总结是对过去一段时间的工作、学习或生活经历的回顾和总结。要写一篇较为完美的总结,首先需要对自己的学习或工作过程进行全面的回顾。阅读他人的总结范文可以帮助我们发现一些自己忽略的细节和问题。
线性代数教学总结篇一
由浅而深线性代数中一些新概念如秩,特征值特征向量,应当先理解好它们的定义,在理解基础之上,才能深刻理解它们与其他概念的联系、它们的作用,一步步达到运用自如境地。
二、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。
1、线性代数的概念很多,重要的有:
代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
2、线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:
行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
三、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。
线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
四、注重逻辑性与叙述表述。
线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解学生对数学主要原理、定理的理解与掌握程度,考查学生的抽象思维能力、逻辑推理能力。大家学习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
线性代数教学总结篇二
2013年考研线性代数重点内容和典型题型总结,线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的2012年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,考研教育网就将线代中重点内容和典型题型做了总结,希望对2012年考研的同学们学习有帮助。
行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《2012年全国硕士研究生入学统一考试数学120种常考题型精解》。
矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的`计算与证明、解矩阵方程。
向量组的线性相关性是线性代数的重点,也是考研的重点。2012年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。
往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。
特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求a、有关实对称矩阵的问题。
由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础.重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法.重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。
线性代数教学总结篇三
20考研线性代数重点内容和典型题型总结,线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,考研教育网就将线代中重点内容和典型题型做了总结,希望对20考研的同学们学习有帮助。
行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《年全国硕士研究生入学统一考试数学120种常考题型精解》。
矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的`计算与证明、解矩阵方程。
向量组的线性相关性是线性代数的重点,也是考研的重点。2012年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。
往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。
特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求a、有关实对称矩阵的问题。
由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础.重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法.重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。
线性代数教学总结篇四
《线性代数》是工科高校中颇为重要的一门课,也是较抽象难学的一门课程。本文从理论与实践两方面以作者的体会与认识,提出《线性代数》教学抽象概念的讲解应注意的几点问题,阐释了如何进行《线性代数》课程的课堂教学,并且能收到良好的教学效果。
[关键词]。
《线性代数》是高等院校理、工类专业重要的数学基础课。它不但广泛应用于概率统计、微分方程、控制理论等数学分支,而且其知识已渗透到自然科学的其它学科,如工程技术、经济与社会科学等领域。不仅如此,这门课程对提高学生的数学素养、训练与提高学生的抽象思维能力与逻辑推理能力都有重要作用。但由于“线性代数”本身的特点,对其内容学生感到比较抽象,要深入理解与掌握代数的基本概念与基本理论学生感到相当吃力、难以理解。因此,为培养与提高学生应用数学知识、解决实际问题的能力,进一步研究这门课程的教学思想和方法对提高教学效果甚为重要。
一、加强基本概念的教与学。
线性代数这一抽象的数学理论和方法体系是由一系列基本概念构成的。行列式、矩阵、逆矩阵、初等矩阵、转置、线性表示、线性相关、特征值与特征向量等抽象概念根植于客观的现实世界,有着深刻的实际背景,即是比较直接抽象的产物。高等数学与初等数学在含义与思维模式上的变化必然会在教学中有所反映。线性代数作为中学代数的继续与提高,与其有着很大不同,这不仅表现在内容上,更重要的是表现在研究的观点和方法上。在研究过程中一再体现由具体事物抽象出一般的概念,再以一般概念回到具体事物去的辨证观点和严格的逻辑推理。新生刚进入大学,其思维方式很难从初等数学的那种直观、简洁的方法上升到线性代数抽象复杂的方式,故思维方式在短期内很难达到线性代数的要求。大部分同学习惯于传统的公式,用公式套题,不习惯于理解定理的实质,用一些已知的定理、性质及结论来推理、解题等。
在概念的教学中,教师要研究概念的认识过程的特点和规律性,根据学生的认识能力发展的规律来选择适当的教学方式。因此,在概念教学中应注意以下几点。
1.合理借助概念的直观性。
尽管抽象性是《线性代数》这门课的突出特点,直观性教学同样可应用到这门课的教学上,且在教学中占有重要地位。欧拉认为:“数学这门科学,需要观察,也需要实验,模型和图形的广泛应用就是这样的例子。”直观有助于概念的引入和形成。如介绍向量的概念,尽管抽象,但它具有几何直观背景,在二维空间、三维空间中,向量都是有向线段,由此教学中可从向量的几何定义出发讲解抽象到现有形式的过程,降低学生抽象思考的难度。
2.充分利用概念的实际背景和学生的经验。
教师在教学中应充分利用学生已有的数学现实和生活经验,引导和启发学生进行概念发现和创造。如在讲解n阶行列式,首先从学生已掌握的二元、三元一次方程组的求解入手,然后求出方程组的解由二阶、三阶行列式表示,分析二阶、三阶行列式的特点。
二阶行列式,不难看出:它含有两项,若不考虑符号,每项均是来自不同行不同列的两个元素的乘积,那么会提出这样的问题:右边各项之前所带的正负号有什么规律?同样的,三阶行列式若不考虑符号,它含有3!=6项,每项也是来自不同行不同列的三个元素的乘积,并且包含了所有由不同行不同列的三个元素的组合。为解决n阶行列式,又引出排列的概念、性质,介绍奇偶排列后,又回到我们提出的问题上,可以发现,行标按自然排列,列标排列为奇排列时,该项为负;列标排列为偶排列时,该项为正(问题得到解决)。经过这一过程,学生对n阶行列式已有接触和了解,此时可给出n阶行列式定义,这样一来,学生就容易理解和掌握n阶行列式的性质了。
3.注意概念体系的建立。
r.斯根普指出:“个别的概念一定要融入与其它概念合成的概念结构中才有效用。”数学中的概念往往不是孤立的,理解概念间的联系既能促进新概念的引入,也有助于接近已学过概念的本质及整个概念体系的建立。如矩阵的秩与向量组的秩的联系:矩阵的秩等于它的行向量组的秩,也等于它的列向量组的秩;矩阵行(列)满秩,与向量组的线性相关和线性无关也有一定的联系。
二、学生要掌握科学的学习方法。
学习重在理解,学生必须在理解、领悟其深刻含义的基础上记忆定义、定理及一些结论,才能收到理想的效果。线性代数的最大特点就是:知识体系是一环扣一环,环环相连的`。前面的知识是后面学习的基础,如用初等变换求矩阵的秩熟练与否,直接影响求向量组的秩及极大无关组,进一步影响到求由向量组生成的向量空间的基与维数;又如求解线性方程组的通解熟练与否,会影响到后面特征向量的求解,以及利用正交变换将二次型化为标准型等。因此,学习线性代数,一定要坚持温故而知新的学习方法,及时复习巩固,为此,教师课前的知识回顾以及学生提前预习是十分必要的。
三、加强对学生解题的基本训练。
一定量的典型练习题能有助于学生深化对所学知识的理解,培养学生一题多解的能力,解题后反思,及时总结解题思路和方法。如证明抽象矩阵的可逆,就有很多方法,一是用定义。二是用秩的有关命题。三是借助于特征值理论。四是证明矩阵的行列式不为零等。
四、培养与激发学生的学习兴趣。
兴趣是最好的老师。教师一方面在传授知识,另一方面要鼓励学生有针对性的设计他们的目标,这样,他们才肯自觉钻研,乐于钻研。同时,课堂教学中可选择近年来研究生入学考题及一些与实际联系较紧的题目讲解或练习,以激发学生的学习欲望,并给他们带来成功的满足。此外,还可以适当介绍一些有趣的应用典范或教学史来激发学生的学习热情,提高他们的学习兴趣。
五、发挥多媒体优势,增强教学效果。
多媒体教学成为当前高校教学模式的重要手段。教师只有把传统教学手段、教师自己的特色和多媒体辅助教学三者有机结合起来,才能真正发挥多媒体课堂教学的效果。总之,教师在教学中所做的一切,其目的应在于既教会他们有用的知识,又教会学生有益的思考方式及良好的思维习惯。
参考文献:
[1]张向阳.线性代数教学中的几点体会.山西财经大学学报(高等教育版),.
[2]于朝霞.线性代数与空间解析几何.北京:中国科学技术出版社,.
线性代数教学总结篇五
佘可欣,中山大学国际金融学院2016级本科生,在《线性代数》的课程学习中获得了第一名的好成绩。
作为理科生,数学是极为重要,大学的专业也和数学密切相关,可偏偏数学却是我致命的弱项,在学好数学的路上付出了很多,也有所收获,但也仅仅只是皮毛。在这里分享我的经验,希望大家有所收获。
一开始学习线代时,便感觉到线代不同于高等数学的地方,在于它几乎从一开始就是一个全新的概念。其研究的范围通常都不是我们能想象到的二维空间,而是上升到n维空间,并且在线性代数的学习过程中,我们几乎都是跟一些新的概念,新的定理打交道,因此理解和记忆起来有相当大的困难,常常是花很久的时间还是理解不了。因此需要课前预习,上课紧跟老师讲解,下课练习课后习题以助更好的'理解掌握。
线性代数主要研究三种对象:矩阵、方程组和向量。这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法。因此,学习线性代数时应能够熟练地从一种理论的叙述转移到另一种中去。如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性。由此可见,掌握矩阵、方程组和向量的内在联系十分重要。
线代的概念多,比如对于矩阵,有对角矩阵、伴随矩阵、逆矩阵、相似矩阵等。运算法则多,比如求逆矩阵,求矩阵的秩,求向量组的秩,求基础解系,求非齐次线性方程组的通解等。内容相互纵横交错,在学到后面的知识点时常常出现需要和前面的知识点的应用,但经常记不起来,就需要不断地复习前面的知识点。要能够做到当题干给出一个信息时必须能够想到该信息等价的其他信息,比如告诉你一个矩阵是非奇异矩阵,它包含的信息有:首先明确它是一个n阶方阵,它的秩是n,它便是满秩矩阵,它所对应的n阶行列式不等于零,那么n个n维向量便线性无关,还有这个方阵是可逆方阵,并且可以想到它的转置矩阵也是可逆的。
正是因为线性代数各知识点之间有着千丝万缕的联系,线性代数题的综合性与灵活性较大。因此课本的课后习题要多加练习。万变不离其宗,把握套路,老师也不会太为难我们,基本是在课后题上变形。
数学之路或艰辛,或顺利,四时之景或不同,而乐亦无穷也。数学之乐,得之心而寓之学也。祝大家都能找到适合自己的学习方法,在数学的探索中体味乐趣!
线性代数教学总结篇六
线性代数是代数学的一个分支,今天数学界一致认它作为一门独立学科诞生于上世纪30年代,因为吸纳了系统的线性代数内容的著作是在这一时期产生的,如van的名著代数学第二卷就把线性代数作为其中的短短一章。
回顾线性代数的历史基础上,分析了关于线性代数的几个核心问题:第一介绍了几种关于线性代数基本结构问题的看法;第二介绍了关于线性代数的两个基本问题,即“线性”和“线性问题”;第三介绍了线性代数的研究对象;第四分析了线性代数的结构体系。
上世纪80年代以来,随着计算机应用的普及,线性代数理论被广泛应用到科学、技术和经济领域,因此线性代数也成为高等院校理工科各专业的一门基础课程,文章简述线性代数的相关核心核心问题。
线性代数是代数学的一个分支,今天数学界一致认它作为一门独立学科诞生于上世纪30年代,因为吸纳了系统的线性代数内容的著作是在这一时期产生的,如van的名著代数学第二卷就把线性代数作为其中的短短一章。但是线性代数的一些初级内容如行列式、矩阵和线性方程组的研究可以追溯到二百多年前;19世纪四五十年代grassmann创立了用符号表述几何概念的方法,给出了线性无关和基等概念,这标准着线性代数内容近代化开始;19世纪末向量空间的抽象定义形成,并在20世纪初被广泛用于泛函分析研究,从而使线性代数成为以空间理论为终结的独立学科,因此可以说线性代数是综合了若干项独立发展的数学成果而形成的。从上世纪六七十年代起线性代数进入了大学数学专业课程,在我国这门课程称为高等代数,它以线性代数为主体并纳入了一章多项式理论。
无论是高等代数或线性代数,这个课程有两个特点:一个特点是各部分内容相对独立,整个课程呈现出一种块状结构,原因是线性代数学科的形成过程本身就没有一条明确的主线。我们几乎可以找到从线性方程组,行列式,向量,矩阵,多项式,线性空间,线性变换中的任何一个分块开始展开的教材,其展开过程主要取决于作者串联这些分块的形式逻辑的脉络。另一个特点是内容抽象,要真正掌握线性代数的原理与方法必须具备较强的抽象思维能力,即对形式概念的理解能力和形式逻辑的演绎能力,而这两种能力要求几乎超越了大多数学生在中学阶段的能力储备,而必须在学习这门课程的过程中重塑。主要是这两个原因,线性代数被认为是一门非常难掌握的课程,而克服这一困难的关键就是针对线性代数课程的这两个特点进行有效的课程改革。
线性代数基本结构问题,学者们历来有许多不同的看法,较为常见的是以下几种:
第一种是以矩阵为中心。
这一看法认为整个线性代数以矩阵理论为核心,将矩阵理论视为各个内容联系的纽带。在求线性方程组、判定方程组的解以及研究线性空间问题时,矩阵理论是重要工具。例如正交矩阵和对称矩阵主要应用于欧氏空间和二次型方程问题中。可见,只要对矩阵知识有了全面系统的理解后,就能将各种问题都化解为矩阵理论中的一部分,引申为矩阵问题。
第二种是以线性方程组为中心。
这一关观点认为线性方程组是线性代数研究的基本问题。具体操作过程中,将线性方程组的理论和方法应用到各个章节,由此引出矩阵、行列式、向量等理论,最后列出方程组、求解,然后进一步应用,串联起各部分内容。这一理论较为系统、科学,常常被初学者采纳。
第三是一种线性代数体系,以线性变换和线性空间为核心。
在学习线性代数之前,学生要先掌握关系、集合、环、群、域等概念,形成对高等数学的研究对象、知识结构、表达方式的初步认识。线性代数体系依次安排了线性空间、内积空间、线性变化、矩阵概念和性质等章节。掌握线性变换基础后,再教学线性方程组求解知识,在此基础上,进一步引出特征向量、特征值和二次型理论。整个体系以线性代数为核心,内容介绍、理论讲解及方法系统化为一个整体。
第四是以向量理论为核心。
对二维、三维直角坐标系的研究是线性代数的起源。学生在中学时就已经了解了关于平面向量的一些基本知识,因此,将向量作为整个线性代数知识的核心,有利于使各部分内容的联系更加密切、理论体系更加完整完善,学生的空间概念也能得以加强。矩阵、行列式、线性方程组一般为研究维向量空间所必须的表示工具、向量的`线性相关性的判别工具)和未知向量的计算工具,从宏观讲它们独立于体系之外,从微观讲它们也是维向量空间的一些具体内容。而二次型仅仅是对称双线性函数的一个简单应用。
四、线性和线性问题。
“线性”这个数学名词在中学数学课程中,学生从未接触过。而这一课程是大学数学的基础课程,学生刚进入大学,对这一词汇的具体内容知之甚少。所以在学习之前,学生必须对什么是“线性”有所了解,在“线性代数”这一课程中有对于“线性”概念的明确介绍。这是学习线性代数要解决的第一个基本问题,即什么是“线性”。
了解了什么是“线性”、什么是“线性问题”后,离完成线性代数的教学目的还有很长一段距离。如今的高校教育,一味灌输给学生行列式、向量、矩阵、线性变换等空洞的数学定理,指导学生用这些理论来思考线性代数的基本结构、具体应用等问题。教师在教学线性代数问题时更是一味强调理论的选择与应用,却忽视了学生发现问题、分析问题、解决问题的能力的培养。
稍微观察一下我们可以发现,中学的初等代数就是线性代数的前身,只是在其基础上的进一步抽象化。初等代数研究的多是具体的问题,运用加减乘除的运算方法即可解决问题;线性代数中则引入了许多新的概念,如向量、向量空间、集合、空间、矩阵等等,问题展现的形式发生了变化,要想解决问题,我们的思维方式也应该发生变化。涉及到新概念的数学问题往往都很抽象,如向量指的是既有数值又有具体方向的量;向量空间是许多量组成的集合,这一集合中的元素全都符合特定的运算规则;集合是具有某种属性的事物的总和;矩阵理论则是一种更加抽象化的理论,因此我们的研究方法和思维方式都要随之进行改变。如初等代数中的基本运算法则性代数中经常会失效,线性代数的研究对象是向量运算、矩阵运算和线性变换,解决问题时,需要采用一种特殊的运算方法。
综上所述,线性代数的学习中应重点培养两个方面的能力:
一个是知识掌握的能力的培养。介绍知识时应坚持从易到难、循序渐进。先掌握好中学的运算法则,再慢慢学习向量、矩阵知识,之后学习线性变换,最后综合学习线性运算。学生经过中学阶段的学习,完全掌握了加法和乘法这两种基础运算法则,简单了解了向量运算。矩阵知识相对于前者更加抽象,因此应放在之后学习。线性变换则是线性代数教学中的重点和难点所在,也是最容易被忽视的地方。由于线性变换可结合映射知识学习,而映射知识在中学数学和微积分教学中都有详细的介绍,在此基础上学生更容易理解线性变换及运算的相关知识,更容易解决矩阵特征值问题、线性方程组问题及二次型问题等。
另外一个是思维能力的培养。在学习中,注意引导学生带着问题学习,并在学习中进一步发现问题、解决问题,这是最有效的思维方式和学习方法。前文提到了学习线性代数必须先了解的两个基本问题:什么是“线性”、什么是“线性问题”。这两个基本问题应该始终贯穿性代数的学习过程中。无论在什么阶段的学习,都要注重理论知识和实际问题的有效结合。学生在掌握了一定的理论知识后,可尝试去解决相关的实际问题。在这一过程中,学生会加深对理论知识的理解,并进一步发现自身知识储备的不足之处。若单单追求知识的应用,而不加深自己的理论素养,最终也无法具备良好的思维能力。所以,在学习线性代数时,要培养好两方面的能力,使之相辅相成、相互促进。
结语:
20世纪后50年计算技术的高速发展,推动了大规模工程和经济系统问题的解决,使人们看到,线性代数和相关的矩阵模型是如微积分那样的数学工具,无所不在的线性代数问题,等待着各层次的工程技术人员快速精确地去解决相关线性代数问题。因此绝大对工科学生而言,数学课应该使他们有宏观的使用数学的思想,要使工程师了解工程中可能遇到的各种数学问题的类别,并且知道应该用什么样的数学理论和软件工具来解决,这是一种高水平的抽象。而了解线性代数的核心问题,无疑对线性代数课程的学习有重要的价值。
线性代数教学总结篇七
人的记忆效果随着时间的推移而迅速下降,这是正常的现象。一是可以通过反复加强记忆,第二种办法就是加强要点和重点的作用,提纲挈领,从而掌握全局。因此,大家在第一轮全面复习的时候同时就要兼顾复习要点,让要点成为复习中的“刀刃”,起到提纲挈领、统领全局的作用。那么,考研数学复习中的“刀刃”都有哪些呢?考研辅导专家认为,高等数学是考研数学的重中之重,所以大家在备考高等数学时要特别注意。
地毯式的反复练习。
大家在复习过程中,要对重要定理、重要的公式或者重要的结论应该经常翻一翻,已经有印象的,反复练习可以加深印象,使自己保持一个良好的状态。参加硕士研究生入学考试这种选拔性的考试跟体育竞技有些类似,想要保持一个良好的状态,必须把要考的内容在脑海里面反复强调。很多同学说把代数复习完以后,高等数学忘了,复习这个忘了那个,这个很正常,不要因为这个原因,就认为考不好数学,每个正常的人都会有这样的`感觉。考研辅导专家提醒考生,要解决这个困难,只有通过反复复习,学习英语亦是如此,通过反复使自己能够随时调用数学知识。记忆的关键就在于重复,如果大家能够把学习变成一种习惯,那势必会让你的复习锦上添花,也不会对学习产生抵触情绪,这样一来,效率和效果自然会高上无数倍。
线性代数教学总结篇八
线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对20考研的同学们学习有帮助。
行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的.具体方法以及例题见《年全国硕士研究生入学统一考试数学120种常考题型精解》。
矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。
向量组的线性相关性是线性代数的重点,也是考研的重点。2012年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。
往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。
特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求a、有关实对称矩阵的问题。
由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础.重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法.重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。
线性代数教学总结篇九
摘要:随着我国经济水平的快速发展,越来越多的外国友人来到中国,同时,中国的学生到国外留学也成为大势所趋。重视对初中生英语的学习与培养是促进其全面发展的基础。然而,无论是国内交流还是出国学习,都少不了与人的面对面交流,这就凸显出了初中英语学习中情景对话的作用。
关键词:初中英语;情景对话;作用。
随着新课改的逐步实施,对初中英语的教学方法也提出了新的要求。情景教学是初中英语教学中新研究的教学方法,在提高初中生的学习兴趣,在加强师生互动性,提高学生的灵活性等方面具有重要的意义。
1、对情景教学的认识与理解。
情景教学是一种借助课堂这个平台,由教师和学生亲身还原现实生活中的交流场景,融入真实的对话过程的一种对课标要求所掌握知识的灵活运用的讲课方式。在情景教学中情景对话是其主要的活动形式。对情景教学的作用研究即是对情景对话过程的作用研究。学习知识的目的在于能够应用到具体的生活中去,对初中英语的学习也是如此,运用情景教学的教学模式只不过是提前使学生投入到现实生活中来,这样不仅有利于加深学生对所学知识的理解与运用,更提高学生的自主学习能力,更快的适应社会。
2、情景教学实施的现状分析。
2.1情景教学与课程要求脱轨:在课堂上开展情景教学无疑肯定会耗时耗力,活动的组织与安排都牵扯到时间的问题。这样就不利于课标所要求教学目标的完成。如果想实施的效果更好难免有相关硬件的要求,这肯定会涉及金钱问题。也容易引起其他相关问题。
2.2情景对话流于形式:理想的情景对话模式是能够实现每位学生的积极参与对知识的运用。然而在现实课堂中情景对话模式的作用没能发挥出来。学生在交流的过程中只是按照已有的对话模式照读或是背诵下来进行僵硬的对话,没有理解英语对话的真谛,做不到将英语的课本知识活化到对话中去。
3、情景教学问题的解决策略。
3.1针对第一个存在的问题,教育领导者可以选出在英语教学中经验丰富,口语好的教师组成情景教学模拟小组,根据初中英语课堂安排,规定在一周的某个时间段内开展情景对话课堂。此外,学校要加大投入力度,完善相关硬件设施,小组内安排专门的物品采购人员,做好财政预算等。这样即有利于情景教学规范化、系统化、合理化,又有利于避免长期实行造成学生的厌倦。
3.2情景对话要做到真实有效必须以掌握知识为前提。在开展情景对话课堂时,要提前安排学生掌握对话内容,在背诵记住的前提下融入自己的想法,鼓励学生大胆地张开口去交流。在这个过程中教师要扮演好引导人的角色,防止出现两极分化。要争取做到每个学生平等的参与到学习中来。
4、开展情景教学的积极影响。
4.1锻炼学生的口语交际能力:开展情景教学的目的在于锻炼学生的口语能力,英语作为一门实用性语言,必须做到听、说、读、写并重。在开展情景教学的过程中,学生能够把自己背诵的单词、短语组合成句子、短文然后再自己说出来。情景教学为学生创造了真实的交流环境,使学生全身心的投入到与人交流的情景当中去,在边听边说的对话过程中,提高了自己的口语表达能力。
4.2缩短师生间的距离,增进了师生情谊:处理好学生与教师之间的关系也是提高学习效率的重要保证。学生对老师总有一种敬畏心理,使老师与学生之间有距离感,这就不利于彼此之间想法的沟通与交流。情景教学模式使教师与学生零距离接触,在对话的过程中彼此沟通。教师能够倾听学生的意见,学生也敢于表达学习中遇到的问题。这样就有利于增进师生情谊,更高更快的实现学习目标,共同进步。
4.3带动课堂气氛,提高学习效率:情景教学模式是一种互动的,全员参与的学习方式。在课堂上,教师可以根据每个学生的学习情况,分配搭档小组,使每个人都参与到这个过程中来,让课堂动起来。打破了以往老师侃侃而谈,学生昏昏沉沉的局面。这样就有利于提高每个学生的学习兴趣,自觉主动的学习英语。从而有利于提高每堂课的学习效率,能够更轻松的实现教学目标,让学生在一种舒适,无压的环境中学习与成长。情景教学实现了理论与实践的统一,让初中英语的学习来源于生活,最终又反馈给生活。对任何一门学科学习都是为了让学生掌握一种基本的技巧与能力,是学生真正踏入社会后可以独当一面。情景教学将这一时间缩短化,具体化。让学生更早的接触社会,了解社会。因此,对情景教学进行分析是为了将其推广,使其有更加宽广的发展空间。
参考文献:。
[2]李小琴.浅议情景课堂下的初中英语教与学[j].考试周刊.2015(95)。
[3]王化国.情景教学在初中英语课堂的应用探微[j].校园英语.2015(09)。
将本文的word文档下载到电脑,方便收藏和打印。
线性代数教学总结篇十
考研阶段大致有依次下面几个阶段:基础阶段、强化阶段、冲刺阶段,前面每个阶段如果走的更好更快,那么将为以后的阶段提供足够空间,反之可能打乱复习进程。越是到后面,考生越是要坚持两条腿走路,即知识点总结和题型总结。也就是要把书由厚读到薄,把知识转化成自己的东西,这样才会越学越轻松。线性代数在考研数学中占有重要地位,必须予以高度重视。和高数与概率统计相比,由于线性代数的学科特点,同学们更应该要注重对知识点的总结。线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,同学们必须注重计算能力。线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做总结,希望对同学们复习有帮助。
一行列式。
行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现。所以要熟练掌握行列式常用的计算方法。
1重点内容:行列式计算。
(1)降阶法。
这是计算行列式的主要方法,即用展开定理将行列式降阶。但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。
(2)特殊的行列式。
有三角行列式、范德蒙行列式、行和或列和相等的行列式、三线型行列式、爪型行列式等等,必须熟练掌握相应的计算方法。
2常见题型。
(1)数字型行列式的计算。
(2)抽象行列式的计算。
(3)含参数的.行列式的计算。
二矩阵。
矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的始终。这部分考点较多。涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。有些性质得证明必须能自己推导。这几年还经常出现有关初等变换与初等矩阵的命题。
1重点内容:
(1)矩阵的运算。
(2)伴随矩阵。
(3)可逆矩阵。
(4)初等变换和初等矩阵。
(5)矩阵的秩。
2常见题型:
(1)计算方阵的幂。
(2)与伴随矩阵相关联的命题。
(3)有关初等变换的命题。
(4)有关逆矩阵的计算与证明。
矩阵可逆有哪几种等价关系?如何判别?都必须熟练掌握。
(5)解矩阵方程。
三向量。
向量部分既是重点又是难点,由于n维向量的抽象性及在逻辑推理上的较高要求,导致考生在学习理解上的困难。考生至少要梳理清楚知识点之间的关系,最好能独立证明相关结论。
1重点内容:
(1)向量的线性表示。
线性表示经常和方程组结合考察,特点,表面问一个向量可否由一组向量线性表示,其实本质需要转换成方程组的内容来解决,经常结合出大题。
(2)向量组的线性相关性。
向量组的线性相关性是线性代数的重点,也是考研的重点。同学们一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解。
(3)向量组等价。
要注意向量组等价与矩阵等价的区别。
(4)向量组的极大线性无关组和向量组的秩。
(5)向量空间。
2常见题型:
(1)判定向量组的线性相关性。
(2)向量组线性相关性的证明。
(3)判定一个向量能否由一向量组线性表出。
(4)向量组的秩和极大无关组的求法。
(5)有关秩的证明。
(6)有关矩阵与向量组等价的命题。
(7)与向量空间有关的命题。
往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。但也不会简单到仅考方程组的计算,还需灵活运用,比如的线性代数第一道解答题,粗看不是解方程组,如果你光会熟练计算方程组而不知如何把问题归结为解线性方程组,那么你会有英雄无用武之地的感叹,就像一个人苦练屠龙本领,结果却发现无龙可屠。
1重点内容。
(1)齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构。
(2)齐次线性方程组基础解系的求解与证明。
(3)齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。
2常见题型。
(1)线性方程组的求解。
(2)方程组解向量的判别及解的性质。
(3)齐次线性方程组的基础解系。
(4)非齐次线性方程组的通解结构。
(5)两个方程组的公共解、同解问题。
五特征值与特征向量。
特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大。
1重点内容。
(1)特征值和特征向量的概念及计算。
(2)方阵的相似对角化。
(3)实对称矩阵的正交相似对角化。
2常见题型。
(1)数值矩阵的特征值和特征向量的求法。
(2)抽象矩阵特征值和特征向量的求法。
(3)判定矩阵的相似对角化。
(4)由特征值或特征向量反求a。
(5)有关实对称矩阵的问题。
六二次型。
由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。
1重点内容:
(1)掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;。
(2)了解二次型的规范形和惯性定理;。
(3)掌握用正交变换并会用配方法化二次型为标准形;。
(4)理解正定二次型和正定矩阵的概念及其判别方法。
2常见题型。
(1)二次型表成矩阵形式。
(2)化二次型为标准形。
(3)二次型正定性的判别。
同学们可以对照以上内容和题型,多问问自己是否已熟练掌握相关知识点和对应题型的解答。应该说考研数学最简单的部分就是线性代数,其计算都是初等的,小学生都会,但这部分的难点就在于概念非常多而且相互联系,线代贯穿的主线就是求方程组的解,只要将方程组的解的概念和一般方法理解透彻,再回过头看前面的内容就非常简单。同时从考试内容来看,考的内容基本类似,可以说是最死的部分,这几年出的考试题实际上就是以前考题的翻版,仔细研究一下以前考题对大家是最有好处的。
线性代数教学总结篇十一
1.不扎实的基础知识体系。
由于独立院校的圣元多为高考分数低于二本高中基础知识总体上比较差强人意的高中生,其知识的的体系性是非常的不容乐观的,出现偏科的现象时经常发生的,每个学生都或多或少的有此问题,对于自己不喜欢的科目会有明显的排斥感和抵触情绪。由于学生的学习习惯学习方式等环节存在明显的不足,导致课上学习的效率非常低。
2.个性彰显但缺乏自我管理能力。
目前,大多是独生子女的独立学院的学生,基本为九零后,时代性与个性显著。个性强烈在生活和学习方面,拥有很强的自我意识,极为缺乏团队合作。是较差表现在参加集体活动与遵守纪律方面,自由散漫且具有一定逆反情绪的大部分学生。而生活中的大部分学生却与学习中有着截然相反的表现,自信心差,目标不明确是大部分学生普遍具有的问题。对自我的要求较低,并在出现问题后不知道如何处理。
3.家境好,低分高能。
三本的学费是比较普遍偏高的,这就要求进入到独立院校中的学生家境要承担一定的较高的学习费用。由于家境的影响,学生在表现力、适应社会的能力、以及沟通交流的能力上具有突出的优势,并且大部分的学生失手过特有的特长教育的,是具有敏捷的思维与极强的动手能力的,与其他方面比,是很出众的。
1.缺乏自主特色的教育教学计划。
大多的独立学院的`教育体系不够清晰明确,大多翻版母体学校的教育教学管理模式以及方式。没有有教无类的对学生的个性区别对待,传统环境下降学生的个性抹杀。
2.教学资源缺乏。
独立学院的建立多为依靠母校的教学资源,一部分的教学资源是在母校的基础上分配而来的。一些母校主题在趋于饱和后对于教学资源上是十分缺乏的,对独立院校的需求也是爱莫能助,另外一些师资力量上,一部分老师一面负责本体母校的教学另一方面也要负责独立院校上的师资力量,在一定程度上使独立院校的师资投入上大大降低,并且一些派到独立院校的老师多为主体母校的毕业生或是年轻教师,教学经验不够深厚。
3.管理队伍的不健全。
独立学院的主体建设时间短,缺少教学管理人员,一人多岗普遍存在。工作压力大,还辛苦。而新进来的管理人员又存在着管理经验缺乏等问题。此外针对独立学院的特有的特点,需要的管理人员需要有相应的新的教育教学管理手段,陈旧的管理理念已不能适应独立学院的发展体制。
三、应对策略。
1.改革教育教学体系。
夯实基础,强化实践,制定出具有针对性的行之有效的教育教学计划,突出素质教育的地位,注重学生能力的培养,和综合能力的提升。教学主体依据低分高能的特点,必须改革传统的教学模式,初期加强基础知识的学习和补充,理论性教学具有针对性和适应性,建立切实可行的教学方案。走实践性教学的道路,让学生充分发挥自身的特长,多动手,走出研究性学习的教育误区,培养学生的特色能力,建立实习基地,为学生的特长找到一个具有发挥余地的平台。
教师是传道授业的主体,而独立院校在师资力量上是极为缺乏的。而目前独立院校的教师是由母体学校教师、外聘教师、内聘教师三类组成的。而最具有经验的教师就是母体学校的教师了,但是由于母体学校的师资力量的饱和,母体学校的教师明显不够用,而且母体学校的教师虽然经验丰富,但是缺乏对于独立学校的特定人群所具有针对性的先进经验,教育教学模式停留在原始的学术研究型教学,这样更不适用于独立学校。因此加强师资力量的建设迫在眉睫。独立学校急需培养具有针对性的教育教学管理人员。
3.规范教育教学中的管理制度,完善教育教学体系。
独立院校应当完善教育教学体系,并严格制定遵循规范化的教育教学中的管理规章制度,保障学生的教育教学中心地位,提高教学质量的有效机制,将教育教学过程中的教学大纲的制定、教职人员的人事任用调动、学生工作各项措施以及日常工作的监督监管工作作出明确的规章制度,使其行之有效的形成自身的运作体系,久而久之形成针对独立院校自身特色的理念与观念,使教育教学管理规章化、制度化、有据可查,有章可循。
四、结语。
当今中国的独立院校的建设还处于初级阶段,这就需要我们能够不断地进行探索,并根据不同时代背景下的不同学生个性的需要进行行之有效的调整,使中国的教育事业面向现代化,面向世界,面向未来。
线性代数教学总结篇十二
线性代数课程是以讨论有限维空间线性理论为主的课程,具有较强的抽象性与逻辑性。在当前的线性代数课程教学中,采用的基本是讲授式教学法。
讲授式教学法就是老师通过语言给学生传授知识的教学方法。讲授法采取定论的形式直接向学生传递知识,不仅避免了认识过程中的许多不必要的曲折和困难,而且具有无法取代的简捷和高效两大优点。
但是讲授式教学法如果运用不当,很容易使教学失去生机而成为填鸭式、一言堂等带有贬义色彩的教法代表。探究式教学是指学生在学习概念和原理时,教师只是给他们一些事例和问题,让学生自己通过阅读、观察、实验、思考等途径去独立探究,自行发现并掌握相应的原理和结论的一种方法。随着探究式教学法、个别教学法等现代教学方法的崛起,传统的讲授式教学法作为满堂灌的教法代表而成为众矢之的。本文结合线性代数课程的特点和多年的教学实践体会,分析了讲授式教学法和探究式教学法在线性代数课程中的可行性。
一、讲授式教学法是其他教学方法的`基础。
讲授法依旧是课堂教学中的一种重要的教学方法,尤其对于一些深奥、难懂,不易探究或不能探究的教学内容,我们仍需用到讲授法。
从教的角度来看,任何方法都离不开教师的“讲”,讲授是其他方法的工具,教师只有讲得好,其他各种方法的有效运用才有了前提。从学的角度来看,讲授法也是学生学习的一种最基本的方法,其他各种学习方法的掌握大多是建立在讲授法的基础上。讲授式教学法中,教师可通过口头语言、多媒体或者模型向学生系统地传授科学文化知识,不需要做大量的配套设施准备,便于广泛运用。
离开讲授法,各种教与学的方法都易成为无土之木,无源之水。讲授式教学过程中应尽量想办法讲得有趣。譬如线性方程组来源于实际问题,我们就可以这样来引入线性方程组。看这样的趣题:隔墙听得贼分银,不知人数不知银,七两分之多四两,九两分之少半斤(注:古秤十六两为一斤)。实际上求人数和银两数的问题就是求解一个简单的二元一次线性方程组。学生的兴趣马上就来了。
二、讲授式教学法能更好地解决线性代数教学面临的内容与学时的矛盾。
线性代数教学时数一般为48学时,传统的线性代数教学内容体系要求面面俱到,理论上追求严谨,有些工科院校把向量代数与空间解析这一块内容也纳入进去,因而教学内容相对较多。
对同一教学内容,探究式教学法,耗时更长,在课时比较少的学科实施探究式教学时只能够选择性应用。而利用讲授式教学法可以合理安排教学的主要内容及重点进行讲授式教学。切忌贪多求全及平均使用力量和时间。教师可以事先在教学组织上狠下功夫,形成精练的课堂教学内容,甚至在备课环节把讲授时所用的语言都准备好。抓住主要问题形成精练的讲授内容。对教学内容须分清主次,从而以基本概念、基本理论、基本方法等主要内容为核心形成精练的内容。
对这些内容,保证学时,讲透彻。而其他内容,应根据学生的实际情况,可简明扼要地讲解,或者在教师引导下学生自学。教师要注意运用精练的表达,对讲授的语言、板书的运用都讲究精练。除此之外,将多媒体技术引入教学中来,提前准备好教学课件,把书写冗长的定义、定理的时间节省出来,用于解释定义的背景、定理的证明及应用,把宝贵的课堂教学时间充分利用起来。
三、借助探究式教学法解决线性代数内容从抽象到具体的矛盾线性代数的内容抽象,要掌握其原理与方法,必须具备较强的抽象思维能力,即对形式概念的理解能力和形式逻辑的演绎能力,这导致学生在学习的过程中,普遍感到概念难以理解,内容不易接受,面对具体的问题经常茫然不知所措,不知从何处下手。
譬如向量组与极大线性无关组的关系,我们可以这样具体化来理解。我们班有很多人(对应一个向量组),但如果认为任意两个男生是线性相关的,任意两个女生也是线性相关的,则其实只有两个人即男生和女生(对应一个极大线性无关组),任选一个男生和一个女生就可以代表我们整个班(一个向量组的极大线性无关组不唯一)。
事实上,对线性代数中的那些抽象的理论,我们完全可以通过提问,借助于探究式教学法,让学生自己去寻找这样有趣的具体化解释,然后让他们自己讨论,优中取优,让学生准确理解概念,这样就能使课程中枯燥的内容变得丰富多彩,就会使那些死的东西活起来,会使那些抽象的东西实际起来,使那些难懂的东西亲切起来,变得被学生乐意接受。
数学不仅仅是一种“思维体操”.随着人们对数学更深层次的认识,数学的文化现象已明显地凸现了出来。我们学习数学不仅是为了获取知识,更能通过数学学习接受数学精神、数学思想和数学方法的熏陶,提高思维能力,锻炼思维品质。数学文化的教育应该成为数学教育的根本点。线性代数作为一门大学数学基础课程也不例外。
线性代数中充盈着丰富的数学文化。借助探究式教学法,我们可以通过提问等方式让学生自己去摸索、总结心得体会。譬如,矩阵的初等变换这个概念我们说非常重要,类似于《西游记》里的照妖镜。一个看上去很复杂的东西,容易被其表象所蒙骗时,我们用照妖镜照一下就露出本质来了。那么初等变换照出来的本质是什么呢?原来就是矩阵的秩。这一思想继续引导学生提升:数学是在干什么?原来数学就是研究一个对象(线性方程组或者是矩阵)在一一对应下(初等变换或者说照妖镜)所得到的另一个对象(简化阶梯型矩阵)。当然,后一对象要比前一对象简单易懂才能真正解决问题。这就体现出数学的文化内涵:转化就是创新。
又如,线性方程组来源于实际问题,而为了对线性方程组求解,我们得到了矩阵理论,然后我们又利用矩阵理论来解决二次型的标准化问题。这种理论来源于实践,反过来理论又能指导实践的方法,正符合马克思主义哲学中辩证唯物主义的认识论。因此,学习线性代数,可以帮助我们更好地认识自然,了解世界,适应生活;它可以促进我们有条理地思考,有效地表达与交流,不仅仅运用数学具体的知识去分析问题和解决问题,更能运用数学的思想文化去分析问题和解决问题。
可见,这两种教学方法各有所长,教学过程当中既要有教师主动的精练讲解,又要在教师的引导下,以学生为主体,让学生自觉地、主动地探索,掌握认识和解决问题的方法和步骤,研究客观事物的属性,发现事物发展的起因和事物内部的联系,从中找出规律,形成自己的概念。在树立新的教学理念的同时,不应该完全摒弃传统的教学观念,应使两者有机结合,取长补短,从而更为合理地安排教学。
【参考文献】。
线性代数教学总结篇十三
项目教学法具有科学合理性,是一种较为先进的实践性教学方式。在当代建构主义的引导下,主要注重项目开展的实践性,首先教师对学习项目进行合理分解,之后正确示范给学生。学生在老师的引导下,分小组根据问题的具体要求有针对性的收集数据资料,通过小组之间的探讨和研究,共同协作完成学习并解决困难,从而巩固学生对于知识的记忆。由此,学生在整个学习过程当中掌握了学习技巧,教师也有效提升了课堂教学成效。项目教学法在具体应用期间,学生要有独立的学习时间、自主完成学习活动,对于项目开展期间遇到的各种困难,老师只起到简单的辅导和指引作用。项目教学法能充分调动学生学习的积极主动性,提升学生求知欲,使其形成独立思考的能力和团结协作的意识,全面发挥想象力和创造力,有效强化学生的社会实践能力。
与传统教学模式基本特征相比,项目教学法具有以下特点:1.主要围绕课本开展教学内容和教学工作。学生在学习理论知识期间,不懂得保险营销学这一专业具体是什么内容和未来的就职方向,由此可见这种传统教学方法直接阻碍到学生素质的有效提高,虽然能熟背理论知识但却不会具体使用。而在项目教学法当中,老师将其与教学内容有效结合,有针对性的整合教学内容和教学方式,教学内容主要是通过实际工作任务而产生。教学内容的制定突破传统专业学习的限制,教师以教学项目为教育核心,依据工作期间的思维逻辑展开具体教学。教学内容的理论性,通过工作任务的制定与实践内容紧密结合。2.教学模式的核心是实操和理论相结合。传统教学模式主要为硬塞式教学方法,以书本知识为主。而项目教学法的应用可以改变这一局面,其主要以实践操作与知识理论相结合为教学核心。以往的课堂教学期间老师注重课堂理论知识的学习,但现在有所不同,课堂上主要进行实践项目的调查研究,将理论与实践充分结合。由此一来既能将理论知识现学现用,又能深化理论知识,为学生日后的实践和工作打下坚实基础。3.学生的被动学习地位转为主动学习地位。项目教学法的使用改变传统教学期间学生被动接受知识的学习模式。老师要考虑到每个学生的学习进度,为其创造条件,让学生能积极主动的投入到学习当中。开展项目教学法期间,学生能够意识到自己是课堂的主导,掌控从课题组建、课题选材到最终课题展示的整个教学环节,而教师在其中只是起到辅助作用,从而使得学生能够正确完成课程作业,达成预期教学目的。教师通过使用项目教学法,引导学生形成正确解题思路,在学生开展项目的初始阶段就给予指导,使其顺利完成实践活动。4.使得学生收获实践性理论知识。项目教学法为学生创设出轻松的学习环境,与此同时激发了学生的学习潜能,学习成果的收获不是死板的背诵理论知识,而是对学生的专业技能和实践能力进行强化,而且提升了学生的就业能力,即创新能力、解疑能力、社会适应能力等,并使学生在心中明确自己将来所要从事的职业。这种教学效果不只是老师的指引与教导,主要是在具体的实践性教学当中所形成。为进一步增强实践性,教师要带领学生模拟职业情境,通过讲解和示范实际工作任务给学生带来更佳的实际体验感。
1.正确定位项目目标项目教学法成功实施的关键在于是否能正确定位项目目标,其与大学生的学习兴趣、自主学习能力、小组成员协作能力有直接关系。首先,项目内容的选取要有针对性,以教学目标为考虑前提,与日常生活相结合制定具体内容。在周围企业当中,明确具体工作事项,将企业的实际营销内容与传统课堂教学相结合,通过对营销基础工具的分析,实行“一个项目对一个课程知识点”的办法展开教学;其次,教师要注意项目教学的完整性,项目设计工作、项目实施、项目完成的整个流程一定要合情合理,一套程序下来使得学生能够运用所学知识解决实践问题,即为最终的项目成果,学生会生出一种成就感;最后,教师要合理设计项目的难度,针对学生的个性和学习进度适当制定项目主题、内容、任务,并要按照实际情况完善自己的教学方案。通常情况下,教师要熟悉自己的项目内容,其也要有效激发学生的学习兴趣。这就对教师提出要求,教师要善于将知识点进行合理分解,为学生作出正确示范,在项目学习的整个过程当中还要能提炼出与此相关的子项目,拓展书本知识,从而激发学生的创新思维潜能。2.组织学生分组学习并探讨项目开展形式老师给学生传达项目任务后,学生要在组内对项目进行深入分析和探讨,并在老师的引导下合理制定详细的项目开展计划。项目计划主要分为三步:首先,将学生等分成学习小组,项目教学法当中经常用到分组教学方法,老师要按照班集体学生的学习进度和个性特点,让学生进行自由组合,之后教师可以做出相应调整,针对学生的学习情况均匀分配,让学生在组内选出学习组长,通常一组5至7个人就可以,使得学生在组内展开学习讨论期间能够强化团队合作精神;其次,学生要明确项目的思考方向和学习思路。小组集体明确项目的具体计划步骤,分工完成计划内容,最后展示自己的学习成果,如果遇到任何疑难要及时请教老师;最后就是项目的完成要按照规范进行操作,团队之间的工作要和谐融洽,小组成员要分工明确,注意自己的表述语言要流利,学习态度要认真,动作自然大方。组间收集的资料要全面并具有合理性,成员还要自如使用多种资料收集方式,使得组内的项目内容更加丰富。3.项目要合理实施开展项目活动的关键是项目的实施是否具有合理性。大学生是项目活动的主导者,老师只是单纯的引导者,是课堂教学期间学生群体的服务者。具体开展项目期间,学生主要进行独立学习或协作学习,教师要培养学生的创新意识,并敢于尝试。与此同时,学生要正视自己在课堂之上的角色,在课堂主导地位的角度对项目活动的开展进行思考,拓展学习思维,体会工作艰苦,从而激发求知欲、提升创新能力。在学生展开讨论期间,教师要及时对学生的学习思路进行正确引导,分层次对学生展开辅导工作,对于多数学生都不理解的问题可以集中进行讲授。将理论内容与实践充分结合,从而拓展学生的理论知识面,帮助学生答疑解惑,提升教学效率。4.合理点评项目最终结果对于最终项目结果的点评是项目教学法的一种深化。项目教学法的使用就要求教师要维持学习的正确有效性,对于项目问题的评价并不只有对错或好坏。合理的点评对学生的学习具有导向作用,主要针对学习过程进行点评,包括对学生的参与积极性、协作精神、合作能力、应用创新能力等进行,其次再对项目的最终结果进行点评。点评的方式有很多,可以是老师点评,也可以是学生在组内互相评价。与此同时,教师还要抓住学生之间的共性问题展开详细讲解,制定行之有效的教学方案,从而使得学生不断强化自己的学习能力,并能积极主动解决问题。
四、结束语。
本篇文章中,首先阐述项目教学法的基本应用原理,之后探讨其实用特点,并据此深入分析开展对策,旨在为我国高等院校的教育工作者提供教学指导,帮助其为社会更好更快培养出高素养人才。
【参考文献】。
[2]赵锋.基于创业导向的《市场营销学》项目化教学改革与实践[j].吉林广播电视大学学报,20xx.
[4]杨永超.市场营销课程的项目教学探究[j].市场论坛,20xx.
线性代数教学总结篇十四
教育大计、教师为本,应对学前教育发展新形势,办学机制相对灵活的独立学院抓住机遇开办了学前教育专业,尤其是母体学校为高师院校的独立学院更是在学前教育专业招生规模上逐年递增,为快速发展的学前教育培养合格的师资做出了贡献。可基于独立学院应用型人才培养的总体目标,结合学前教育专业的特点,如何强化实践教学以提高学前教育专业学生的实践能力和就业竞争力,是独立学院学前教育专业办学亟需探讨的课题。笔者通过调查研究,指出了现有的独立学院学前教育专业实践教学存在的问题,构建了基于保教能力培养的实践教学体系。
1存在的问题。
一般而言,独立学院依据自身的办学特点和学前教育专业的实际确定的学前教育专业人才培养目标为:培养具备对幼儿实施保育和教育的技能,具有创新精神和实践能力的学前教育工作者。为有效达成培养目标,必须强化实践教学。可纵观现有的独立学院学前教育专业实践教学模式,发现存在如下几方面的问题:
1.1教育理念有偏差。
1.1.1顶层设计者管理理念偏差。随着高等教育改革的不断深入,独立学院办学体制改革也是紧锣密鼓,尤其是今年**中,已经有部分省份取消了三本录取,加之国家办学资金拨付的改革等等一系列因素的影响,独立学院和母体学校的管理者们从考虑办学成本出发,在人才培养方案的修订中,难以照顾独立学院办学特性和学前教育专业特点,大幅消减实践教学课时数,尤其是压缩集中性实践教学课时,导致学前教育专业办学无法凸显独立学院的特色。
1.1.2专业课程教师教学理念偏差。调查发现,绝大多数独立学院的学前教育专业课程教师一般都是二本、三本一同兼课,教学模式与理念难以调整,在独立学院学前教育专业课程教学中,突出“保教能力”培养的意识不强,从理论到理论的现象比较普遍,不注重启发式教学,教学效果不理想。
1.1.3学生学习理念偏差。独立学院学前教育专业学生由于缺乏教师的引导,对专业课程的学习和专业能力的发展,感觉一片茫然,无所适从,整个学习就是从课堂到课堂,自觉训练保教技能的意识不强,动力不足。
1.2课程体系不合理。现有的独立学院学前教育专业人才培养方案中的实践教学课程设置,缺乏一体化的设计理念,存在实践教学课时比例偏少和大一、大二无集中性实践教学安排的现象,不利于学生保教能力的培养。
1.3教学过程多泛化。学前教育专业实践教学目标不精细,集中性实践教学环节多头并进,没有重点就保教技能的某一方面进行规划和训练,学生收效甚微。
1.4监控管理重形式。由于独立学院管理人员的配备和机构设置等方面的原因,目前,独立学院对学前教育专业实践教学的监控管理一般是对教育实习这一集中性实践教学进行检查,采用集中检查与评估的方式,容易造成具体组织实施单位做材料、应付了事,没有落实到实践教学目标的达成上。而其它相关的实践教学活动,如学生自主开展的实践教学则成为监控的盲区,学生保教技能的训练效果不明显。
1.5“双师型”师资缺乏。学前教育专业实践教学效果的提升需要“双师型”指导教师的指导,可现实是:学前教育专业课程教师专业理论有优势,但专业技能明显不足;幼儿园教师专业技能较强,但理论又有欠缺。由此,导致实践教学指导不到位,学生难以发现自己的弱点和努力的方向[1]。
2实践性体系的构建。
为打造独立学院学前教育专业特色,提升本专业学生的就业竞争力,则应突出学生保教能力的培养。保教能力包括观察了解幼儿的能力、了解幼儿园教育动态和分析解决幼儿教育实践问题的能力、幼儿一日生活指导能力、环境创设能力、组织实施教育活动能力、幼儿教育评价能力等[2]。这些能力培养建立在科学合理的实践教学体系的基础上。
2.1目标体系坚持四年一贯系统设计的原则,每一学年的实践教学侧重点不同,突出保教能力的培养,强化实践教学中专业知识的运用和专业情意的养成,为全面实现专业培养目标奠定坚实的基础。第一学年:侧重增强学生对幼儿教育的感性认识,培养学生的教师基本功(“三字一话”和艺体才能的实训为主)。第二学年:侧重在幼儿教育实践中检验所学专业课程理论知识,强调理论与实践相结合,培养学生初步的保育能力。第三学年:侧重保育能力的提升和幼儿教育活动设计与指导、环境创设等教育能力的培养。第四学年:侧重保教能力、专业情意等幼儿教师综合素质的全面提升。
2.2内容体系实践教学内容体系是实现实践教学目标的载体。现有的独立学院学前教育专业实践教学主要包括:理论课程中的实践教学,表现为验证性实验教学;集中性实践教学,包括见习和实习、毕业论文等,而见习和实习的时间较短,学生进入幼儿教育实践一线后,表现出操作技能弱,基本忘却幼儿教育理论,简单复制一线教师的操作。因此,必须从整体上构建实践教学内容体系[3]。
2.2.1体验性实践。随理论课的开设而逐步实施,贯穿在理论课程的实践教学中,如学前心理学、幼儿游戏理论、学前卫生学、学前教育学等课程,一般安排有实践教学,课时应占总课时的10%左右,注重培养学生运用所学的幼儿教育理论知识观察了解幼儿及分析幼儿教育问题的能力。如在“学前教育学”课程教学中,采用讲新课前用ppt与大家一道“分享幼儿教育故事”的方式,促使学生收集幼儿教育案例,自觉做到理论与实践相结合,训练学生的教师基本功。
2.2.2自主性实践。随大学生活的`开始而实施,贯穿在四年的大学课外实践活动中,是一种经常性的实践活动。包括:寒暑假赴幼儿园调研的社会实践活动;自主联系的定期观摩活动;担任幼儿园的“园外辅导员”;自主开展的专业学习成果展和汇报演出活动;自主开展的幼儿园教师保教基本技能训练(三笔字、普通话、艺体技能训练等)。目的是充分发挥学生的学习积极主动性,增强对幼儿教育的感性认识和提升分析解决幼儿教育问题的能力。
2.2.3研究性实践。一般从大二开始,随院(系)的活动计划安排实施,包括:研究性学习与科技创新活动、学科专业竞赛活动、创新创业、育婴师和营养师等各种与幼儿教育相关的资格证考试等。目的是培养学生幼儿教育研究与评价能力。
2.2.4综合性实践。这部分体现在专业人才培养方案中的集中性实践教学环节,是培养学生保教能力的关键环节,因此,必须确保各环节的教学时间充足。包括:专业见习、实习、毕业论文等。其中专业见习安排在2~6学期,每学期见习为期一周,见习的重点不一,第一次见习以全方位了解幼儿教育为主,涵盖保育、教育和管理,着重增强学生对幼儿教育的感性认识;从第二次开始,开展重点见习,第841二次为幼儿园保育见习,第三次为幼儿园环境创设见习,第四次为幼儿游戏活动指导见习,第五次为五大领域活动设计与指导见习,培养学生保教知识运用和实践操作的能力。实习包括教育实习和顶岗实习,实习安排为期一个学期,是全面检验学生的学习效果和提升幼儿教师的专业能力的重要环节,其中顶岗实习与就业创业相结合,形成培养与就业的良性循环。
2.3监控体系实践教学效果如何,需要加大监控力度,充分利用评价机制,促进学前教育专业实践教学质量的提高。为此,建立三级监控体系:
2.3.2专业负责单位,一般是学前教育专业教研室具体组织实施实践教学,落实学院的规章制度,严把实践教学每一环节的质量,包括指导老师的指导环节,杜绝搞形式、走过场等,切实提高实践教学质量。
2.3.3指导教师具体实施实践教学,针对独立学院学前教育专业的特点,学生一入学就建立实践教学导师制,导师可以在专业课教师和实践基地幼儿园教师中遴选,一般一位导师指导5~8名学生,要求指导每一个学生整体设计好四年学习规划和保教能力培养计划,负责对学生的自主性实践和研究性实践进行指导和评价。
2.4保障体系。
2.4.1条件保障。为确保实践教学效果,必须建设好充足的学前教育专业实践教学基地,数量上和质量上都能满足实践教学,特别是集中性实践教学的需要;必须购置足够的仪器设备和实训设施,如舞蹈房、钢琴、画室、微格实训室等,以满足实验教学和艺体技能的训练。
2.4.2经费保障。独立学院为达成学前教育专业的培养目标,突出培养学生的保教能力,就必须保证实践教学的课时数,一般应该达到40%以上,为此,相应的就需要充足的实践教学经费做支撑。
2.4.3师资保障。有效指导学前教育专业的实践教学,需要一批有责任心、专业理论素养和实践能力较强的教师来指导。结合独立学院办学机制相对灵活的特点,选派学前教育专业实践教学指导教师,可以考虑两个方面:一是校内业务素质高的专业教师,一是幼儿园具有一定理论素养的一线教师。为此必须加大“园校合作”的力度,独立学院需建立专业老师深入幼儿园听课和开展理论讲座的制度,合作园也需把老师定期派往院校培训,接受理论教育,以期更好地完成学前教育专业实践教学指导任务。面对快速发展的幼儿教育事业,独立学院积极应对,开办学前教育专业培养合格的幼儿教育师资。如何把学前教育专业办出特色,提高学生就业竞争力,笔者认为:强化实践教学,构建科学合理的实践教学体系,突出“保教能力”培养,是十分重要和必要的。
参考文献:
[2]教育部.幼儿园教师专业标准[z].2012-09-18.。
线性代数教学总结篇十五
提到考研数学,很多同学都能想到高数和概率。其实线性代数也是数学一,数学二和数学三中的考查重点,而且往往是难点。以下是小编整理的数学线性代数之矩阵。
欢迎阅读!
同学们在学习线代的时候觉得有难度。我认为有两个方面的原因:
1.大家在学习了高数后,难免在学习线代时后劲不足;
2.线代知识体系错综复杂,联系比较多,大家往往搞不清联系。
下面,跨考教育数学教研室的向喆老师跟大家说说一些难理解和常考的概念。今天所说的是线性代数中的矩阵学习问题,大家分三个步骤来学习。
首先,构建矩阵知识框架。矩阵这一章在线性代数中处于核心地位。它是前后联系的纽带。具体来说,矩阵包括定义,性质,常见矩阵运算,常见矩阵类型,矩阵秩,分块矩阵等问题。可以说,内容多,联系多,各个知识点的理解就至关重要了。
然后,把握知识原理。在有前面的知识做铺垫后,大家就要开始学习矩阵了。首先是矩阵定义,它是一个数表。这个与行列式有明显的区别。然后看运算,常见的运算是求逆,转置,伴随,幂等运算。要注意它们的综合性。还有一个重点就是常见矩阵类型。大家特别要注意实对称矩阵,正交矩阵,正定矩阵以及秩为1的矩阵。最后就是矩阵秩。这是一个核心和重点。可以毫不夸张的说,矩阵的秩是整个线性代数的核心。那么同学们就要清楚,秩的定义,有关秩的很多结论。针对结论,我给的建议是大家最好能知道他们是怎么来的。最好是自己动手算一遍。我还补充说一点就是分块矩阵。要注意矩阵分块的原则,分块矩阵的初等变换与简单矩阵初等变换的区别和联系。
最后,多做习题练习。在前面有了知识体系和掌握了知识原理后,剩下的就是多做题对知识进行理解了。有句古话:光说不练假把式。所以对知识的熟练掌握还是要通过做题来实现。同时,我也反对题海战术,做题不是盲目的做题,不是只做不练。做题应该是有选择的做题,做一个题就应该了解一个方法,掌握一个原理。所以,大家可以参考历年真题来进行练习。每做一个题,大家就该考虑下它是怎么考察我们所学的知识点的。如果做错了,大家还要多进行反思。找到做错的原因,并且逐步改正。这样才能长久的提高。
总之,希望大家在学习线性代数的矩阵的时候把握这三个原则,在此基础上,勤思考,多练习,那么大家一定可以学习好,祝大家考研成功!
【本文地址:http://www.xuefen.com.cn/zuowen/15205352.html】