建筑是一种通过设计和构造建筑物来满足人们居住和工作需求的活动。写一篇完美的总结需要充分准备,先明确总结的目的和重点。通过阅读这些总结范文,我们可以拓宽自己的思维,提升自己的写作水平。
大数据论文篇一
在桥梁工程中,数据按时间上的划分可以分为两类,静态数据与动态数据。静态数据主要指桥梁的相关信息资料库与科学实验产生的数据。信息资料库是一种相对静态数据,因为这些数据资源每过一段时间将更新一次。各国家和各地方政府部门基本建立了桥梁工程资料库及相关系统,列举出主要国家和地方政府的桥梁管理系统,包括建成时间、系统功能、与建设部门等。除政府部门外,各科研单位也在完善各自的桥梁统计分析系统,系统中主要包括桥梁的桥型、跨径、材料、建成时间等基本信息,还包括桥梁的病害、桥梁状况评定等相关内容。桥梁的科学试验数据主要来源于各大高校和科研单位科学研究中的模型试验、振动台试验、风动实验、桥梁的荷载试验等产生的数据。这类数据的有效分析处理形成各类科学研究成果,但是此类数据的开放程度低,造成数据资源的极大浪费。桥梁的动态数据主要来自于桥梁的施工监控和成桥运营阶段健康监测系统,此类数据由安装在桥梁上的实时监测传感器获得,包括位移传感器、速度传感器、加速度传感器、应变计、温度计、风速仪、gps等。统计了国内部分桥梁健康监测系统的传感器数量以及安装时间。各类传感器配以相关的采集系统来获得数据信息,再通过相关软件分析、处理,从而掌握桥梁的实时健康状况,对桥梁的状态进行评估与预测。整个桥梁健康监测体系。
2开发桥梁工程领域大数据资源意义。
利用桥梁的静态数据库,可以了解桥梁的基本信息,为全国的桥梁统计、普查与管理提供信息资源。科研数据的开放有助于学术界的交流、创新,取得更为丰富的科研成果。桥梁动态数据包括施工监控数据与成桥运营阶段的监测数据,充分利用与挖掘大数据资源,可以提高桥梁的施工质量、加快施工进度,提前预测和解决施工过程中可能出现的问题,减少质量事故和经济损失。成桥运营阶段的监测数据主要为桥梁的健康状况评估提供依据,掌握桥梁所处的状态,分析、处理数据资源,提高预测、分析、解决问题的'能力。可为同类桥梁的施工管理与养护等,提供宝贵经验。同时大数据资源的开放、共享,有助于节约国家资金和社会资源。
3存在问题及解决方法。
(1)最先遇到的也是最棘手的问题是数据的去冗、去噪,从海量数据中挖掘大数据资源价值。目前,所列一座特大桥上各类传感器每天采集的数据达到几个gb到几十gb,甚至上百gb,如此海量的数据如何去处理,有效剔除无用的信息,找寻剩余有用的信息,从而产生新的价值、新的资源。这也是在大数据时代有效利用大数据资源要解决的首要问题。解决这一问题的主要途径是编译相关的去冗、去噪的智能分析软件,同时可以利用云计算、云分析、云管理等方法来提高解决这一问题的效率,使大数据变为有用数据,做到真正智能化分析。
(2)现在各政府部门和科研单位,都在做自己的桥梁信息库以及监测研发数据库等,而且大多数数据库都是相类似、重复的。这样造成资源的极大浪费,包括劳动力、资金等。解决这一问题的有效途径是加强政府部门、科研单位内部以及之间的相互合作,开放和共享数据资源,这也是大数据时代的必然趋势。各部门和科研单位可以有步骤、分阶段地开放共享各自所拥有的数据资源,不论是采用付费或免费的方式。
(3)由于大数据具有“4v”等特点,在大数据研究的初期阶段,大数据的价值还未充分体现时,要储存、分析、利用大数据资源,需有软件、硬件等基础设施的投入,国家和科研单位应提供专项资金的支持,同时国家可制定相关鼓励支持政策。
(4)在大数据时代成熟以后,应建立相关法规,规范和保护数据的开发利用,制订相关统一标准,提高数据的使用效率。
4结语。
本文首次在桥梁工程领域引入大数据概念,提倡用大数据的观察事物的方法和思维方式来分析、处理、挖掘早已在桥梁工程中应用的大数据资源。文章首先介绍大数据的概念及特点,和在桥梁工程领域产生的静态与动态数据的来源。其次、说明充分开发桥梁工程领域大数据资源的重要意义。最后,就目前在桥梁工程应用中存在的问题提出相关解决途径。
大数据论文篇二
摘要:大数据和智慧旅游都是当下的热点,没有大数据的智慧旅游无从谈“智慧”,数据挖掘是大数据应用于智慧旅游的核心,文章探究了在智慧旅游应用中,目前大数据挖掘存在的几个问题。
关键词:大数据;智慧旅游;数据挖掘;。
1引言。
随着人民生活水平的进一步提高,旅游消费的需求进一步上升,在云计算、互联网、物联网以及移动智能终端等信息通讯技术的飞速发展下,智慧旅游应运而生。大数据作为当下的热点已经成了智慧旅游发展的有力支撑,没有大数据带给的有利信息,智慧旅游无法变得“智慧”。
旅游业是信息密、综合性强、信息依存度高的产业[1],这让其与大数据自然产生了交汇。2010年,江苏省镇江市首先提出“智慧旅游”的概念,虽然至今国内外对于智慧旅游还没有一个统一的学术定义,但在与大数据相关的描述中,有学者从大数据挖掘在智慧旅游中的作用出发,把智慧旅游描述为:透过充分收集和管理所有类型和来源的旅游数据,并深入挖掘这些数据的潜在重要价值信息,然后利用这些信息为相关部门或对象带给服务[2]。这必须义充分肯定了在发展智慧旅游中,大数据挖掘所起的至关重要的作用,指出了在智慧旅游的过程中,数据的收集、储存、管理都是为数据挖掘服务,智慧旅游最终所需要的是利用挖掘所得的有用信息。
2011年,我国提出用十年时间基本实现智慧旅游的目标[3],过去几年,国家旅游局的相关动作均为了实现这一目标。但是,在借助大数据推动智慧旅游的可持续性发展中,大数据所产生的价值却亟待提高,原因之一就是在收集、储存了超多数据后,对它们深入挖掘不够,没有发掘出数据更多的价值。
3.1信息化建设。
智慧旅游的发展离不开移动网络、物联网、云平台。随着大数据的不断发展,国内许多景区已经实现wi-fi覆盖,部分景区也已实现人与人、人与物、人与景点之间的实时互动,多省市已建有旅游产业监测平台或旅游大数据中心以及数据可视化平台,从中进行数据统计、行为分析、监控预警、服务质量监督等。透过这些平台,已基本能掌握跟游客和景点相关的数据,能够实现更好旅游监控、产业宏观监控,对该地的旅游管理和推广都能发挥重要作用。
但从智慧化的发展来看,我国的信息化建设还需加强。虽然通讯网络已基本能保证,但是大部分景区还无法实现对景区全面、透彻、及时的感知,更为困难的是对平台的建设。在数据共享平台的建设上,除了必备的硬件设施,大数据实验平台还涉及超多部门,如政府管理部门、气象部门、交通、电子商务、旅行社、旅游网站等。如此多的部门相关联,要想建立一个完整全面的大数据实验平台,难度可想而知。
大数据时代缺的不是数据,而是方法。大数据在旅游行业的应用前景十分广阔,但是应对超多的数据,不懂如何收集有用的数据、不懂如何对数据进行挖掘和利用,那么“大数据”犹如矿山之中的废石。旅游行业所涉及的结构化与非结构化数据,透过云计算技术,对数据的收集、存储都较为容易,但对数据的挖掘分析则还在不断探索中。大数据的挖掘常用的方法有关联分析,相似度分析,距离分析,聚类分析等等,这些方法从不同的角度对数据进行挖掘。其中,相关性分析方法透过关联多个数据来源,挖掘数据价值。但针对旅游数据,采用这些方法挖掘数据的价值信息,难度也很大,因为旅游数据中冗余数据很多,数据存在形式很复杂。在旅游非结构化数据中,一张图片、一个天气变化、一次舆情评价等都将会对游客的旅行计划带来影响。对这些数据完全挖掘分析,对游客“行前、行中、行后”大数据的实时性挖掘都是很大的挑战。
3.3数据安全。
2017年,数据安全事件屡见不鲜,伴着大数据而来的数据安全问题日益凸显出来。在大数据时代,无处不在的数据收集技术使我们的个人信息在所关联的数据中心留下痕迹,如何保证这些信息被合法合理使用,让数据“可用不可见”[4],这是亟待解决的问题。同时,在大数据资源的开放性和共享性下,个人保密和公民权益受到严重威胁。这一矛盾的存在使数据共享程度与数据挖掘程度成反比。此外,经过大数据技术的分析、挖掘,个人保密更易被发现和暴露,从而可能引发一系列社会问题。
大数据背景下的旅游数据当然也避免不了数据的安全问题。如果游客“吃、住、行、游、娱、购”的数据被放入数据库,被完全共享、挖掘、分析,那游客的人身财产安全将会受到严重影响,最终降低旅游体验。所以,数据的安全管理是进行大数据挖掘的前提。
大数据背景下的智慧旅游离不开人才的创新活动及技术支持,然而与专业相衔接的大数据人才培养未能及时跟上行业需求,加之创新型人才的外流,以及数据统计未来3~5年大数据行业将面临全球性的人才荒,国内智慧旅游的构建还缺乏超多人才。
4解决思路。
在信息化建设上,加大政府投入,加强基础设施建设,整合结构化数据,抓取非结构化数据,打通各数据壁垒,建设旅游大数据实验平台;在挖掘方法上,对旅游大数据实时性数据的挖掘就应被放在重要位置;在数据安全上,从加强大数据安全立法、监管执法及强化技术手段建设等几个方面着手,提升大数据环境下数据安全保护水平。加强人才的培养与引进,加强产学研合作,培养智慧旅游大数据人才。
参考文献。
将本文的word文档下载到电脑,方便收藏和打印。
大数据论文篇三
在大数据时代的大数据管理的人员管理形式,不断发展和改革的过程中,计算机的软件和硬件都得到了有效的提高,磁盘、磁鼓等储存软件,得到了全面的普及和发展。同时,在在不断发展的过程中,计算机将大数据的组成形式,叫做大数据文件,并且在大数据文件上就可以直接的取名字,直接的进行查看,这对大数据的管理,无疑不是一个新的发展的起点。在大数据时代的大数据文件管理的过程中,由于大数据长期的保存在外面的,这样在对的大数据处理、分析、查找、删除、修改等操作的过程中,提供了极大程度上的'便利,其对其操作的程序,也具有特点的要求。但是,在文件管理的过程中,由于共享性能较大,数据与数据之间缺乏一定的独立性,对其管理和维护的费用和时间较大,这样往往工作效率提高,不能被广泛的使用。
大数据论文篇四
我国高校自主招生政策的制定和执行,主要目的在于为高校选拨高质量生源,简化招生运行流程,为具有创新潜能的人才提供优先选择高校的途径。
显然,在这种政策制度下,高校教育成本的构成有所变化。
高校自主招生制度下主要涉及的高校教育成本可以分为两个部分:招生成本和学生培养成本。
首先,自主招生制度下高校需要增加招生过程中的成本。
对于传统的高校教育而言,高校投入的招生成本较少,大部分成本是政府对于统一“高考”平台的构建和运行成本。
在自主招生制度下,高校需要完成包括入学标准制定、考生入学测试和招生录取实施在内的自主招生流程,如果参照“高考”标准严格执行笔试命题、笔试组织、笔试阅卷、面试执行、综合考评等,这其中涉及的人力成本和实际物质消耗成本均会大大提高高校的招生成本。
统计表明,[2]高校通过自主招生招收学生的人均成本是通过高考形式招收学生的人均成本的数倍乃至数十倍。
另外,自主招生制度无疑为考生提供了一个双向选择的机会,由于自主招生与高考并不冲突,这令大部分考生倾向于报考拥有较好口碑且实力较强的高校。
高校的教育质量不仅和教学过程相关,更和高校的公用资源紧密相关。
高等教育本身不仅需要独具优势的师资力量,更需要具有一流水平的硬件设施支持。
因此,高校要想吸引优质生源参加本校的自主招生并开展有针对性的人才培养,就必须要构建强大的师资队伍,并加大对公共资源的建设力度,这都需要加大教育成本投入。
其次,自主招生制度下高校需要提高学生的培养成本。
自主招生不仅仅是招收学生的途径,更是对学生进行选拔培养的重要方式。
虽然大部分高校并未设立单独的培养自主招生考生的机构,但部分国内一流高校都以因材施教、分流培养为基准,建立了重点培养创新意识和能力的独立学院,如清华大学的计算机科学实验班、北京大学的元培学院、浙江大学的竺可桢学院和哈尔滨工业大学的英才学院等。
高校也为这些面向优质生源的独立学院提供了更多的教学资源和优质的师资力量。
随着高校自主招生制度的确立,这些独立学院的招生名额逐年增加,而通过自主招生途径入学的学生占独立学院生源的比例也逐年增加。
换言之,自主招生制度为高校的这些独立学院提供了更多的生源选择,高校也间接为自主招生提高了教育成本投入。
二、构建高等学校自主招生的监督体系。
鉴于高校教育的特殊性,高校自主招生的具体教育成本核算难以像企业产品生产的成本核算那样明确、清晰,对于自主招生的公平性问题,则更加难以进行数字化的量化计算。
因此,提高高校自主招生的教育投入使用效益,保障高校自主招生过程中的教育公平,需要间接地从构建高校自主招生的监督体系入手,从而完善高校自主招生政策。
(一)招生环节的监督体系构建。
首先,构建和完善高等学校自主招生环节的内部约束监督机制。
高等学校自主招生针对的是具有创新能力和特殊才能的高中毕业生。
在招生中要明确统一的招考标准,严格执行招生简章的招考流程,构建科学合理的招考组织结构和权力网络,最大限度地实现招考过程的公开透明,从根源上杜绝权利寻租的空间。
同时,要依照《教育部关于实行高等学校招生工作责任制及责任追究暂行办法》等文件的相关规定,制定相应的工作细则,如相应的公示制度、回避制度等,并严格按照法律法规追究当事人及相关领导的责任。
其次,构建和完善高校自主招生环节的外部约束监督机制。
外部监督的主体既可以是高校主管部门或当地政府,也可以是公众百姓。
高校主管部门和当地政府可以成立专门的或者临时的监管机构,专职管理高校自主招生过程中的各种行为,并对违规行为进行查处。
同时,还要开通相应的监督举报通道,如电子信息平台、举x箱和监督热线等,为公众监督检举提供便捷的言路渠道。
相对政府部门而言,公众则能够更加直接地发挥更为有效的监督作用。
对高校自主招生环节的监督,不仅是公众的权利,某种程度上也是公民的义务。
作为高校自主招生的直接参与者和利益相关者,参加自主招生的考生和家长有权监督自主招生环节的全过程,提出存疑之处并加大约束力度。
而其他知情公众也有权参与监督,当发现高校实际操作与公开的基本标准和过程不相符时,应及时向相应部门或媒体提供真实、有效的监督举x息。
(二)学生培养环节的监督体系构建。
学生培养环节中的教育成本投入需要综合考虑教育的效率和公平性问题,该环节的监督体系主要体现在如何因材施教地构建和实现多元化的人才培养评价机制。
对于自主招生的优质生源,不采用专门的人才培养方案将大大降低人才培养的效率,同时为了兼顾教育公平性原则,应将人才培养方案同时面向所有入学学生,充分调动学生的积极性,令学生能够为了同样的优质教育资源进行公平竞争。
多元化的人才培养机制可以通过按大类进行低年级教育、按兴趣自主选择高年级专业、采用导师制和学分制的双重评判标准等方式实现。
高校要将优质的教育资源应用于具有潜力的学生群体中,在完成普及式高等教育的同时致力于创新人才的培养。
进而综合对高校培养优质生源的能力和方案有效性进行评估监控,以促进学生培养环节中教育成本投入的效果最大化。
另外,学校建设和人才培养是一个相辅相成的过程,构建高水平的师资队伍和建设一流的硬件设施不仅能够提高高校自主招生的吸引力,也有助于高端人才培养。
大数据论文篇五
摘要:桥梁在长期重荷载、大交通量的运营情况下,大部分都出现了不同程度的病害。对这些桥梁进行病害分析,提出相应对策,进行维修加固,具有显著的经济效益和社会效益。大部分桥梁都具有一定的超载能力,只要找到病害的原因,并进行相应的维修加固,其大多数是可以继续运营的。本文探讨了桥梁工程常见病害分析及维修加固措施。
桥梁在使用了一定的时期后,由于气候、荷载、特别是超限超载等方面的原因,桥梁的损坏速度会不断的加快,如果不及时进行桥梁的维护,将会严重缩短桥梁的使用年限,甚至发生严重的安全事故。因此,加强对桥梁的检查,及时地对桥梁进行有效的维护、维修与加固,对延长其使用寿命、保证其承载及通行能力、保证行车安全、保持桥梁的良好的使用状态,具有十分重要的意义。
桥梁病害的定义一般都由定性标准和定量界限两部分组成。定性标准从病害的形状和表象上进行界定,以从外观上将病害明显区别开,它是确定病害种类的主要依据;定量界限是便于检查和处理的角度出发人为确定的界限。钢筋混凝土桥梁的常见病害主要有:裂缝、混凝土碳化及钢筋锈蚀、梁体表面剥蚀、结构构造的破坏、地基不均匀沉降引起的破坏等。钢筋混凝土桥梁按照病害不同的严重程度可分为四类:
1、完好或基本完好。
桥梁结构基本满足上述要求,与建造时比基本没有可观测到的病害。
2、轻微损伤的病害。
这类病害并不影响结构的承载力、刚度、完整性及其使用功能,但要消除由于它们造成的损伤则需要额外的费用,有时还要在使用过程中对结构作系统的观察。
3、一般性损伤的.病害。
这类病害虽不一定影响结构应有的承载力,但却使它们的使用性能下降,维护费用增大,有时还影响观感,使人们有不安全感。
4、严重性损伤和破坏性损伤的病害。
这类病害往往表现为所采用的材料强度不足,或者构件残缺有伤,或者所选取的构件截面尺寸不够,或者所安装的连接构造质量低劣或使用环境恶劣。
1、桥面铺装层的维修加固。
(1)局部修复凿补法。
将水泥混凝土铺装层的表面凿毛,深度以使骨料露出为准;用清水冲洗干净断面并充分润湿,涂刷上同标号的水泥砂浆(或其他粘结材料),最后在桥梁承载能力容许范围内,铺筑一层1~5cm厚的水泥混凝土铺装层。
(2)重新浇筑混凝土面板。
桥面板的破裂和其他损坏特别严重,混凝土质量或施工状况特别不良,且无适用的修补方法时,就必须采用重新浇筑新的混凝土桥面板的措施,施工时,将原有的行车道铺装全部拆除,再将行车道表面清扫干净,必要时铺入适量短钢筋,配置上1~2层钢筋网,浇筑整体化混凝土。
(3)桥面补强层加固法。
即在旧有桥面上,重新加铺一层混凝土或钢筋混凝土补强层,此方法既修补已出现裂缝、剥离等损坏的桥面板,又能加高原有梁板的有效高度,增加梁板的抗弯能力,改善铰结梁板的荷载横向分布,从而提高桥梁的承载能力。
2、桥梁结构裂缝宜采用塞缝灌浆维修加固。
塞缝灌浆是把按一定比例配制的水泥(砂)浆环氧树脂(砂)浆,通过喷浆机按一定压力灌入结构物缝隙内,起到填塞裂缝、避免钢筋锈蚀并提高结构整体强度的作用。塞缝灌浆是用胶结材料把结构的裂缝填满,使力的作用、传递尽可能恢复到原来状态。塞缝灌浆一般用于处理桥梁上部、下部结构裂缝,灌浆分为水泥浆、水泥砂浆、环氧树脂浆、环氧树脂砂浆等,具体采用哪一种,应视实际情况而定。通常水泥(砂)浆用于石砌墩、台和拱圈裂缝,由裂缝的大小来决定灌浆中是否掺砂,采用水泥(砂浆造价低、效果好。环氧树脂浆一般用于钢筋混凝土结构物,因为钢筋混凝土构件产生的裂缝较小,易灌满,粘结性好;环氧树脂砂浆多用于桥面裂缝。
3、桥梁基础加固。
对于位于天然地基上的浅基础,由于埋置深度较浅,易受河水冲刷而淘空。受河水改道冲刷桥梁引道,导致桥台基础冲空,引道被毁。桥梁地基局部软弱,致使桥台发生不均匀沉降,引起桥台开裂等。针对以上病害,采取对河床用浆砌片石进行铺砌,上游河床设置丁坝、打木桩扩大桥台基础等方法进行加固。
4、锚喷混凝土加固法。
借助高速喷射机械,将新混凝土混合料连续地喷射到已锚固好钢筋网的受喷面上,凝结硬化而形成钢筋混凝土,从而增大桥梁的受力断面和补强钢筋,加强结构的整体性,使其能承受更大的外荷载作用。
5、粘贴钢板(筋)加固法。
当交通量增加,主梁出现承载力不足,或纵向主筋出现严重腐蚀的情况时,梁板桥的主梁会出现严重的横向裂缝。采用粘结剂及锚栓,将钢板粘贴锚固载混凝土结构的受拉缘或薄弱部位,使其与结构形成整体,以钢板代替增设的补强钢筋,达到提高梁的承载能力的目的。
6、改变结构受力体系加固法。
这种加固、改造方法是通过改变桥梁结构受力体系,达到提高桥梁承载能力的目的。如:在简支梁下增设支架或桥墩,或把简支梁与简支梁纵向加以连接,由简支变连续梁,或在梁下增设钢衍架等加劲或叠合梁等,以减小梁内应力,达到提高梁的承载力目的。
7、增设纵梁加固法。
在墩台地基安全性能好,并具有足够承载能力的情况下,可采用增设成灾能力高和刚度大的新纵梁,新梁与旧梁相连接,共同受力。由于荷载在新增主梁后的桥梁结构中重新分布,使原有梁中所受荷载得以减小,由此使加固后的桥梁承载能力和刚度得到提高。当增设的纵梁位于主梁的一侧或两侧时,则兼有加宽的作用。
8、拱圈增设套拱加固法。
当拱式桥梁的主拱圈为等截面或变截面的砖、石或混凝土等实体板拱时,且下部构造无病害,同时桥下净空与泄水面积容许部分缩小时,可在原主拱圈腹面下增设一层新拱圈,即紧贴原拱圈底面上,浇筑或锚喷混凝土新拱圈,外形上就像时在原拱圈下套做了一个新拱圈。
9、扩大基础加固法。
桥梁基础扩大底面积的加固,称为扩大基础加固法。此法适用于基础承载力不足或埋深太浅,而墩台又是砖石或混凝土刚性实体式基础时的情况。扩大基础底面积应由地基强度验算确定。当地基强度满足要求而缺陷仅仅表现为不均匀沉降变形过大时,采用扩大基础底面积的加固,主要由地基变形计算来加以选定。
10、增补桩基加固法。
当桥梁墩台基底下有软卧层,或墩台基础未下至坚硬岩层时,墩台发生沉陷;当桥梁墩台采用桩基础,而桩的深度不足,或由于水流冲刷等原因使桩发生倾斜。这些病害都直接影响桥梁结构的正常使用和服务年限。对此,采用增补桩基加固法是一种常用而且有效的方法。这种加固方法是:在桩式基础的周围补加钻孔桩,或打人钢筋混凝土预制桩,扩大原承台,以此提供基础的承载力,增强基础的稳定性。
11、墩台拓宽方法。
利用旧桥基础,靠墩台盖梁挑出悬臂加宽部分,以便安装加宽的上部结构。此种情况为只加宽墩台上部的盖梁,墩台身和基础则不需予以加固。采用此法加宽墩台时,旧桥墩台基础必须完好、稳定,且需经过承载力验算后才能采用。否则,应在老桥的墩台旁,重新浇筑拓宽部分的墩台及基础。为保证大桥应急维修施工的质量和安全,整个维修施工期间需要全封闭交通。所有封闭路段提前在前方的路口设置标志牌。并在封闭位置专人24小时看护指挥,提前7日在当地的主要新闻媒体上发布公告,通告绕行路线和交通封闭期限。
总之,我国现有的旧桥数量大,形式多,目前病害开始逐渐暴露。在交通量不大,要求通车条件不断提高的情况下,如何用较少的投资取得更大的社会效益和经济效益是一个值得探讨的问题。同时还要充分挖掘和利用旧桥的超载潜力,能维修加固的桥梁,不要拆除重建。当发现有明显的病害后,要及时组织桥梁专家现场鉴定,必要时可做荷载试验,以确定是否需要综合改造。
参考文献:
[1]赫中营,郑立飞.既有钢筋混凝土双曲拱桥的病害分析及加固[j].山西建筑.2008(02)。
[2]梅廉.混凝土桥的主要病害及原因分析[j].科技促进发展.2009(12)。
大数据论文篇六
伴随着科技进步,互联网及移动互联网的快速发展,云计算大数据时代的到来,人们的生活正在被数字化,被记录,被跟踪,被传播,大量数据产生的背后隐藏着巨大的经济和政治利益。大数据犹如一把双刃剑,它给予我们社会及个人的利益是不可估量的,但同时其带来个人信息安全及隐私保护方面的问题也正成为社会关注的热点。今年两会期间,维护网络安全被首次写入政府。
工作报告。
全国政协委员、联想集团董事长兼ceo杨元庆也在会议上呼吁“政府对个人信息安全立法,加强监管,并在整个社会中树立起诚信文化”大数据时代下维护个人安全成为重中之重。
(一)数据采集过程中对隐私的侵犯。
大数据这一概念是伴随着互联网技术发展而产生的,其数据采集手段主要是通过计算机网络。用户在上网过程中的每一次点击,录入行为都会在云端服务器上留下相应的记录,特别是在现今移动互联网智能手机大发展的背景下,我们每时每刻都与网络连通,同时我们也每时每刻都在被网络所记录,这些记录被储存就形成了庞大的数据库。从整个过程中我们不难发现,大数据的采集并没有经过用户许可而是私自的行为。很多用户并不希望自己行为所产生的数据被互联网运营服务商采集,但又无法阻止。因此,这种不经用户同意私自采集用户数据的行为本身就是对个人隐私的侵犯。
(二)数据存储过程中对隐私的侵犯。
互联网运营服务商往往把他们所采集的数据放到云端服务器上,并运用大量的信息技术对这些数据进行保护。但同时由于基础设施的脆弱和加密措施的失效会产生新的风险。大规模的数据存储需要严格的访问控制和身份认证的管理,但云端服务器与互联网相连使得这种管理的难度加大,账户劫持、攻击、身份伪造、认证失效、密匙丢失等都可能威胁用户数据安全。近些年来,受到大数据经济利益的驱使,众多网络黑客对准了互联网运营服务商,使得用户数据泄露事件时有发生,大量的数据被黑客通过技术手段窃取,给用户带来巨大损失,并且极大地威胁到了个人信息安全。
(三)数据使用过程中对隐私的侵犯。
互联网运营服务商采集用户行为数据的目的是为了其自身利益,因此基于对这些数据分析使用在一定程度上也会侵犯用户的权益。近些年来,由于网购在我国的迅速崛起,用户通过网络购物成为新时尚也成为了众多人的选择。但同时由于网络购物涉及到的很多用户隐私信息,比如真实姓名、身份证号、收货地址、联系电话,甚至用户购物的清单本身都被存储在电商云服务器中,因此电商成为大数据的最大储存者同时也是最大的受益者。电商通过对用户过往的消费记录以及有相似消费记录用户的交叉分析能够相对准确预测你的兴趣爱好,或者你下次准备购买的物品,从而把这些物品的广告推送到用户面前促成用户的购买,难怪有网友戏称“现在最了解你的不是你自己,而是电商”。当然我们不能否认大数据的使用为生活所带来的益处,但同时也不得不承认在电商面前普通用户已经没有隐私。当用户希望保护自己的隐私,行使自己的隐私权时会发现这已经相当困难。
(四)数据销毁过程中对隐私的侵犯。
由于数字化信息低成本易复制的特点,导致大数据一旦产生很难通过单纯的删除操作彻底销毁,它对用户隐私的侵犯将是一个长期的过程。大数据之父维克托・迈尔-舍恩伯格(viktormayer-schonberger)认为“数字技术已经让社会丧失了遗忘的能力,取而代之的则是完美的记忆”[1]。当用户的行为被数字化并被存储,即便互联网运营服务商承诺在某个特定的时段之后会对这些数据进行销毁,但实际是这种销毁是不彻底的,而且为满足协助执法等要求,各国法律通常会规定大数据保存的期限,并强制要求互联网运营服务商提供其所需要的数据,公权力与隐私权的冲突也威胁到个人信息的安全。
(一)将个人信息保护纳入国家战略资源的保护和规范范畴。
大数据时代个人信息是构成现代商业服务以及网络社会管理的基础,对任何国家而言由众多个人信息组成的大数据都是研究社会,了解民情的重要战略资源。近年来大数据运用已经不再局限于商业领域而逐步扩展到政治生活等方方面面。国家也越来越重视通过对大数据的分析运用从而了解这个社会的变化以及人民的想法,甚至从中能够发现很多社会发展过程中的问题和现象,这比过去仅仅依靠国家统计部门的数据来的更真实全面,成本也相对较小,比如淘宝公布的收货地址变更数据在一定程度上揭示了我国人口的迁移,这些信息对于我国的发展都是至关重要的。
因此将个人信息保护纳入国家战略资源的保护和规划范畴具有重要的意义。2017年政府工作报告首次提出了“维护网络安全”这一表述意味着网络安全已上升国家战略。这是我国在大数据时代下对个人信息保护的重要事件,也具有里程碑的意义。
(二)加强个人信息安全的立法工作。
大数据时代对个人信息安全保护仅仅依靠技术是远远不够的,关键在于建立维护个人信息安全的法律法规和基本原则。这方面立法的缺失目前在我国是非常严重,需要积极推动关于个人信息安全的法律法规的建立,加大打击侵犯个人信息安全的行为。2017年两会期间全国政协委员、联想集团董事长兼ceo杨元庆呼吁政府加强对个人信息安全的立法和监督,引起了社会各界广泛关注和重视,这充分说明这个问题已经成为一个重要的社会问题。我本人对个人信息安全立法工作有以下几点建议:第一,必须在立法上明确个人信息安全的法律地位。个人信息安全与隐私权“考虑到法律在一般隐私权上的缺乏,要对网络隐私权加以规范就有必要先完善一般隐私权的规定,因此首先应通过宪法明确规定公民享有隐私权。[2]”第二,必须从法律上明确采集数据的权利依据。由于在数据采集过程中经常发生对个人信息的侵害,因此无论是政府还是互联网运营服务商都必须遵循一定的原则和依据。政府采集数据的行为应该符合宪法的要求,而互联网运营服务商采集数据必须要经过当事人同意。第三,制定关于个人信息安全的专门法律。2017年国务院信息办就委托中国社科院法学所个人数据保护法研究课题组承担《个人数据保护法》比较研究课题及草拟一份专家建议稿。2017年,最终形成了近8万字的《中华人民共和国个人信息保护法(专家建议稿)及立法研究报告》。但到目前为止我国的个人信息保护法仍没有立法,因此加快这个立法过程是当务之急。
大数据论文篇七
大数据时代的来临,使企业进入战略绩效管理信息化时代加快了脚步,然而,企业cio在面对繁杂、庞大的数据信息时,如何做到价值最大化的被企业利用,为企业战略绩效管理系统服务,需要一套庞大、严谨的战略管理体系支撑,在以企业战略管理体系的框架支撑下,数据才能使管理系统如虎添翼,引领企业飞速发展。
研究esp系统发现,建立大数据时代下的战略绩效管理信息化系统,先要明确发展战略目标,在此基础上,为数据信息的价值实现构建管理体系框架,数据信息能否被有效利用取决于战略管理系统的体系设计。
大量的数据信息在全面、有序的企业战略管理框架中被归类、识别,并通过战略管理系统中的分析工具被分析、重置,再通过辅助保障系统将分析后的数据信息按流程、组织,系统的输送给终端。形成一整套企业战略管理信息化系统,以便于员工高效和正确的运用数据,真正实现数据可用性。
从管理信息化落地执行的角度看,esp的贡献在于能够帮助企业管理信息化高效的实现,全面落地、彻底执行并可视化监控和有效的评估,否则企业再好的战略、全面的管理体系落不了地、也不能产生很好的效果,更谈不上发展。
大数据论文篇八
随着时代的快速发展,招标代理企业的信息化进程是未来社会需求的必然产物,所以,企业只有不断提升信息化建设的速度、提高自动化运营的效率,才能与时代的发展保持一致,以免被社会所摒弃。在招标代理企业的信息化管理过程中,还必须引进先进的管理观念、高质量的人力资源以及科学的管理模式等。
信息化;招标代理;企业管理。
第一,重视程度不够。由于高校对档案管理重视程度不够,在档案管理工作中,沿用传统的工作模式,对档案进行人工检索、整理、立卷和归档。即使大部分高校引进了先进的计算机设备,但是仍然只是发挥基本的输入、输出功能。由于缺乏现代化的管理系统,使得高校的档案管理工作繁琐,效率低下,限制了档案管理的价值。教师及学生的档案采集不全,档案卷内目录填写不完整,档案序号、文件编号、责任者、卷内文件的起始时间等信息有遗漏,档案文件保密级别不限定。第二,从事档案管理的人员素质不够。部分高校没有严格按照规定,完成档案管理工作,甚至缺乏专门的档案管理,只是简单的将档案堆在墙角里,使得档案丢失,这给档案查找工作带来非常大的困难。而且从事档案管理的人员,大部分是为了解决高校代课老师或教授配偶的工作,临时安排的,他们大部分人员缺乏计算机操作技能,不能利用计算机技术对档案信息进行开发和研究,并且缺乏工作积极性。第三,档案管理平台不健全。近些年来,高校电子文档、表格、音频、视频等各种数据信息,种类繁杂,这些庞大的数据信息难以有效的管理及存储。高校档案数据资源不断扩张,若不引入虚拟云存储技术,就有可能引发资源存储容量不够,导致数据库膨胀危险。
大数据的意义不是数据信息庞大,而是对数据信息进行高质量的处理。面对大数据时代的到来,高校如何在招生、教学、管理、就业方面进行大数据整合和管理,为高校的发展提供技术支持,是学校发展的重点工作。目前,很多学校已经建立了信息门户、统一用户管理与身份认证、综合信息服务门户,已经在信息管理中取得了进步,但是目前高校档案管理仍存在很多挑战。第一,组织维度。高校内各个部门应该优势互补,实现不同类型的大数据资源的优质整合。例如在高校内各部门建立数据管理机构、将数据整合和管理常态化,该机构由各个部门分管领导直接负责,协调部门内部事务,并将数据整合工作纳入年终评价体系,保障数据整合工作的效果。为加强高校档案管理,建议高校成立活动领导小组和工作小组。如下:其一,领导小组。组长;副组长;成员;职责;其二,工作小组。组长;副组长;成员;职责:统筹安排档案管理,研究制定管理措施;负责对档案信息进行协调、监督、考核。工作小组办公室设在公司后勤,负责日常工作联系及相关组织工作。第二,数据维度。高校档案来源丰富,包括教师和学生的人事档案、学籍档案、医疗保健档案、试题库、学校的基建档案、学校的资产档案、财务原始报销凭证、公文、电子邮件等。在档案大数据应用时,要将档案资源进行数据模型的转换,将二维的信息转换为多维的模型。第三,技术维度。在高校大数据时代,信息应用服务引领高校档案由常规分析向广度、深度分析转变。师生用户可以共享档案信息,并从海量档案信息中,挖掘出自己可用的信息,并从这些信息资源中进行价值判断和趋势分析,找出用户和档案之间的逻辑关系。4g移动通信终端、云技术与云存储服务、校园app等媒介渠道的引入,可以解决档案资源存储的问题。
第一,增强服务意识,提高服务水平,争取领导重视。大数据时代的来临,档案管理工作会面临许多新情况、新特点、新问题。实现现代化的管理,需要提高领导干部的档案意识,配备先进的设备,实现档案管理的现代化,网络化。第二,加强档案管理教育培训,提高管理人员的综合素质。大数据的管理不在是传统的简单数据和信息的归集,在信息化管理工作中,提高管理人员的素质是有必要的。加强人才培养,实现竞争上岗,培训上岗,加强业务宣贯,为档案管理创造一个新台阶。第三,提高档案管理信息化利用水平。引进现代化档案管理设备,用于快速档案查阅、检索、分析,提高工作效率,实现档案管理的现代化办公。一是加大资金投入,不断完善档案信息数据库,不断摸索档案应用软件和实际工作的结合,建立可行的档案信息系统,提高档案数据的实用性,使得档案查阅更快捷、更方便、更可靠。二是建立规范的制度保障体系,提高信息化管理的技术水平。
今年两会,大数据第一次出现在政府的工作报告中,这表明,大数据已经上升到国家层面。为了适应大数据时期,档案管理工作对管理人员的要求越来越高,学习现代计算机技术、网络技术、多媒体技术,跟上当代时代的节拍,对高校的发展有着重要的意义。
作者:张贤恩高秀英单位:枣庄市团校。
[1]杨似海,闫其春.大数据背景下的高校图书馆档案管理策略研究[j].四川图书馆学报,2016,4(35):81.
大数据论文篇九
我国经济国际化程度越高,越需要引进国际先进的经济管理理念,对国际化会计人才的需求也就更为迫切。但作为培养国际化会计人才有效途径的高校管理会计双语教学在教材选用、教学方法、学生能力、等方面都存在不完善之处。因此,建议通过合理使用原版教材、利用网络课程平台完善双语教学等方法,推动我国国际化人才培养的最终实现。
我国经济国际化程度的越高,越需要引进国际先进的经济管理理念,对国际化会计人才的需求也就更为迫切。国际化会计人才应该具备“创新意识和跨文化交流能力;熟知并能灵活运用国际会计准则和国际惯例;未来能为企业的国际化发展提供决策支持”等能力。而双语教学是培养国际化人才的有效途径,以“决策、规划、控制与考核”为职能的管理会计是会计专业的核心课程,要培养国际化会计人才,管理会计双语教学的探讨就显得十分必要。
一、管理会计双语教学存在的主要问题。
双语教学,即通过学科“双语”这一载体提供给学生一种英语应用的情境,将英语应用于会计专业知识的获取,并以专业教学来推动学生英语视、听、说、读、写的提高,从而满足社会对国际合作意识、国际交流与竞争能力的外向型人才的要求。但是在实施双语教学的过程中,会计双语教学也存在一些亟待解决的问题,主要体现在:
1.学生专业英语能力较弱,缺少相应的专业英语环境。
2.国内外教材要求不统一,差异较大。
3.双语教学的成效受到质疑。有些学者指出,教师在教学过程中虽然采用了原版教材,但在实践过程中,往往是教师在讲授时多数是用英文解释一下专业词汇,在会计知识的讲解上时几乎全部使用中文。这样做并没有达到培养学生国际化思维的效果。
在这样的背景下,笔者所在的国际特色班提出“有效双语教学”的口号,经过三年的准备,目前已经在高年级专业课上实施双语教学,并初步取得良好的效果。笔者在实践中总结如下几点建议。
(一)高质量的双语教学,必须合理使用双语教材。
目前,我国开设管理会计双语课程一般用英文原版或翻译教材。选用英文原版或翻译教材方便教师进行双语教学和案例教学,教材中涉及的大量与时俱进的实例、数据、阅读材料,可以辅助学生理解深奥的知识原理,更能提升学生的独立思考能力、培养逻辑思维能力、掌握分析方法。但是,全部采用英文或者翻译教材也存在着一系列的问题。原版教材一般是按照西方的经济、政治、生活情况编写的,而我国学生对发达国家市场经济制度缺乏理解或理解的深度不够。
同时,与财务会计不同的是,管理会计具有技术、组织、行为和情境)等四个维度(后三个维度可以统称为“管理情境”,体现了管理会计的“社会性”层面。)。也就是说,除了技术维度之外,组织、行为与情境等三个维度都具有鲜明的“本土化”特征,学生要想学好管理会计,就必须了解中国企业特有的制度背景。盲目地追求使用外文原版教材,不注重提升这些西方先进的管理会计理念在中国当前环境的可应用性和可操作性反而会弄巧成拙。
所以,国际特色班的教师在备课时本着“国际化与本土化”相融合的理念,采取双教材策略。教师除了使用原版教材以外,在国内教材的基础上查找中国的'案例进行补充讲解,学生则使用英文原版教材或翻译教材。这样既能让学生利用原版教材中的大量案例,同时,教师又能在课上为学生补充符合中国国情的相关材料。
(二)充分利用网络教学平台,营造英语语言环境。
在会计本科专业培养计划中,管理会计课时量是45左右,每星期只有两次课。仅仅利用课上的时间不足以为学生创造足够的专业外语环境。因此,网络课堂为学生提供了在传统课堂外随时发言的机会则可以很大程度上的弥补这一问题。教师可以引导学生利用网络学生可参加或者发起各种类型的专题讨论组,对感兴趣的问题用英语进行自由讨论和发言,通过共同讨论达到对问题的全面深入的认识,有效地增加师生课堂内外的互动。
另外,国外教材的优越性不仅体现在教材中丰富的案例,更体现在完善的网络配套资源。教师可以帮助学生搜集相应的视频资料,保证了知识的开放性。例如用英文播放的企业价值链流程图帮助学生理解生产流程中成本的产生和理解成本相关概念,有利于创造英语语言环境,构建英语思维模式,让学生对较难理解的企业成本理论知识有一个比较形象的认识,激发学习兴趣。
(三)以英语为手段,将母语和英语有机地融合起来,促使学生能在非母语环境下对专业的理解、掌握和运用才是双语教学的精髓。
为了提高双语教学成效,在教学内容上,笔者认为双语教师可事先引导学生利用网络课堂学习基本的英文专业术语和中文专业知识。例如,结合教学计划,事先选定几个专题,要求学生通过英文讲义以及互联网了解和掌握这些专题的内容、掌握核心专业词汇,每次课开始时可以先考察学生对专业术语的掌握程度。这样,教师可以在课堂上将注意力主要集中于讲授学科重点,做到以英语为手段,引导学生利用西方先进的管理会计理念在中国当前环境去发现问题、分析问题。在教学方法上,双语教师可以利用多媒体课件和英文讲义进行英文授课。为了使学生很好的理解,重点和难点则可以用中文进行解释。
大数据论文篇十
4月6日,联合交通部科学研究院对外发布《第一季度中国主要城市骑行报告》。该报告以ofo出行大数据为参考,首次采用城市骑行指数作为评估指标,对北京、上海、广州、深圳、天津、南京、西安、杭州等20座国内一二线城市的共享单车发展水平进行评估排名。
可以发现,在单车使用水平、节能减排水平、健康贡献水平、停车设施水平、服务环境水平和社会文明水平六个方面,每个城市的表现各有不同。行业专家分析称,该报告对透视我国城市慢行交通发展现状、追踪共享单车行业发展、推动智能绿色城市建设事业起到参考作用。
18~45岁人群成共享单车主要用户西安广州最男人、天津昆明最均衡。
报告显示,18~45岁人群成共享单车骑行的主力用户,占比接近90%,其中30岁及以下群体占比达到55%,30~45岁占比约35%。由此可见,共享单车的用户不仅覆盖年轻群体,也受到了中年群体的广泛认可和使用。
同时,在用户男女比例分布中,不同的城市区分为了两大派系。一个是以西安、广州为代表的五座城市成为了“最男人”的共享单车骑行城市,男性用户占比达到55.90%~59.70%,较高于女性用户。而以天津、昆明为代表的五座城市则成了“最均衡”的共享单车骑行城市,男女比例在48%~52%之间,可以说基本相差无几。但综合来看,女性用户占比能达到45%左右。
中国城市整体骑行水平53.6分空间巨大综合指数六大榜单昆明东莞上榜。
报告显示,20第一季度中国城市整体骑行水平为53.6分,其中北京以84.3位居榜首,上海、成都分别以79.3分和65.1分紧随其后。除此之外,深圳、昆明、杭州、广州、南京、厦门、福州、武汉等八座城市也高于平均分,城市骑行水平较为领先。
而53.6的整体骑行水平虽然较满分100分来看属于偏低水平,但考虑到年初共享单车才迎来一波的快速发展,诸多方面尚不完善,例如城市停车设施的建设,北京、上海、杭州三城虽然达到13分以上,但其他20座城市停车设施平均得分仅为7.55分,远低于满分20分。未来,随着共享单车的健康发展、城市停车设施的建设、服务环境的提升等因素逐步完善,分数还将进一步上升。
报告同时给出“2017年第一季度主要城市六大榜单”,北京位列“停车设施相对完善”、“节能减排贡献最大”、“政府服务环境最好”三个榜单之首。昆明则成为“最爱骑共享单车的城市”,东莞成为“我骑行·我健康”的榜首城市。
城市文明程度杭州12.9分排第一20城q1累计骑行5.93亿公里。
报告针对社会文明程度,对各城市对共享单车的友好度进行了评分,杭州市以12.9分排名第一,南京、西安分别以12.75和12.22排名第二第三,北京仅以9.94分排名第九。在服务环境水平评估中,北京以满分15分位列第一。近期,全国各地陆续出台了针对共享单车的管理办法,如上海出台了《共享自行车服务规范》,成都推出了《成都市关于鼓励共享单车发展的试行意见》。
报告显示,我国20座城市第一季度累计骑行5.93亿公里,相当于绕地球14794圈,日均累计骑行距离为659万公里,相当于地球赤道的164倍。不仅如此,20个城市第一季度人均累计骑行消耗热量6840千卡路里,相当于燃烧掉1.8斤脂肪。
共享单车缓解城市交通出行难问题。
数据统计,从1995年至,随着民用汽车保有量从1040万辆攀升至1.9亿辆,自行车的.保有量却从6.7亿辆,急剧下降至3.3亿辆。汽车成为代步工具的同时,给城市交通和生态环境也带来了极大压力,城市居民的出行成本急剧上升。
专家认为,共享单车+公共交通的出行模式,正逐渐替代家用汽车+步行+公共交通的出行模式,快速发展中的共享单车正改善着我国城市居民的出行模式,也对我国交通新体系建设产生深远影响。
大数据论文篇十一
大数据从被人们所熟知到现在各大领域的广泛应用,标志着人类已经正式走入“第三次工业革命”时代。大数据在营销领域的应用使传统的营销活动变得更加的科学化和个性化,本篇大数据论文的笔者认为,在享用大数据带来的便利同时,需要兼顾大数据带来的伦理问题。
近些年随着移动互联网、物联网、云计算的迅猛发展,it业又出现了一个新名词——大数据(bigdata),“大数据”(bigdata)的横空出世是it行业又一次颠覆性的技术变革,且已在各行各业逐渐形成燎原之势,大数据的出现不仅给当今世界带来了翻天覆地的变化,同时也潜移默化的影响着人们生活的各个领域。
对于大数据的概念,迄今为止仍然没有形成统一的准确定义,francisdiebold是第一个提出“大数据”术语的学者,他认为:大数据就是正在激增的数量和潜在的相关数据,主要是当今空前发展的数据记录和存储技术。而meta集团(现为gartner)的分析师douglaslaney()在研究报告中,就指出数量(volume)、速度(velocity)和种类(variety)的增加可能是未来的一大趋势。虽然这一描述最先并不是用来定义大数据的,但在此后的十年间很多企业如ibm和微软仍然使用这个“3vs”模型来描述大数据。对此也出现了一些不同的意见,大数据及其研究领域具有影响力的领导者的国际数据公司(idc)在20做的报告中定义大数据为:“大数据技术描述了新一代的技术和架构体系,通过高速采集、发现或分析,提取各种各样的大量数据的经济价值。”从这个定义来看,大数据的特点可以总结为4个v,即volume(数量),variety(种类),velocity(速度)和value(价值)。4vs和3vs的不同之处就是增加了一个价值,指出了大数据最为核心的问题就是如何从规模巨大、种类繁多、生成快速的数据集中挖掘价值。demauro,a-,greco,m-和grimaldi,m-()对大数据的定义进行了统一:大数据指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。由于利益相关者的角度不同,因此学者们对大数据定义的表述也不尽相同,但大数据的重要性却得到了一致的认同,即大数据在其数据量、数据复杂性和传播速度三大方面都显著的超出了传统的数据形态,也超出了现有的技术处理手段。
正是有了数据的爆炸式增长,大数据已经在学术领域、商业领域乃至政治领域都得到了密切的关注。《nature》出版了专刊“bigdata”,从互联网技术、网络经济学、超级计算、环境科学和生物医药等多个方面介绍了大数据带来的挑战。年《science》推出关于数据处理的专刊“dealingwithdata”,讨论了数据洪流(datadeluge)所带来的机遇,同时也指出如果能够有效地利用好这些数据,人们将会得到更多的机遇,并能对社会发展产生巨大的推动作用。
国外学者danielnunan()就指出了大数据可能会产生影响的五大领域:社交网、数据所有权、存储问题、数据收集、公众隐私,因此大数据时代各大领域都将迎来新一波的迅猛发展期,同时它也决定了未来商业的发展趋势,尤其在营销领域大数据与营销的结合更是颠覆了传统的营销模式。
2-1营销活动将更科学化。
大数据的特征是容量大、种类多、高速度和有价值,因此大数据时代的营销不再是基于经验和直觉,而是基于科学的数据分析进行精准营销。曾经有过一个经典的大数据案例讲的就是“啤酒与尿布”的故事,在20世纪末的美国沃尔玛超市中,超市的管理人员意外的发现两个毫无关联的物品啤酒和尿布会经常同时出现在一个购物篮中,后续研究发现原来是因为美国一般都是年轻的爸爸出来为小婴儿购买尿布,顺便为自己购买啤酒,当然其中就用到了商品间的关联算法,而大数据正是通过海量的数据来实现精准的营销为企业竞争赢得先机。
2-2营销活动将更个性化。
随着数据的挖掘、采集、分析等环节的效率不断地提高,大数据的大容量、高速度、多样性以及高价值四个特点使得个性化的营销服务成为可能。营销的最终目的就是能够准确的了解每一个潜在的或者现实的客户需求并为其提供满意的产品和服务从而实现利润最大化,而大数据恰好能够利用其显著的优势,从海量的数据中提取有用的信息,准确地把握客户的兴趣点,了解客户的个性偏好,因此大数据背景下利用网络技术平台提供个性化服务是未来的一大趋势。
2-3企业营销组织机构和人员工作职能将围绕数据展开。
大数据时代下对于企业来说数据是最重要最珍贵的资源,因而数据的收集和整理以及数据的分析和处理将是营销人员制胜的关键。因此营销人员的工作将更多的是围绕着数据的采集、分析和处理展开。在营销领域采用数据挖掘是营销发展到一定阶段的必然趋势,而数据挖掘技术的应用能对企业的营销管理带来很多显著的利益,因此未来企业的营销人员的职能会发生转变,以数据挖掘、分析为主的组织机构将会成为企业的重要职能部门。世界著名的管理咨询公司埃森哲和麦肯锡都先后发布报告称,数据科学家的需求将会持续扩大,未来如何培养高技能的数据人才会是各大数据业务公司的重中之重。
2-4营销活动将可预测。
大数据是一场技术性的革命,海量的数据资源使得营销管理开启量化的进程,而运用数据进行决策是大数据背景下营销模式的一个重要特征。未来企业的竞争将是数据的竞争,谁能挖掘潜在的客户掌握客户的需求谁将能取胜,因此企业营销活动的成败关键就在于是否能准确地判断顾客的价值,而大数据的出现使得营销管理活动能够实现精确的预测成为可能。大数据之“大”就是数据量大,能搜集全面和综合的数据,并再结合数据算法建模的使用,便能充分地挖掘数据间的相连性,从而来预测市场的发展趋势,帮助提升营销活动的'可预见性。
总之,大数据时代的到来给营销领域带来了巨大的商机。可正当人们还沉浸在大数据所带来的各种便利和价值的时候,有一个问题已慢慢引起了全世界的关注,即大数据营销活动中一些有悖于道德伦理问题的存在令人担忧。
3大数据时代面临的挑战。
3-1数据的质量问题和数据人才的缺乏。
大数据的“大”是指数据量大,但数据量大不一定代表信息量大或者数据的价值大,相反由于数据量太大容易造成很多繁杂无用的垃圾数据的泛滥。高质量的数据是大数据发挥效能的重要手段,因此如何应用相应的技术手段对大量的数据进行深加工成为企业发展的关键。同时由于大数据时代营销人员的职能已逐渐转化为数据相关的工作,而数据人才的缺乏也是当今营销领域的一大挑战,因此如何培养数据人才充分利用数据的挖掘采集和分析技术来获取高质量的数据信息是我们的当务之急。
3-2数据的复杂化难以管理。
当今世界对数据的争夺问题已日趋白热化,各大企业都为获取有效的数据信息来赢得竞争的优势。虽然数据就像黄金一样把它们放在一个数据库可以保证安全,但这却不是一个实际的处理方案,一方面没有那么大的内存去存储;另一方面由于数据的珍贵,每个企业都小心翼翼地将数据当作财产一样存储在不同的服务器上,彼此之间互不连通形成一个个“数据孤岛”。而大数据时代又需要广泛的研究数据间的相关性才能从中发现客观规律,需要个体和集体的配合才能实现数据的共享从而实现数据的价值最大化。
3-3公众和个人隐私问题日益凸显。
当今数据的收集和存储能力已远远超过了数据的利用率(jacobs,),而目前这两种能力还不能有效的结合,使得数据的利用率较低且数据的泛滥很可能会使得公众的隐私受到侵犯。在大数据的营销过程中很多用户相关的信息都是以数据的形式存储在电脑上,而互联网的广泛传播使得数据的隐私问题越来越令人担忧。例如,很多企业为了经济利益将用户的个人资料私自出售,甚至还有一些不法分子窃取用户的个人信息对用户进行诈骗等,这已给个人造成了严重的困扰。
3-4数据精准性与服务精准性不对称。
尽管大数据营销可以让企业了解客户的需求,但精准的数据不一定能全面把握客户的心理活动。比如说一个顾客一直徘徊在商场一楼的鞋子特价区,此时这个顾客的举动可能说明了这个顾客对鞋子是有需求的,但不能说明这个顾客一定是一个价格敏感者。尽管大数据的确能够发现、跟踪和分析消费者的每个显性变化,但却无法全面把握消费者的内心活动,因为顾客的购买心理本来就是一个“暗箱”,他的购买行为是由很多因素综合决定的,可能是心理,可能是价格,还有可能是环境因素,等等。因此尽管大数据能够提供精准的数字,但却很难提供精准的预测,这里面涉及了一个不可确定性因素,就是顾客的心理。
4大数据背景下营销领域伦理问题的解决途径。
大数据对于营销领域来说是一把双刃剑,既是机遇也是挑战。它既能给企业带来巨大的商业价值,有效地提升企业的竞争力,同时也可能因为安全隐患问题给社会带来极大的危害。因此,本文试着从国家、企业以及技术手段三个层面来探讨如何有效地规避大数据自身带来的伦理问题。
4-1国家应当制定相应的法律法规来约束不法行为。
由于我国相对于西方发达国家来说,大数据营销起步较晚,因此相关的法律法规还不是很健全,许多不法分子利用一些法律漏洞来窃取消费者的隐私、侵害消费者的利益。从宏观层面来说,国家是市场有序进行的保证,而法律是依靠国家的强制力来维护公共生活的秩序。因此国家应加强相关的法律法规的建设来严厉打击不法分子、保护消费者的隐私安全。
4-2通过行业自律来约束自身的伦理机制。
由于法律仅仅是外在的约束因素,而要从根本上解决问题还需要加强行业的内在自律性,加强企业的内在道德观念,自觉的遵守道德约束。而事实证明,企业通过建立消费者隐私的保护机制,依法保障消费者的合法权益,是解决这些伦理问题的源头。(3)利用技术手段解决自身的问题。大数据的安全隐患问题是由大数据发展过程中自发产生的,因此可以充分的利用技术的优势有效的规避这些问题。人的自律行为是需要相当大的决心的,因为往往拒绝不了利益的诱惑,而法律的制定往往是滞后于技术的进步,人们往往是等到出现了问题后才会想办法制定相关法律,事实上也正是因为技术的不完善才给了那些不法分子钻空子的机会,因此依靠技术自身的优势来解决大数据背景下营销伦理问题是最切实有效的。
5结论。
大数据与营销管理领域的结合也是时代发展的必然趋势,更是企业在激烈竞争下取胜的关键举措。与此同时,我们在享受大数据带来的巨大商业价值时,也应客观的认识到大数据时代的安全相比传统安全更加复杂,对此理应结合法律的强制措施和行业的自律以及技术的显著优势,来保障大数据背景下营销朝着正确的方向发展。
大数据论文篇十二
但没人做过。
每个人都以为其他人做过,
因为每个人都声称自己做过。
这个比喻为尚处在萌芽幼齿阶段的大数据蒙上了一层有趣且暧昧的意味。
在本次sdcc(中国软件开发者大会)上,一些真枪实弹地做过大数据的高中生行业精英,向小伙伴们普及了一些有趣的冷知识。
大数据的隐秘魅力就在于,他比你都了解你。你以为你每次按下手机按键的动作都是一样的吗?哈哈图样图森破。
来自今日头条的技术副总裁杨震原告诉童鞋们,他们正在测试的“黑科技”,恰恰能从你点击按键的时间和手指面积,推测出你当时的情绪。你的漫不经心、愤怒或者感动,都能够成为后台为你推送何种消息的依据。未来,如下场景可期:
那么这种“恰到好处“的情绪拿捏和大数据有什么关系呢?实际上对你情绪的推测是建立在对你多次正常点击的记录之上的。这种行为数据甚至在你还未意识到的时候,就“出卖”了你的情绪。
今日头条技术副总裁杨震原在分析一个按钮的平均触摸时间。
银行每天的交易账目流水的统计数据,并不是大数据,而每个用户在拿号之后等待了多久才排到,有多少用户骂娘,有多少用户过于焦急愤而离去,这些真正的行为才是大数据。
杨震原又举了今日头条在应用中的另一个例子。
实际上,你在一篇文章的什么位置停留多久,然后划动了多远,在新的位置停留了多久,是否看了评论,看了几条评论,都可以按顺序被记录下来。接下来就是通过算法评估读者的兴趣所在。
csdn创始人蒋涛也特别提到,美国电商平台wish正是用大数据的方法,根据每个人的数据不同,“看人下菜碟”地推荐你可能喜欢的货品,三年时间已经发展成北美最大的电商之一。
所以,一个悲伤的消息是:未来如果你要隐藏自己的身份,不仅仅要变装易容伪造指纹,甚至连点击手机,查看文章的习惯都要改变了。
如果要想知道有多大比例的人喜欢gv,那么只需要做好抽样调查就可以了,没有必要对所有人进行调查。但是如果你想要推销宅腐的周边智能硬件产品,则需要逐个排查每个人“独特”的兴趣爱好。
所有数据一个都不能少,这就是所谓的“全量加工”,这些数据的制造者正是各大厂商利润的源泉。
360商业产品首席架构师刘鹏是一名网红,他在很多场合都强调:全量加工才是大数据。他说,涉及到个性化推荐、计算广告、个人征信这些场景,大规模的计算就是无法避免的。
从技术角度来说,之所以大数据可以做到这么精准,也主要得益于技术的进步。感知设备被丰富地用在五花八门的硬件上,使得以前无法记录的数据,现在都可以被记录了。
大数据应该交给机器做决策,而不是交给人做决策。
这种洋溢着对人类深深不信任感的论断同样来自于刘鹏。在他眼中,大数据是为机器提供的食粮。而能够驾驭大数据的人类基本只有两种:数据科学家和统计工作者。
it企业中养一群科学家的可能性为零。而人类的判断往往基于宏观、战略,不可能有精力做到“因事而异”。相比之下机器的判断比人类更加细致。比如为每个用户比如画像、贴标签。所以,要想把大数据利用透彻,愚蠢的人类还是暂时靠边站吧。
“数据”这两个字,天然给人一种完美而且精准的感觉。在这方面,大数据要挑战你的底线。作为数字广告领域的大牛,刘鹏强调,大数据可以存在半一致性这样模棱两可的属性。换句话说,允许数据错误和丢失。
纳尼?错误的数据也是好数据吗?没错。由于数据量巨大,而且分析半天往往没什么有用的收获(价值密度低),分析者往往需要选取一些特征数据做加工,而对于这些特征数据,也许还要简化之后再加工。所以最终大数据要达到的结果是难得糊涂,却一针见血。
所以,如果有人向喜爱人民网的你推荐草榴的时候,先不要发火,你可能只是大数据的一个错误罢了。
如果你是一个鲁莽的人,最想知道这个情况的无疑是你的汽车保险公司,想必你的保费会居高不下;如果你是一个谨小慎微的人,最想知道的也是保险公司,因为它可以用打折的保费吸引你投保。
在你身上,甚至存在一个精确的“岀险率”数字。这个听上去很惊悚的数字恰恰是保险公司利润的来源。因为不掌握这样大数据的个人,是无法计算自己的岀险率的。保险公司恰恰利用这种信息不对称,给一个岀险率是万分之一的人开出了千分之一的保价,相当于赚了十倍的利润。
数据比它看上去的样子更险恶,这是大数据业内人士的普遍共识。即使隐去了你的姓名电话等等敏感信息,只保留你和其他人联系的记录,熟悉你的人完全可以猜到你的身份。目前大数据的安全性,在他人的恶意之下,显得力不从心。
隐私问题,制度只能解决20分,剩下的80分要靠技术进步来解决。
刘鹏如是说。期待市场倒退到前大数据时代,似乎没有希望了。
如何精确统计出有多少人喜爱苍井空,有多少人喜欢武藤兰,但是又不泄露到底是谁喜欢苍老师,谁喜欢武老师,这是目前大数据的最前沿研究。
有关大数据的政策再严格,没有一套可靠的保密技术,数据的安全都是无从谈起的。隐私算法、数据脱敏、数据隔离。都是研究的方向。在此之前,各位的大数据还都在相对危险的状态。这也是为什么目前法律没有禁止数据买卖,而各大巨头却不敢将数据出售的原因。当然,大数据库市场价目前比较低也是一个重要的原因。
大数据论文篇十三
《普通高中英语课程标准(实验)》指出,高中英语课程的总目标是使学生在义务教育阶段英语学习的基础上,进一步明确英语学习的目的,发展自主学习和合作学习的能力;形成有效的英语学习策略;培养学生的综合语言运用能力。对于处在海峡西岸的英语教师更应该深刻领悟体会实践《课程标准》,一切为了学生的发展,真正提高学生的综合语言运用能力,培养实用型海西建设者。以下是笔者平时教学过程中使用新教材后的点滴体会。
一、调查研究。
学生从初中升入高中,进入了崭新的学习阶段,他们对英语充满了新鲜感,对英语老师也充满了好奇心。所以,我们应该抓住这一契机,充分研究学情。首先,笔者对两个班级103位学生进行了问卷调查。调查显示72.8%的学生对高中英语教学内容充满了兴趣;67.3%的.学生对高中英语学习方法不清楚;90.1%的学生对英语老师充满了好奇心。89.6%的学生学英语的目的不明确。调查结果表明,端正学生的学习态度,指导学生的学习方法很有必要,同时,教师与学生的情感交流也与学生学英语的热情程度息息相关。
二、上好高中英语第一课。
大数据论文篇十四
大数据或海量数据是指所涉及的海量数据,无法通过当前主流软件工具检索、管理、处理和整理成更活跃的信息,帮助企业在合理的时间内做出商业决策。以下是为大家整理的关于,欢迎品鉴!
摘要:近年来由于计算器技术和信息产业的快速发展,促使了相关的数据量也产生了极大的增长。然而面对这些庞大且杂乱的多维数据集,我们无法快速且有效的找到我们所需要的信息。因此我们必须要使用数据挖掘技术以从数据集中去提取我们所需要的资料,并且进行分析与处理。在本中,将介绍大数据挖掘分析软件rapidminer,并且与其他旧有的数据挖掘分析软件来做一个功能性的比较。
关键词:信息;rapi;dminer;大数据;挖掘;应用。
0引言。
透过线性回归、类神经网络、判定树和支持向量机,说明应用rapidminer进行大数据挖掘分析的运作流程,并介绍rapidminer的操作接口跟分析方法。本篇论文采用rapidminer的原因,主要是因为它拥有非常便捷的图形化接口,而且使用者在操作上不需要再额外去学习其它的程序语法,只需要透过选取组件以及设定参数的方式就可以完成。而且在分析结果的显示上也非常的多样化,可以让使用者自行选择要观看哪一种图形显示分析的结果。
1数据探勘流程探讨。
1.1资料清除。
是过滤掉数据当中的那些噪声和无法判别的资料跟不一致的数据,保留可用的且有效的数据。
1.2数据的整合。
不一定都来自相同的一个数据库,所以必须做数据的整合,将来自不同数据库的数据整合处理完后处理在我们的数据仓储。
1.3数据选择。
在数据探勘中是一个相当重要的环节,选到有用的数据可以提高分析预测的准确度,但是选到无用的数据却可能会拉低分析预测的准确度,所以在做数据的选择时必须先对这些数据有一定的认识,才能做出正确的选择。
1.4数据转换。
由于人类和计算机的沟通的语言不同,所以当我们要让计算机来处理事情时,必须先将手头的数据转换成计算机可以识别的资料格式,或合并成数据探勘所需的数据形式来让计算机判读,像是执行汇总与聚合。
1.5数据探勘引擎。
数据探勘系统在数据探勘中算是非常重要的一个环节,因为它包含了探勘工作所需要的功能,像是特征化、相关系数与相互关系分析、判别、预测、群组分析、分群、离异值分析与演化分析等等。
1.6样式评估。
样式评估根据某些有趣度量,来辨认代表知识的有趣样式,也可以说是评估数据跟数据之间的关联性是否是有用的、重要的、是否正确。
1.7用户接口。
这个模块让用户可以与数据探勘系统进行沟通,他允许使用者透过设定数据探勘查询或工作与系统进行互动、提供讯息来帮助搜寻,对暂时数据探勘结果进行探索性数据探勘。
2数据探勘工具。
2.1rapidminer。
rapidminer开源式框架,支持各种类型的数据挖掘像是文本、网络、图像或是链接开放式的数据挖掘[1]。透过它复杂的图形用户接口,数据挖掘的過程可以更加的简洁且快速,直观地实现和执行,并且不需要额外的程序语言编辑技术。
2.2weka。
weka用于数据挖掘任务的算法的集合,算法可以直接应用在数据集上,也可以从自己设计的jave代码调用[2]。weka它包含了数据的预处理、分类、回归、聚类、关联规则和可视化的工具也就是图形接口,weka可以算是最古老,且最成功的开元数据挖掘库和软件,随后被集成为rapidminer和r的扩充软件,也因为rapidminer和r的出现,它们提供了使用者更加舒适且便利的使用环境,使得weka的用户开始大幅的下降。
2.3knime。
knime图形接口的自由开源信息汇整系统,它具有杰出的数据统合能力,并且可以运用在数据查询(datamining)、数据处理、数据分析、流程绘制以及流程规划与管理(workflow)等等各方面。
3数据探勘工具比较。
rapidminer:独立平台;使用者:学习者、高级用户、专业用户、企业用户;用户接口:主要是透过图形接口来做流程的设计,也可以同时开启多个窗口来做操作;功能:大于500种,可透过扩展来新增额外的功能,且可扩展weka和r作为它的扩充元件,并进行协同工作;操作接口:简洁易懂的操作接口,不需要额外的学习程序语言的编辑能力,使用者只需要透过拉取所需的原件并且将其连接起来即可使用,使用者可自由配置操作接口;支持的输入格式:csv、excel、xml、access、aml、arff、xrff、spss、sasdatabases、jdbc....;支持输出模型格式:模型可以导出为不同的档案格式,像是bmp、jpg、pdf、postscript、raw、xml等各种文件格式。
weka:独立开发平台;使用者:学习者、一般用户;用户接口:图形接口;功能:约500种;操作接口:有四种模式可供使用者选择使用,每种模式都各有其优缺点,使用者需挑选最合适的使用模式使用;支持的输入格式:arff、csv、c4.5、bsi、localfile、urls、jdbc..;支持输出模型格式:不支援。
knime:java平台;使用者:学习者、一般用户;用户接口:可在同一时间开启四个不同的视窗,用来做不同的功能;功能:约100种;操作接口:简洁易懂的使用接口,可以让使用者很容易得学会,也可以自由配置操作接口;支持的输入格式:arff,csv,pmml,localfiles,urls、jdbc..;支持输出模型格式:可以将档案汇出成压缩文件(zip),只有从knime导出的模型才可以再次汇入到knime中。
4结语。
现今是个信息科技的时代,几乎所有事情都是可以用数字和数据来解释的,每件事情的发生都会有它的前因后果,所以我们可以从这些数据当中找出这些因果关系,并且加以利用就可以预测出我们所要的结果,单单只有一大堆的数据是没用的,需要使用rapidminer这个数据挖掘分析软件,来从这些杂乱的数据库中萃取出我们所需要的信息,也就是从数据进行知识发掘,并且找出他们的相对应关系为我们使用。
参考文献。
[1]胡可云.数据挖掘理论与应用[m].清华大学出版社,2008.
摘要:我国大数据产业目前已进入快速推进阶段。对于企业来说,大数据是一项极其重要的战略资产。文章从大数据的起源及基本特征出发,分析大数据给企业财务信息管理带来的影响,并提出大数据时代加强企业财务信息管理的有效策略。
关键词:大数据;财务信息管理。
伴随互联网+、云计算、物联网、社交网络平台、传感技术等新兴技术与服务的出现,人类社会的数据种类和规模正以前所未有的速度呈爆发式增长和累积。据市场调研机构idc预计,未来全球数据总量年增长率将维持在50%左右,到2020年,全球数据总量将达到40zb,其中我国数据量将达到8.6zb,是2013年的10倍。海量数据的产生已经完全不受时间、地点的限制,其规模效应给数据存储、管理以及数据分析带来了极大的挑战。
大数据产生经历了被动-主动-自动三个发展阶段。第一阶段是数据库技术的出现。数据库技术被广泛应用于运营系统,数据伴随着系统的运转产生并被记录下来。这种数据的产生是被动的;第二阶段是互联网技术的诞生。新型社交平台的开发与各类便携式移动设备的使用,给人们更多的表达个人想法的途径与机会,这个阶段数据的产生方式是主动的;第三阶段是感知式系统的广泛应用。装配微型传感器的设备被广泛布置于社会的各个角落,这些设备源源不断记录下大量的新数据。这种数据的产生是自动的。这些被动-主动-自动记录与存储的数据共同构成了大数据的数据源。
关于大数据的特征,在国外大数据研究先河之作的《大数据时代:生活、工作与思维的大变革》一书中,作者指出,大数据是以4v为基本特征的数据集,即规模性(volume)、多样性(variety)、高速性(velocity)、价值性(value)。而ibm认为,大数据还必然具有真实性(veracity)。维基百科则通过简单明了的描述,对大数据进行定义:大数据是指利用常用软件工具捕获、管理和处理数据所耗时间超过可容忍时间的数据集。2017年国际电信联盟首次以大数据作为世界电信日主题,提出了“发展大数据,扩大影响力”。
企业财务信息管理起源于16世纪初的西方资本主义萌芽时期,早期并没有形成专业、独立的财务信息管理系统。企业的业务单一,信息资料也比较笼统、简单。随着20世纪初期工业革命的成功,公司制企业迅速发展并成为主要的企业组织形式,财务管理和财务信息的重要性日益突出,财务管理理论、制度、法规逐步完善。政策法规对财务信息有了规范性的要求,甚至对财务信息的披露、存档时间、保存形式有了详细的规定。到20世纪90年代,微型计算机应用逐渐普及,财务信息由传统手工编制过渡到手工+计算机辅助编制。随着计算机应用软件技术的进步,专业性的财务软件逐步代替了手工记账方式,进入财务电算化时代。当前,随着互联网和云存储、指纹加密、人脸识别等信息技术的兴起,云算盘、精斗云、云账房等新型财信息管理系统已开始得到广泛应用。
在企业财务信息管理中,数据来源的真实、有效、可验证性,数据采集的及时性、数据与本企业经营决策的相关性,数据的可计量性等是企业做出正确经营决策和投资参照的重要基础,为明确企业财务现状和运营前景提供依据;先进设备与技术的应用,是企业财务信息管理的有力支撑;而信息管理制度及人才队伍的建设,更是企业财务信息管理的关键所在。在大数据时代,财务数据,设备与技术,制度与人才多项因素紧密相结合,对于促进企业快速、良性发展有着重要的意义。
1、财务信息来源增加。
在计划经济时代,财务信息最主要的来源是各项经营的收支,并以货币计量方式表达。在大数据时代,除了传统的纸质或电子形式存在的文字、表格,电子设备、传感器、刷卡机、收款机、网站浏览点击行为、电子地图、社交网络媒体互动等设施与平台记录下来的数据与信息都可成为影响企业经营决策的信息源。
2、财务信息类型增多。
传统财务信息管理主要是以货币形式出现的跟收入与支出相关的数据,信息类型单一。而大数据的基本特征之一是信息类型繁多,涵盖了文本、音频、图片、视频、模拟信号等。信息整合难度加大。
3、财务管理职能前置。
传统的财务管理是事后管理,且局限于对现有数据进行简单的统计分析、查询。大数据的应用能够对企业经营情况进行实时分析和及时预测,提供更具时效性、指标多样化、更贴近经营管理需求的财务管理动态分析报告。财务管理的职能前置到市场预测、产品设计、供应链建设等价值规划阶段,财务体系由核算型向价值型转变。
1、提高财务信息质量。
大数据时代,海量数据的价值性呈现低密度,高附加值特点。单个数据看起来价值很低,但同类型的数据规模增加到一定数量,就会有很高的商业价值,对企业经营决策的指导力越强。当前,财务信息来源可分为二个方面:一是企业经营过程中产生的信息,这类信息属于内部数据。除日常收支外,还应括用户注册信息、浏览记录、定位记录等;也包括构成产品价值链的各个环节产生的数据,比如研发记录、生产作业记录、采购过程动态监控记录、物资出入库数据、销售业务数据等;还包括人事、战略、公共策略、专业知识库、企业文化等非结构化信息数据。二是本行业及跨行业相关数据信息,这类信息属于外部数据。外部数据应注重从目标人群、行业、大环境等方面收集。伴随着各种随身设备、物联网、移动互联网等技术的发展,人成为了移动互联网的核心网络节点,通过用户点击行为、电子地图、社交网络行为等数据,可以对目标人群进行有效分析。行业数据既包括本行业的产品种类、销售状况、研发趋势、竞争对手情况等,还包括跨行业的关联性信息,以全面性提高数据的准确度和价值。大环境指所处社会的经济、政治、法律等环境。国务院《促进大数据发展行动纲要》提出要稳步推动公共数据资源开放,这将成为重要的外部数据来源。
2、强化财务信息整合。
大数据搜集,重点不在于占有,而在于利用。而要利用好数量庞大,来源广泛,格式多样的财务信息数据,就必须对其进行实时整合,存储与管理。其方法主要是分类,聚类,存储。分类是找出大数据中的一类数据对象的共同点,通过分类模型将其划分为不同的类。同一类数据由于具有不同特征,可以被分到多个类别中去。聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大。存储则是以根据财务管理需要将大数据划分成分布式存储模块,如生产计划模块、销售管理模块、会计核算模块、资产管理模块、业绩评价模块和企业间关系模块等,以便数据管理和使用。
参考文献。
[2]东梅.论财会信息的现代化管理[j].北方经贸,2013(2)。
[3]何冰.大数据会计与财务信息相关性研究[j].会计之友,2017(7)。
[4]程平.云會计环境下人、数据和系统对会计信息质量的影响[j].重庆理工大学学报(社会科学版),2016(7)。
精准扶贫是政府提出的扶贫政策,其目的在于帮助贫困地区脱贫。精准扶贫中的扶贫资金,不仅涉及到政府管理部门,还涉及到社会各界及贫困地区经济发展,所以全面有效实施精准扶贫显得非常重。资料显示,大数据的应用能够使精准扶贫资金效益得到最大发挥,能够完善精准扶贫资金管理,使精准扶贫实现“真扶贫”。对此,笔者根据自己对“精准扶贫”及“大数据”的了解,分析了大数据助力精准扶贫的原理、问题及措施等。
“大数据”是社会经济及科学技术发展的产物,已经被应用于人们的生产及生活,对各大领域发展都起到了积极的推动作用。大数据是基于信息技术基础上对数据进行分析及整合的科学技术,其核心在于利用数据对信息进行分类、管理、整合、分析及处理,具有数据体量大、种类多、数据处理速度快及价值密度低等特点。
大数据助力精准扶贫时需要应用到信息技术,以获取准确的扶贫信息及数据;利用大数据能够对复杂的扶贫数据及信息进行分类、调整及分析,以了解多种影响因素,为精准扶贫的实施提供依据;当大数据被应用到精准扶贫时,需要相关部门对应用时产生的各种信息进行收录,并利用互联网进行整合、分析、挑选、筛查及汇总,以便于扶贫工作者利用这些数据对扶贫工作进行现实状况分析,最后找到有效的扶贫举措,提高扶贫决策的科学性及合理性,使精准扶贫得到实现。
第一,在大数据支持下,遥感技术、媒体信息技术、宽带网络技术等都能够应用到精准扶贫工作中,如可以用这些技术调查和分析扶贫产业、贫困人口和周边环境等数据。第二,利用大数据能够实现对农村基础设施与地理环境、交通等信息整合,从而全面了解贫困对象基本信息及生活需求等。第三,在大数据支持下能够了解贫困地区的人口及经济水平等信息,为精准扶贫工作提供重要依据。
第一,对贫困群体的精准识别基础工作不扎实,导致一些非贫困群体享受到帮扶待遇。第二,精准扶贫管理部门及相关工作者的职责界定不清晰,且资金审批、拨付等工作手续繁多,降低了扶贫工作效率。第三,没有按照国家相关规定及实际需要管理扶贫资金,导致部分扶贫资金被骗取和套取。
(一)对扶贫对象进行精准定位。第一,利用大数据下的媒体信息技术、通信技术及计算机技术等对贫困地区的人口进行调查,并确定符合扶贫要求的人群。第二,利用计算机信息技术对贫困对象进行建档立卡,并构建贫困人口的基本信息库,信息录入包括扶贫对象的年龄、工作、性别、年收入及家庭人口数量等。第三,信息录入后还需要进行基层走访、信息核实汇总,以保证扶贫对象信息的真实性,减少非贫困群体骗取和套取扶贫资金。
(二)利用大数据对扶贫工作进行动态跟踪管理。第一,利用大数据下的信息技术、遥感技术及媒体信息技术等,构建动态识别系统,以实现对扶贫对象的高效管理,同时还能够收集和分析相关数据,从而优化贫困户识别系统,提高精准扶贫工作质量及效率。第二,利用计算机信息技术及通信技术等,构建扶贫对象资源数据库,以提高识别系统准确性及扶贫对象信息数据完整性。第三,进行动态管理时,不仅需要对扶贫对象的基本信息进行动态监察,还需要管理扶贫资金流向和追踪扶贫资金使用方向等,以保证扶贫资金切实应用到扶贫对象身上。第四,通过实时更新扶贫对象信息系统,了解扶贫对象是否已经脱贫、是否进入帮扶范围等动态,以保证精准扶贫得到全面贯彻和实施。
(三)利用“大数据”预测贫困需求。第一,利用大数据下的数学方法来定位扶贫方向,并分析扶贫对象实际需求。第二,利用大数据对扶贫对象的基本信息进行分析,并利用数学法计算贫困事情发生率,以了解扶贫对象的贫困需求,从而制定具有针对性的扶贫对策。第三,利用大数据中的遥感技术、媒体信息技术等构建扶贫资金管理系统及监督系统,以实时了解扶贫资金的取向及利用率,以保证扶贫资金能够真的解决扶贫对象的实际问题,减少资金浪费,最终提高精准扶贫工作质量及效率。另外,在精准扶贫中还需要注意以下两点:第一,实行脱贫工作责任制,保证扶贫工作执行力。第二,积极转变贫困人口的思想,引导贫困人口通过自身努力实现小康生活。
总之,精准扶贫是针对我国贫困地区提出的扶贫政策,已经在很多贫困地区得到贯彻,而大数据则能够提高精准扶贫工作质量及效率,使贫困地区脱贫速度加快,加快我国小康社会发展。基于此,上文先简单概述了大数据,然后分析了大数据助力精准扶贫的原理以及对精准扶贫的技术支持,并探讨了精准扶贫中存在的问题,最后分析了大数据有效助力精准扶贫的措施。
【参考文献】。
[1]解静静.大数据助力精准扶贫问题研究[j].江西农业,2019(14):131+135.
[3]李秀玲.大数据助力精准扶贫[j].中国国际财经(中英文),2018(07):197.
大数据论文篇十五
数据分析出现在新的计算技术实现以后,分析1.0时代又称为商业智能时代。它通过客观分析和深入理解商业现象,取缔在决策中仅凭直觉和过时的市场调研报告,帮助管理者理性化和最大化依据事实作出决策。首次在计算机的帮助下将生产、客户交互、市场等数据录入数据库并且整合分析。但是由于发展的局限性对数据的使用更多的是准备数据,很少时间用在分析数据上。
(二)数据2.0时代。
2.0时代开始于20xx年,与分析1.0要求的公司能力不同,新时达要求数量分析师具备超强的分析数据能力,数据也不是只来源于公司内部,更多的来自公司外部、互联网、传感器和各种公开发布的数据。比如领英公司,充分运用数据分析抢占先机,开发出令人印象深刻的数据服务。
(三)数据3.0时代。
又称为富化数据的产品时代。分析3.0时代来临的标准是各行业大公司纷纷介入。公司可以很好的分析数据,指导合适的商业决策。但是必须承认,随着数据的越来越大,更新速度越来越快,在带来发展机遇的同时,也带来诸多挑战。如何商业化地利用这次变革是亟待面对的课题。
随着顾客主导逻辑时代的到来以及互联网电商等多渠道购物方式的出现,顾客角色和需求发生了转变,世界正在被感知化、互联化和智能化。大数据时代的到来,个人的行为不仅能够被量化搜集、预测,而且顾客的个人观点很可能改变商业世界和社会的运行。由此,一个个性化顾客主导商业需求的时代已然到来,大数据冲击下,市场营销引领的企业变革初见端倪。
(一)大数据时代消费者成为市场营销的主宰者。
传统的市场营销过程是通过市场调研,采集目前市场的信息帮助企业研发、生产、营销和推广。但是在大数据以及社会化媒体盛行的今天,这种营销模式便黯然失色。今天的消费者已然成为了市场营销的主宰者,他们会主动搜寻商品信息,货比三家,严格筛选。他们由之前的注重使用价值到更加注重消费整个过程中的体验价值和情境价值。甚至企业品牌形象的塑造也不再是企业单一宣传,虚拟社区以及购物网站等的口碑开始影响消费者的购买行为。更有甚者,消费者通过在社交媒体等渠道表达个人的需求已经成为影响企业产品设计、研发、生产和销售的重要因素。
(二)大数据时代企业精准营销成为可能。
在大数据时代下,技术的发展大大超过了企业的想象。搜集非结构化的信息已经成为一种可能,大数据不单单仅能了解细分市场的可能,更通过真正个性化洞察精确到每个顾客。通过数据的挖掘和深入分析,企业可以掌握有价值的信息帮助企业发现顾客思维模式、消费行为模式。尤其在今天顾客为了彰显个性,有着独特的消费倾向。相对于忠诚于某个品牌,顾客更忠诚与给自己的定位。如果企业的品牌不能最大化地实现客户价值,那么即使是再惠顾也难以保证顾客的持续性。并且,企业不能奢望对顾客进行归类,因为每个顾客的需求都有差别。正是如此,大数据分析才能更好地把握顾客的消费行为和偏好,为企业精准营销出谋划策。
(三)大数据时代企业营销理念――“充分以顾客为中心创造价值”
传统的营销和战略的观点认为,大规模生产意味着标准化生产方式,无个性化可言。定制化生产意味着个性化生产,但是只是小规模定制。说到底,大规模生产与定制化无法结合。但是在今天,大数据分析的营销和销售解决的是大规模生产和顾客个性化需求之间的矛盾。使大企业拥有传统小便利店的一对一顾客关系管理,以即时工具和个性化推荐使得大企业实现与顾客的实时沟通等。
京东是最大的自营式电商企业。其中的京东商城,涵盖服装、化妆品、日用品、生鲜、电脑数码等多个品类。在整个手机零售商行业里,京东无论是在销售额还是销售量都占到市场份额一半的'规模。之所以占据这样的优势地位,得益于大数据的应用,即京东的jdphone的计划。
jdphone计划是依据京东的大数据和综合服务的能力,以用户为中心整合产业链的优质资源并联合厂商打造用户期待的产品和服务体验。京东在销售的过程中,通过对大数据的分析,内部研究出一种称为产品画像的模型。这个模型通过综合在京东网站购物消费者的信息,例如:年龄、性别、喜好等类别的信息,然后进行深入分析。根据分析结果结合不同的消费者便有诸如线上的程序化购买、精准的点击等营销手段,有效的帮助京东实现精准的营销推送。不仅如此,通过对于后续用户购物完成的售后数据分析,精确的分析商品的不足之处或者消费者的直接需求。数据3.0时代的一个特征便是企业不在单纯的在企业内部分析数据,而是共享实现价值共创。所以,京东把这些数据用于与上游供应商进行定期的交流,间接促进生产厂商与消费者沟通,了解市场的需求,指导下一次产品的市场定位。总的来说,这个计划是通过京东销售和售后环节的大数据分析,一方面指导自身精准营销,另一方面,影响供应商产品定位和企业规划,最终为消费者提供满足他们需求的个性化产品。
(一)数据分析要树立以人为本的思维。
“以人为本”体现在两个方面,一方面是数据分析以客户为本,切实分析客户的需求,用数据分析指导下一次的产品设计、生产和市场营销。另一方面,以人为本体现在对用户数据的保密性和合理化应用。切实维护好大数据和互联网背景下隐私保护的问题,使得信息技术良性发展。
(二)正确处理海量数据与核心数据的矛盾。
大数据具有数据量大、类型繁多、价值密度低和速度快时效高的特点。所以在众多海量的数据中,只有反映消费者行为和市场需求的信息才是企业所需要的。不必要的数据分析只会影响企业做出正确的决策。鉴于此,首先企业需要明确核心数据的标准;其次企业要及时进行核心数据的归档;最后要有专业的数据分析专业队数据进行分析,得出科学合理的结果以指导实践。
(三)整合价值链以共享数据的方式实现价值创造。
单纯的企业内部数据已经无法满足今天市场上顾客多样性的需求,大数据的共享已经迫在眉睫。首先,可以通过扩展常规上下游渠道的数据。例如京东与上游供应商的合作。其次,与社会化媒体数据建立联系。社会化媒体数据是外围数据的一个重要来源。但是如果只是搜集并没有把数据与企业本身营销策略或者数据发布者建立联系,那么数据就没有发挥其应有的价值。最后,虚拟人脉交换获取数据。比如建立企业自媒体收获粉丝获取数据等。
[1]岳占仁.大数据颠覆传统营销[j].it经理世界,20xx,17.
[2]单华.大数据营销带给我国网络自制剧的思考――以《纸牌屋》为例[j].青年记者,20xx,26.
[3]魏伶如.大稻萦销的发展现状及其前景展望.辽宁大学新华国际商学院.
【本文地址:http://www.xuefen.com.cn/zuowen/15349302.html】