平方差公式教案(汇总18篇)

格式:DOC 上传日期:2023-11-25 05:17:15
平方差公式教案(汇总18篇)
时间:2023-11-25 05:17:15     小编:QJ墨客

教案是教师与学生之间的桥梁,促进了知识的传递和学习的效果。教案的编写要充分考虑学生的学习背景和学习能力,确保教学内容的针对性和有效性。借鉴下面的教案范本,你可以提高你的课堂教学效果和学生的学习动力。

平方差公式教案篇一

本节课选自人教版八年级上册第15章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全平方公式的学习提供了方法。因此,中公教育专家认为,平方差公式作为初中阶段的第一个公式,在教学中具有很重要地位。

二、说学情。

学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会出现符号错误及漏项等问题;另外,数学公式中字母具有高度概括性、广泛应用性,鉴于八年级学生的认知水平,理解上有困难。因此,我们把教学难点定为:理解平方差公式的。结构特征,灵活应用平方差公式。

三、说教学目标。

基于对教材的理解和分析,我在教学中以学生为主体,以学生的学为根本,我把本课的目标定位为:

知识与技能目标:了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题。

过程与方法目标:经历平方差公式产生的探究过程,培养观察、猜想、归纳、概括、推理的能力和符号感,感受利用转化、数形结合等数学思想方法解决实际问题的策略。

情感态度与价值观目标:通过探究平方差公式,形成学习数学公式的一般套路,体会成功的喜悦,培养团结协助的意识,增强学生学数学、用数学的兴趣。

教学重点:理解平方差公式的意义,掌握平方差公式的结构特征。

教学难点:运用平方差公式解决问题。

四、说教法、学法。

课堂是学生学习的主阵地,真正做到把课堂还给学生,因而我采取的的教学模式定为:三先两主动,即让学生先说话、先动手、先总结,让学生主动提问、主动探索。学习方法:学生积极参与、大胆猜想、合作交流和自主探索。

五、说教学过程。

(一)创设情景,引入新课。

数学课标强调:“数学来源于实际生活”,为了体现这一思想,我设计了一个实际问题。这里只提供情境,刺激学生主动提出问题,因为“提出问题”比“解决问题”更重要。这个以生活实例创设的情境,不仅激发学生的求知兴趣,又为平方差公式的引人服务,更为说明平方差公式的几何意义做好铺垫。

(二)合作交流,探求新知。

首先,我用情境中一道题目,并再安排了两个练习,通过对特殊的多项式与多项式相乘的计算,既复习了旧知,又为下面学习习近平方差公式作了铺垫,让学生感受从一般到特殊的认识规律,引出乘法公式----平方差公式。

顺势鼓励学生用自己的语言归纳表述,总结出公式,从而提高学生的语言组织与表达能力。

然后,教师通过分析公式的本质特征使学生掌握公式,在认清公式的结构特征的基础上,

进一步剖析a、b的广泛含义,抓住了概念的核心,使学生在公式的运用中能得心应手,起到事半功倍的效果。

最后,用学生最喜欢的拼图游戏,引导学生从“形”的角度认识平方差公式的几何意义,再次验证了猜想。渗透了数形结合的思想,让学生体会到代数与几何的内在联系,引导学生学会从多角度、多方面来思考问题。

(三)巩固深化,内化新知。

总结出平方差公式后,我先设计两个简单练习题。通过练习,使学生加深对平方差公式结构特点的认识和理解,进一步掌握平方差公式的本质特征和运用平方差公式必须具备的条件。

然后设计了三个例题。例1和例2是教材上的内容,例3是我设计的一道实际问题。

例1有两道小题,其中设计第(1)题,然后学生完成。第(2)题学生板演,师生共同纠错。例2有两道小题,先让学生尝试练习,出错后教师及时纠正,使学生认识深刻。第一题体现了转化的思想和数式通性;另一题是平方差公式与一般多项式乘法的综合,强调不能用公式的仍按多项式乘法法则进行。

例3运用平方差公式解决实际问题,体现了数学来源于生活,服务于生活,学生感受到学习数学的价值,设计此题与平方差公式的几何意义相吻合,加深学生对平方差公式的理解。

(四)反馈练习,巩固新知。

练习题的设计有梯度,从基础应用公式入手,到拓展提高。加强基本知识和基本技能训练,使不同水平的学生学习都有收获,体现出“人人学有用的数学”。

在练习的基础上,教师归纳总结,提升学习理念。

(五)当堂练习。

这部分给出两类练习题。

设计意图(第一类题是完全平方公式的直接应用,通过实例,使学生进一步体会到完全平方公式中字母a,b的含义是很广泛的,它可以是数,也可以是整式)(第二道题直接给出一些同学的错误认识,强调错误原因并引导学生走出误区)。

(六)课堂小结。

设计意图:(让学生回想本节课的主要内容完全平方公式,教师再次强调并指出易错点和需注意的地方公式中项数、符号、字母及其指数。)。

(七)布置作业。

作业分必做题和选做题两部分。

设计意图:(必做题巩固本节课知识,让学生熟练应用公式。选做题为下节课的学习做铺垫,同时分层布置作业也满足了不同层次学生的要求)。

平方差公式教案篇二

2、注意培养学生分析、综合和抽象、概括以及运算能力。

教学重点和难点。

难点:用公式的结构特征判断题目能否使用公式。

教学过程设计。

我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子。

让学生动脑、动笔进行探讨,并发表自己的见解。教师根据学生的回答,引导学生进一步思考:

(当乘式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差)。

继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算。以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式。

在此基础上,让学生用语言叙述公式。

例1计算(1+2x)(1-2x)。

解:(1+2x)(1-2x)。

=12-(2x)2。

=1-4x2.

教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么。

例2计算(b2+2a3)(2a3-b2)。

解:(b2+2a3)(2a3-b2)。

=(2a3+b2)(2a3-b2)。

=(2a3)2-(b2)2。

=4a6-b4.

教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算。

课堂练习。

(l)(x+a)(x-a);(2)(m+n)(m-n);

(3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。

例3计算(-4a-1)(-4a+1)。

让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演。

解法1:(-4a-1)(-4a+1)。

=[-(4a+l)][-(4a-l)]。

=(4a+1)(4a-l)。

=(4a)2-l2。

=16a2-1.

解法2:(-4a-l)(-4a+l)。

=(-4a)2-l。

=16a2-1.

根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果。解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果。采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷。因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案。

课堂练习。

1、口答下列各题:

(l)(-a+b)(a+b);(2)(a-b)(b+a);

(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。

2、计算下列各题:

(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);

教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法。

2、运用公式要注意什么?

(1)要符合公式特征才能运用平方差公式;

(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形。

(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);

(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);

平方差公式教案篇三

教学目标:

一、知识与技能。

1、参与探索平方差公式的过程,发展学生的推理能力2、会运用公式进行简单的乘法运算。

二、过程与方法。

1、经历探索过程,学会归纳推导出某种特种特定类型乘法并用简单的。

数学式子表达出,即给出公式。

2、在探索过程的教学中,培养学生观察、归纳的能力,发展学生的符。

号感和语言描述能力。

三、情感与态度。

以探索、归纳公式和简单运用公式这一数学情景,加深学生的体验,增加学习数学和使用的信心。培养学生由观察-发现-归纳-验证-使用这一数学方法的逐步形成.

教学重点:公式的简单运用。

教学难点:公式的推导。

教学方法:学生探索归纳与教师讲授结合。

课前准备:投影仪、幻灯片。

平方差公式教案篇四

进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异.

教学重点和难点:公式的应用及推广.

1.(1)用较简单的代数式表示下图纸片的面积.

(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.

讲评要点:

沿hd、gd裁开均可,但一定要让学生在裁开之前知道。

hd=bc=gd=fe=a-b,

这样裁开后才能重新拼成一个矩形.希望推出公式:

a2-b2=(a+b)(a-b)。

2.(1)叙述平方差公式的数学表达式及文字表达式;。

(2)试比较公式的两种表达式在应用上的差异.

说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的`问题,否则容易对公式产生各种主观上的误解.

依照公式的文字表达式可写出下面两个正确的式子:

经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活.

3.判断正误:

(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)。

(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)。

(1)102×98;(2)(y+2)(y-2)(y2+4).

解:(1)102×98(2)(y+2)(y-2)(y2+4)。

=(100+2)(100-2)=(y2-4)(y2+4)。

=9996;。

(1)103×97;(2)(x+3)(x-3)(x2+9);。

(3)59.8×60.2;(4)(x-)(x2+)(x+).

3.请每位同学自编两道能运用平方差公式计算的题目.

例2填空:

思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?

(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)。

练习。

填空:

1.x2-25=()();。

2.4m2-49=(2m-7)();。

3.a4-m4=(a2+m2)()=(a2+m2)()();。

例3计算:

(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).

解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)。

=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]。

=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2。

=m4-14m2+49-n2.

1.什么是平方差公式?一般两个二项式相乘的积应是几项式?

3.怎样判断一个多项式的乘法问题是否可以用平方差公式?

(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);。

(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).

(1)69×71;(2)53×47;(3)503×497;(4)40×39.

平方差公式教案篇五

这节课学习的主要内容是运用平方差公式进行因式分解,学习时如果直接就给同学们讲把前面在整式的乘法中学习到的平方差公式反过来运用就形成了因式分解的平方差公式,然后就是反复的运用、反复的操练的话,学生学起来就会觉得没有味道,对数学有一种厌烦感,所以我就想到了运用逆向思维的方法来学习这节课的内容,而且非常不利于学生理解整式乘法和因式分解之间的互逆的关系。

在新课引入的过程中,首先让学生回忆了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。然后,巧妙的'将刚才用平方差公式计算得出的三个多项式作为因式分解的题目请学生尝试一下。可以说,对新问题的引入,是采取了由浅入深的方法,使学生对新知识不产生任何的畏惧感。

在这节课中就明显出现了这个问题,许多学生容易产生的问题都集中在一起让学生解决,反而将学生搞得不清不楚。所以,通过这节展示课也让我学到了很多,比如,化解难点时要考虑到学生的思维障碍,不可操之过急,否则适得其反。

平方差公式教案篇六

本节课是围绕“引导学生有效预习”的课题设计的,通过预设的问题引发学生思考,在学生的预习基础上回答相关的问题,产生对整式的乘法、提公因式法和公式法的对比。

让学生充分自主的对知识产生探究,同时利用数形结合的思想验证平方差公式;再通过质疑的方式加深对平方差公式结构特征的认识,有助于让学生在应用平方差公式行分解因式时注意到它的前提条件;通过例题练习的巩固,让学生把握教材,吃透教材,让学生更加熟练、准确,起到强化、巩固的作用,让学生领会换元的思想,达到初步发展学生综合应用的能力。

本节课是运用提公因式法后公式法的第一课时——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向应用,它是解高次方程的基础,在教材中具有重要的地位。在教材的处理上以学生的自主探索为主,在原有用平方差公式进行整式乘法计算的知识的基础上充分认识分解因式。明确因式分解是乘法公式的一种恒等变形,让学生学会合情推理的能力,同时也培养了学生爱思考,善交流的良好学习惯。

(一)知识与技能。

2.掌握提公因式法、平方差公式分解因式的综合应用。

(二)过程与方法。

1.经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。

2.通过乘法公式:(a+b)(a-b)=a2-b2逆向变形,进一步发展观察、归纳、类比、概括等能力,发展有条理地思考及语言表达能力。

3.通过活动4,将高次偶数指数向下次指数的转达化,培养学生的化归思想。

4.通过活动1,发现并归纳出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。

5.通过活动4,让学生自己发现问题,提出问题,然后解决问题,体会在解决问题的过程中与他人合作的重要性。

(三)情感与态度。

1.通过探究平方差公式,让学生获得成功的体验,锻炼克服困难的意志,建立自己信心。

平方差公式教案篇七

1.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解;(重点)。

2.掌握平方差公式的应用.(重点)。

一、情境导入。

1.教师引导学生回忆多项式与多项式相乘的法则.

学生积极举手回答.

多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.

2.教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.

二、合作探究。

探究点:平方差公式。

【类型一】直接运用平方差公式进行计算。

平方差公式教案篇八

本课的学习目的主要是熟练掌握整式的运算,并且这些知识是以后学习分式、根式运算以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。而本节是整式乘法中乘法公式的首要内容,学生只有熟练掌握了包括平方差公式在内的乘法公式及它的推导过程,才能实现本节乃至本章作为数学工具的重要作用。因此,在教学安排上,我选择从学生熟悉的求多边形面积入手,遵循从感性认识上升为理性思维的认知规律,得出抽象的。概念,并在多项式乘法的基础上,再次推导公式,使原本枯燥的数学概念具有一定的实际意义和说理性;之后安排了一系列的例题和练习题,把新知运用到实战中去,解决简单的实际问题,这样既调动了学生学习的主动性,又锻炼了思维,整个过程由浅入深,在对所得结论不断观察、讨论、分析中,加深对概念的理解,增强学生应用知识解决问题的能力,从而达到较好的授课效果。

数学是一门抽象的学科,但数学是来源于实际生活的。因此,数学教育的目的是将数学运用到实际生活中去,让学生深切感受到数学是有价值的科学,来源于生活,是其他科学的基础。本节公式中字母的含义对学生来讲很抽象,是本节的难点,也是学生运用公式解决实际问题的最大障碍,通过巩固练习,让学生逐步体会,为今后学习其他乘法公式做好准备。乘法公式的逆用就是因式分解的重要方法,因此,在本节补充练习中,已经开始渗透这部分知识,为后面学习因式分解做好铺垫。

但是,我在教本章内容时却始终感到困惑。本以为这一章很简单,由于教材安排存在一定问题,如将同底数幂乘法、幂的乘方、积的乘方、单项式乘以单项式、单项式乘以多项式、多项式乘以多项式这么多的内容安排在一起,造成学生没掌握好、消化好,知识间相互混淆,设置了障碍。所以很多学生出现下列错误(3x?2)(3x?2)?3x象我们想象中掌握的那么好。

本章教材编者在此安排不太合理,没有考虑到学生的认知规律,不利于学生很好掌握,所以,我感觉以后上这章的时候不能按照教材课时安排走。否则还会出现今天的问题。

平方差公式教案篇九

(4)(+3z)(—3z)=_____。

(1)(x+1)(1+x),

(2)(2x+)(—2x),

(3)(a—b)(—a+b),

(4)(—a—b)(—a+b)。

帮助学生理解公式的特征,掌握公式的特征是正确运用公式的关键,除了掌握公式的特征外还有必要理解公式中的字母a、b具有广泛的含义,几字母a、b可以表示具体的数、也可以表示单项式或多项式,由于学生的认知能力有一个过程,教学中应由易到难逐步安排学习这方面的内容。

平方差公式教案篇十

本周听了满老师的一节数学课,这节课是满老师安排的一节乘法公式——平方差公式的新授课,这节课给我留下了深刻的影响。

教师讲课语言清晰,有较强的表达和应变能力,课堂教学基本功好。乘法公式的引入,使学生既复习了多项式的乘法运算,又形象直观地理解了乘法公式的内在实质。课堂教学中充分体现了以点拨为主的教学。对于公式的性能严格要求学生理解,课堂内的练习量、内容及安排上恰当好处,有基本运用公式,有变式运用公式,也有适当的加深应用,满足了不同层次的学生的学习。一点建议:

1、引入时,还可以安排得生动一点,可以先设疑,提出问题,让学生探讨,猜想,归纳,以激发学生更高的学习兴趣,或采用多题的多项式乘法运算,当学生感到有些“烦“时,让学生猜想这类运算能否运用简单的结论来得出,从而使学生感到今天要学的内容的重要性,这样学生的学习将更主动。

2、刚才说过语言清晰,但不够精炼,尤其在总结公式特征时,未能用简练的语言描述出特征,以致学生在完成例题和练习题的过程中,对在运用公式之前需要变型的题型,出错率较高。其实平方差公式的特征就是有两项相同,而另两项恰恰是互为相反数或项。相同项在前,相反项在后,结果才能用相同项的平方减去相反项的平方。

3、对于平方差公式的几何意义,敢于让学生大胆上黑板演示是好的,但过程繁琐,缺乏精炼,直观,不能让大部分学生弄懂。这时我们老师应该给出恰当准确的解释。

平方差公式教案篇十一

平方差公式是多项式乘法运算中一个重要的公式,是特殊的多项式与多项式相乘的一种简便计算。通过复习多项式乘以多项式的计算导入新课,为探究新知识奠定基础。在重难点处设计问题:“观察以上3个算式的特点和运算结果的特点,对比等号两边代数式的结构,你发现了什么?”让学生发现规律并尝试运用自己的语言来描述。

问题提出后,学生能积极进行分组讨论、交流,各组小组长阐述自己小组讨论的结果。大多数的学生能找出规律,说出大概意思,但是无法用精准的语言完整的描述出来,语言表达无条理、含糊。针对这种情况,在以后的课堂教学过程中要注意加强对学生的逻辑思维能力和语言表达能力的.培养。最后经过师生的共同努力,得出了平方差公式以及公式的特征。

在例题展示环节中,我通过2道例题的运算,训练学生正确应用公式进行计算,体会公式在简化运算中的作用。实践练习的设计,使学生从不同角度认识平方差公式,进一步加强学生对公式的理解。在运用公式时,学生基本掌握运用平方差公式的步骤:首先要判断算式是否符合平方差公式特征,然后再寻找算式中的a,b项,最后运用平方差公式运算。

拓展延伸环节中,学生通过寻找算式中的a,b项,慢慢发现a,b项不仅可以代表数,也可以代表单项式、多项式等代数式,这样设计可以进一步深化学生对字母含义的理解。在学生独立完成练习和堂测中,经过巡视,我发现近三分之一的学生对较复杂的多项式不能准确找出a,b项,特别是b项代表多项式时,负数去括号时出错较多。

最后通过设计递进式的问题串,引导学生自己一步步总结出本节课所学的知识内容,从而培养他们的归纳总结和语言表达能力。

本节课采用学习小组讨论、交流的学习方式,让学优生带动学困生,整体教学效果良好,学生基本掌握平方差公式的运用,对于较复杂的a、b项的运算,在自习课上将加强练习。

平方差公式教案篇十二

一、教学目标:

1、使学生理解和掌握平方差公式,并会用公式进行计算;

2、注意培养学生分析、综合和抽象、概括以及运算能力,培养应用数学的意识;

3、在紧张而轻松地教学氛围内,进一步激发学生的学习兴趣热情。

二、重点、难点:

重点是掌握公式的结构特征及正确运用公式。难点是公式推导的理解及字母的广泛含义。

三、教学方法。

以教师的精讲、引导为主,辅以引导发现、合作交流。

四、教学过程。

(一)创设问题情境,引入新课。

1、你会做吗?

(1)(x+1)(x—1)=_____=()。

(3)(3x+2)(3x—2)=_____=()()。

2、能否用简便方法运算:×(这里需要用到平方差公式,设疑激发学生兴趣。)。

交流上面第1题的答案,引导学生进一步思考:

(合作交流,探究新知:两数之和与这两数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于这两个数的平方差。)。

我们把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到类似形式的多项式相乘时,就可以直接运用公式进行计算。(在此基础上,让学生用语言叙述公式,并让学生熟记。)。

(三)尝试探究。

(四)巩固练习。

(l)(x+a)(x—a)。

(2)(m+n)(m—n)(3)(a+3b)(a—3b)。

(4)(1—5y)(l+5y)(5)998×1002。

(6)395×405。

2、直接写出答案:

(l)(—a+b)(a+b)。

(2)(a—b)(b+a)。

(3)(—a—b)(—a+b)。

(4)(a—b)(—a—b)(5)999×1001。

(6)×(让学生独立完成,互评互改。)。

(五)小结。

2.运用公式要注意什么?

(1)要符合公式特征才能运用平方差公式;

(2)有些式子表面不能应用公式,但实质能应用公式,要注意分清a、b。

(学生回答,教师总结)。

(六)作业。

p106习题1—5题。

七、板书设计:

教学反思。

通过精心备课,本节课在教学中是比较成功的。成功之处在于整个教学流程环环相扣,层层递进,抓住了学生思维这条主线,遵循由浅入深,由特殊到一般的认知规律,引起学生的兴趣。使他们能够积极参与其中,同时,使他们的思维得到了锻炼和发展。不足之处:时间安排不是很合理,前松后紧。课堂上没有给更多的学生提供展示自己思考结果的机会,过于注重“收”,而“放”不够。

平方差公式教案篇十三

本节课采用情景—探究的方式,以猜想、实验、论证为主要探究方式,得出平方差公式,应用逆向思维的方向,演绎出平方差公式,对公式的应用首先提醒学生要注意其特征,其次要做好式子的变形,把问题转化成能够应用公式的方面上来,应用公式法因式分解的过程,实际上就是转化和化归的过程。在解决认识平方差公式的`结构时候,重点突出学生自我思想的形成,能够充分地不公式用自己的语言来叙述,在整个教学设计中,教师只作为了一个点拨者和引路人。然后应用有梯度的典型例题加以巩固,在学生头脑中形成一个清晰完整的数学模型,使学生在今后的练习中游刃有余。

不足之处:

教学中时间把握还是不足,在设计的题目中不怎么合理,应按题目的难度从易到难。

有些题目的归纳可放手给学生讨论后由学生说出,而不是教师代替。小组评价做的不够,没有足够的小组的活动,没有小组的竞赛。

教学语言还太随意,数学的语言应该严谨。在语调上应该有所变化。

平方差公式教案篇十四

教师讲课语言清晰,有较强的表达和应变能力,课堂教学基本功好。

乘法公式的引入,使学生既复习了多项式的乘法运算,又形象直观地理解了乘法公式的内在实质。课堂教学中充分体现了以点拨为主的教学。对于公式的性能严格要求学生理解,课堂内的练习量、内容及安排上恰当好处,有基本运用公式,有变式运用公式,也有适当的加深应用,满足了不同层次的学生的学习。

一点建议:

1、引入时,还可以安排得生动一点,可以先设疑,提出问题,让学生探讨,猜想,归纳,以激发学生更高的学习兴趣,或采用多题的多项式乘法运算,当学生感到有些“烦“时,让学生猜想这类运算能否运用简单的结论来得出,从而使学生感到今天要学的内容的重要性,这样学生的学习将更主动。

2、刚才说过语言清晰,但不够精炼,尤其在总结公式特征时,未能用简练的语言描述出特征,以致学生在完成例题和练习题的过程中,对在运用公式之前需要变型的题型,出错率较高。其实平方差公式的特征就是有两项相同,而另两项恰恰是互为相反数或项。相同项在前,相反项在后,结果才能用相同项的平方减去相反项的平方。

3、对于平方差公式的几何意义,敢于让学生大胆上黑板演示是好的,但过程繁琐,缺乏精炼,直观,不能让大部分学生弄懂。这时我们老师应该给出恰当准确的解释。

以上是我的浅显认识,不妥之处,还望杨老师海涵,大家批评。

平方差公式教案篇十五

《平方差公式》是一节公式定理课,是各位老师非常熟悉的一个课题,对大家更熟悉,我深深感到一种压力。但是,无论如何,“新”、“实”是我追求的目标。为此,我作了如下努力:

1、把数学问题“蕴藏”在游戏中。

导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,首先是一个智力抢答,学生通过抢答初步感知平方差公式,接下来,采用小组合作学习的方式,利用“四问”让学生进行试验操作,学生选择的字母有很多种,让它们都有其共性。由此,学生在探索中验证自己的猜想,同时也感受和认识知识的发生和发展的过程,得出(a+b)(a-b)=a2-b2.经过不断的尝试小组合作学习方式的教学,我发现也真正体会到,只要我们给学生创造一个自由活动的空间,学生便会还给我们一个意外的惊喜。

2、充分重视“自主、合作、探究”的教学方式的运用。

把探究的机会留给学生,让学生在动脑思考中构建知识,真正成为教学活动的主体。使他们在活动中进行规律的总结,并且通过交流练习、应用,深化了对规律的理解。学生对知识的掌握往往通过练习来达到目的。新授后要有针对性强的有效训练,让学生对所学知识建立初步的表象,以达到对知识的理解、掌握及应用,实现从感性认识到理性认识的升华。在此设计了三个层次的有效训练,让学生体会平方差公式的特点:第一层次是直接运用公式,第二层次是将式子进行适当变形后应用公式,第三个层次是平方差公式的灵活应用。通过做题学生归纳出平方差公式的运用技巧。

3、自置悬念,享受成功。

以四人小组为单位,各小组出两道具有平方差公式的结构特征的题目,看谁出得有水平。学生每人都设计了题目,任意叫了四位学生在黑板上写,经评价结果都对了。这种方法,不仅令人耳目一新,而且把学生引入不协调——探究——发现——解决问题的一个学习过程,使学生获得思维之趣,参与之乐,成功之悦。

4、切实落在实效上。

本节课在采用小组学习之后,为了让学生的巩固有效果,采用了学生上台讲解、作业实物投影的方式来进行,多种方式的选择,让学生暴露出自己的问题,然后通过生生互动、师生互动解决问题,实现问题及时处理,学习效果不错。

5、值得注意的是:

1、节奏的把握上。

这一节我觉得不是很顺,尤其在从几何角度解释平方差公式、例2⑵的其他计算方法等问题上,花了不少时间,节奏把握的不是很好。

2、充分发挥学生的主体地位上。

这节课上,我觉得学生的积极性不很高,回答问题没有激情,说明我背学生还不够,自己想象的比现实的好。

平方差公式教案篇十六

会推导公式(a+b)(a-b)=a2-b2。

通过教学我对本节课的反思如下:

1、本节课我从复习旧知入手,在教学设计时提供充分探索与交流的空间,使学生经历观察,猜测、推理、交流、等活动。对于平方差公式的教学要重视结果更要重视其发现过程,充分发挥其教育价值。不要回到传统的“讲公式、用公式、练公式、背公式”学生被动学习的局面。我在教学时没有直接让学生推导平方差公式,而是设置了一个做一做,让学生通过计算四个多项式乘以多项式的题目,让学生通过运算并观察这几个算式及其结果,自己发现规律。目的是让学生经历观察、归纳、概括公式的全过程,以培养学生学习数学的一般能力,让学生体会发现的愉悦,激发学生学习数学的兴趣,感觉效果很好。

不足:在学生将4个多项式乘多项式做完评价后,应及时把他们归纳为某式的平方差的形式,以便学生顺理成章的猜测公式的结果。

2、学生刚接触这类乘法,我设计了两个问题(1)等号左边是几个因式的积,两个因式中的每一项有什么相同或不同之处。(2)等号右边两项有什么特点?便于学生发现总结。在这两个二项式中有一项(a)完全相同,另一项(b与-b)互为相反数。右边为这两个数的平方差即完全相同的项的平方减去符号相反的平方。公式中的a,b不仅可以表示具体的数字,还可以是单项式,多项式等代数式。提醒学生利用平方公式计算,首先观察是否符合公式的特点,这两个数分别是什么,其次要区别相同的项和相反的项,表示两数平方差时要加括号。平方差公式(a-b)(a+b)=a2-b2,它是特殊的整式的乘法,运用这一公式可以简捷地计算出符合公式的特征的多项式乘法的结果.我很细地给学生讲了以上特点,学生容易接受,课堂气氛活跃,收到了一定的效果。

3、本节课如能将平方差公式的几何意义简要的结合说明,更能体会数学中数形结合的特点,因时间关系放在下一课时。

4、学生错误主要是:

(1)判断不出哪些项是公式中的a,哪些项是公式中的b;

(2)平方时忽视系数的平方,如(2m)2=2m2。针对这一点在课堂教学中应着重对于共性的或思维方式方面的错误及时指正,以确保达到教学效果。平方差公式是乘法公式中一个重要的公式,形式虽然简单,学生往往学起来容易,真正掌握起来困难。部分学生只是死记硬背公式,不能完全理解其含义和具体应用。

总之,在以后的教学中我会更深入的专研教材,结合教学目标与要求,结合学生的实际特点,克服自己的弱点,尽量使数学课生动、自然、有趣。

平方差公式教案篇十七

导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,首先是一个智力抢答,学生通过抢答初步感知平方差公式,接下来,采用小组合作学习的方式,利用“四问”让学生进行试验操作,学生选择的字母有很多种,让它们都有其共性。由此,学生在探索中验证自己的猜想,同时也感受和认识知识的发生和发展的过程,得出(a+b)(a-b)=a2-b2.经过不断的尝试小组合作学习方式的教学,我发现也真正体会到,只要我们给学生创造一个自由活动的空间,学生便会还给我们一个意外的惊喜。

把探究的机会留给学生,让学生在动脑思考中构建知识,真正成为教学活动的主体。使他们在活动中进行规律的总结,并且通过交流练习、应用,深化了对规律的理解。学生对知识的掌握往往通过练习来达到目的。新授后要有针对性强的有效训练,让学生对所学知识建立初步的表象,以达到对知识的理解、掌握及应用,实现从感性认识到理性认识的升华。在此设计了三个层次的有效训练,让学生体会平方差公式的特点:第一层次是直接运用公式,第二层次是将式子进行适当变形后应用公式,第三个层次是平方差公式的灵活应用。通过做题学生归纳出平方差公式的运用技巧。

以四人小组为单位,各小组出两道具有平方差公式的结构特征的题目,看谁出得有水平。学生每人都设计了题目,任意叫了四位学生在黑板上写,经评价结果都对了。这种方法,不仅令人耳目一新,而且把学生引入不协调——探究——发现——解决问题的一个学习过程,使学生获得思维之趣,参与之乐,成功之悦。

本节课在采用小组学习之后,为了让学生的巩固有效果,采用了学生上台讲解、作业实物投影的方式来进行,多种方式的选择,让学生暴露出自己的问题,然后通过生生互动、师生互动解决问题,实现问题及时处理,学习效果不错。

1、节奏的把握上。

这一节我觉得不是很顺,尤其在从几何角度解释平方差公式、例2⑵的其他计算方法等问题上,花了不少时间,节奏把握的不是很好。

2、充分发挥学生的主体地位上。

这节课上,我觉得学生的积极性不很高,回答问题没有激情,说明我背学生还不够,自己想象的比现实的好。

平方差公式教案篇十八

《平方差公式》这一节重点和难点就在于结构的不变性和字母的可变性。因此我的教学设计思想是从让每一位学生理解和掌握公式结构的不变性和字母的可变性从而达到熟练运用的目的。只是在具体的教学手段和措施及侧重点上有所区别。虽然如此,我个人认为基本目标已经达到,也取得了初步成效,尤其是对易错点的侧重让学生记忆深刻效果更明显。

具体来说,成功之处我们都基本实现了教学目标,突出了教学重难点,教学过程环环相扣,题目设计逐层深入,及时反馈学习效果,精讲多练。基本实现了预想的效果。我自认为该课成功之处主要体现在:

1、课前准备充分,教学设计合理充实,有很强的实用性和创造性。

2、导入新颖,从小故事出发,激发学生兴趣,给学生留下悬念,同时对平方差公式有了初步的感性认识,从而揭示课题。然后再通过一系列的探索和练习以及公式的几何解释,使学生对新知识的理解由感性认识到理性认识的过渡。

3、选题合理、有针对性和层次性。在巩固练习中通过像(x+y)(x-y)这种简单的套公式题型逐渐转换到涉及带负号的变式像(-a–b)(-a+b),(-a-b)(b-a),(a+b)(b-a)这样的题型,通过各类变式和判断及找错的题型问题的暴露,及时处理。使得学生逐步加深对公式结构的理解和记忆。然后转回到课前给学生留下的疑问,最后实现创新,用简便方法计算像2002×1998.使得整个课堂容量大,充实。

进的例题练习让学生逐步理解公式中字母的可变性。最后达到对公式的全面和深刻的理解和掌握,使公式的运用得到升华。

5、本节课的重点和难点就是在于结构的不变性和字母的可变性。我就侧重运用公式时的易错点。不仅在训练期间多次强调的方式提醒学生易错点,相同项在前,相反项在后,结果才能用相同相的平方减去相反项的平方,平方时底是单项式但系数不是1或底数是多项式时不要忘记打上括号,而且在最后的小结中给学生总结更是让学生影响深刻。

6、对公式进行几何意义的解释,我通过直观演示操作,将学生不易理解的问题,使它变得直观,从而显得简单。

3、课堂效率有待提高。

改进方向:1、继续加强平时的“生本”理念的灌输和学生讨论、发言的培训和鼓励。

2、教学设计时更全面、深入地考虑学生的问题也就是备课备学生。

3、加强对学生发现问题、总结规律、提出疑问等课堂效果体现的关键环节。

的培训。

4、课堂教学注重多措施了解学生学习效果的反馈。俗话说:“金无足赤,人无完人”。一节课上得再好,还是有些问题没有考虑到,以上四本人的自我剖析,有的地方做的不是很完美,敬请各位同仁批评指正,本人一定笑纳,并表示感谢。

【本文地址:http://www.xuefen.com.cn/zuowen/14825251.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档