你可以选择喜欢的方法进行研究,也可以利用老师提供给你的圆形纸片,看谁还能想出好办法。
小组汇报:
师:谁想上来给大家汇报一下你们组讨论的结果。
生:汇报讨论结果。
师在表格内板书。
123。
第一次正正。
第二次反正。
第三次反反。
师:谁听明白了?
(生再讲一遍)。
此时教师用纸片往黑板上贴每次的情况。
师:大家觉得这种方法怎么样?
生:比上种方法节约时间,比较快。
师:同学现在根据老师在黑板上的板书想想,为什么这种方法会比上一种方法节约时间呢?(教师的提示语言:我们刚刚在烙第三张饼的时候,本来一次可以烙两张饼的锅却只烙了一张,这就可能浪费了时间。)。
师:那这样才能不浪费时间呢?
生:(如果锅里每次都是两张饼在烙,就不会浪费时间了。)。
师:所以说,我们平时在解决问题时,一定要开动脑筋,寻找出最科学、最合理的解决问题的方法。
三、拓展提高。
师:刚才我们研究了2张饼,3张饼的烙法。如果是4张饼、6张饼呢你觉得怎样烙最节省时间?下面你可以继续在小组里实验一下,你发现什么。
(生小组研究)。
生:把4看成2+2把6看成2+2。
(及时的.表扬,学数习知识就是这样,当遇到新的问题时,可以先运用以前的知识来解决)。
聪明的同学可能发现了,刚才老师让大家研究的饼的张数都是什么样的数?
生:双数。
你现在能不能总结一下,当饼的张数是双数时,烙饼的好方法是什么?
生:可以用烙两张饼的方法,两张两张的烙。
板书:双数张饼:两张两张的烙。
师如果是单数张饼,5张、7张……有什么规律吗,讨论一下吧。
把5张饼烙两张,再把那3张按刚才的好办法烙。
把7张饼先两张两张两张的烙,剩下的那3张按刚才的好办法烙。
师:谁能概括的说一说你发现的规律。
生:如果烙单数张饼,可以先两张两张两张的烙,剩下的那3张按刚才的好办法烙。
师:刚才我们在研究时,按饼的张数分类研究的,其实我们有时在研究比较复杂的问题时,也可以把问题分一下类,这样会更便于进行研究。
四、师生交流,思维升华。
师:通过这节课的学习,你知道了什么?
烙饼问题教学设计篇十七
各位老师,上午好!
我今天说课的题目是“烙饼问题”,它位于新课标实验教材人教版第七册数学广角第一课时。
本单元主要通过日常生活中的一些简单事例,让学生尝试从优化的角度去解决问题,在多种方案中寻找最优方案,初步体会运筹思想在实际生活中的应用以及对策论方法在生活中的应用。
就学生现有的认知基础看,这部分知识对学生来说,比较抽象,难以理解。
鉴于教材的编排特点和学生的认知基础,我认为本单元教学重点是体会优化思想。教学难点是探究解决问题的最优方案。
而本单元的第一课时,正是围绕单元重难点展开的,所以我认为第一课时在本单元中有着举足轻重的作用。
接下来,我以本单元第一课时为例谈谈教学设计。
教学内容:教材第112~116页例1。
教学目标:
1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。
2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。
3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。
4、使学生能积极地参与小组学习活动,体会到学习数学的乐趣的同时,培养学生的合作探究意识。
教学重点:体会优化思想。
教学难点:探究解决问题的最优方案。
教学评价:师评、互评、自评相结合。
教法、学法:情景教学法、合作探究、操作法。
教学准备:教师:多媒体课件、6张圆纸片。
学生:一张大圆片,6张小圆片。
对于本节的教学,一般老师都会采用创设情景使学生在活动中探究烙饼的最优方案,如何使学生在活动中活而不乱,我认为是一个很值得关注的问题。为了有效的组织教学,为了使学生对学习更有兴趣,激发他们的探究意识,我将“寻找最省时方案”作为课时的主线,从1张饼、2张饼入手探索烙3张饼、数张饼的方法及饼子的张数和时间的关系。
我首先帮助孩子理解已知的条件为后面的学习做好铺垫。然后分以下6个环节展开教学。
第一环节,抛出问题“如果妈妈烙一张饼需要多少时间?”一是让孩子明白烙好一张饼需要的时间,二是让学生明白怎样在锅里烙饼。
第二个环节,探究2张饼怎样烙最省时.
我主要以以下五步骤呈现:独立思考、大胆猜想、个人汇报、集体评价、教师小结。
为了避免学生人云亦云,给学生独立思考的空间;为了培养孩子的自信心,让孩子大胆猜想;个人汇报时培养孩子的语言表达能力,为后面烙3张饼的汇报做好铺垫。
第三个环节,探究3张饼怎样烙最省时。
主要以以下7步骤呈现:独立思考、大胆猜想、独立操作、小组讨论、小组汇报、集体评价、教师小结。在这一环节中,让孩子在独立思考后,让自己的观点在学习小组中去碰撞,从而得到最优方案,让孩子懂得自信发表自己的见解的'同时,虚心倾听别人的意见,经过筛选去其糟粕取其精华,体会团队的力量,树立合作意识。
第四个环节,探究4张饼、5张饼怎样烙更省时。学生利用烙2张饼和3张饼的经验,得到4张饼先2张烙好了再烙另外两张饼是最省时的,而5张饼就会分成两种烙法,先拿出3张饼用前面的“交替烙饼法”来烙,剩下的2张一起烙,为发现“双数张饼时2张2张的烙,单数张时先拿3张用交替烙饼法烙,剩下的2张2张的烙”的规律作铺垫。
第五个环节,探究6张饼的怎样烙更省时。学生们通过探究发现,无论是2张2张的烙,还是用“交替烙饼法”来烙,时间都是18分钟,但发现“交替烙饼法”显得麻烦,容易搞混淆,所以最终选择2张2张的烙。
第六个环节,观察表格发现规律。通过对前面一系列探究活动的感知和对表格的观察,学生们很容易发现“双数张饼时2张2张的烙,3以上的单数张饼先拿3张用交替烙饼法烙,剩下的2张2张的烙”、多一张饼,烙饼所需最少时间就多三分钟以及用饼数乘烙一面饼所用的时间,就是烙饼所用的最短时间(一张饼除外)等规律。为以后更快解决生活中最优化问题奠定基础。
以上就是我对“烙饼问题”的教学设计,感谢各位老师的细心聆听,希望能得到您们宝贵的意见和建议,谢谢!
为了达成教学目标,突出教学重点,突破教学难点,我采用的教学策略有:
1、从学生的实际经验出发,寻找知识与经验的联系。
2、在教师的主导下发挥学生的主体作用。
3、在落实“双基”的基础上渗透应用性和开放性。
根据新课标标准,必须转变学生的学习方式,学生的学习方法上力求体现以下几点:
1、在情景中经历发现问题、解决问题的过程中体验探索的成功。
2、在动手操作、小组合作的实践活动中交流独立思考的成果。
3、联系生活实际解决问题。
【本文地址:http://www.xuefen.com.cn/zuowen/14598307.html】