作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么教案应该怎么制定才合适呢?这里我给大家分享一些最新的教案范文,方便大家学习。
八年级数学教案人教版篇一
一、教学目标:
1.理解并掌握矩形的判定方法.
二、重点、难点
1.重点:矩形的判定.
2.难点:矩形的判定及性质的综合应用.
三、例题的意图分析
本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.
四、课堂引入
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
通过讨论得到矩形的判定方法.
矩形判定方法1:对角钱相等的平行四边形是矩形.
矩形判定方法2:有三个角是直角的四边形是矩形.
(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)
八年级数学教案人教版篇二
1.知识与技能
会应用平方差公式进行因式分解,发展学生推理能力.
2.过程与方法
经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.
3.情感、态度与价值观
培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.
重、难点与关键
1.重点:利用平方差公式分解因式.
2.难点:领会因式分解的解题步骤和分解因式的彻底性.
3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.
教学方法
采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.
教学过程
一、观察探讨,体验新知
【问题牵引】
请同学们计算下列各式.
(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
【学生活动】动笔计算出上面的两道题,并踊跃上台板演.
(1)(a+5)(a-5)=a2-52=a2-25;
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.
1.分解因式:a2-25;2.分解因式16m2-9n.
【学生活动】从逆向思维入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).
二、范例学习,应用所学
【例1】把下列各式分解因式:(投影显示或板书)
(1)x2-9y2;(2)16x4-y4;
(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;
(5)m2(16x-y)+n2(y-16x).
【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.
【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.
【学生活动】分四人小组,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);
(5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
新人教版数学八年级上册教案
八年级数学教案人教版篇三
一、教学目标
1.理解分式的基本性质.
2.会用分式的基本性质将分式变形.
二、重点、难点
1.重点:理解分式的基本性质.
2.难点:灵活应用分式的基本性质将分式变形.
3.认知难点与突破方法
教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.
三、例、习题的意图分析
1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.
2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.
3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.
四、课堂引入
1.请同学们考虑:与相等吗?与相等吗?为什么?
2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?
3.提问分数的基本性质,让学生类比猜想出分式的基本性质.
五、例题讲解
p7例2.填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.
p11例3.约分:
[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.
p11例4.通分:
[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.
八年级数学教案人教版篇四
一、教学目标:熟练地进行分式乘除法的混合运算。
二、重点、难点
1、重点:熟练地进行分式乘除法的混合运算。
2、难点:熟练地进行分式乘除法的混合运算。
3、认知难点与突破方法:
紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的。课堂练习以学生自己讨论为主,教师可组织学生对所做的题目作自我评价,关键是点拨运算符号问题、变号法则。
三、例、习题的意图分析
1、 p17页例4是分式乘除法的混合运算。 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式。
教材p17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点。
2, p17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题。
四、课堂引入
计算
(1) (2)
五、例题讲解
(p17)例4.计算
[分析] 是分式乘除法的混合运算。 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的。
(补充)例。计算
(1)
= (先把除法统一成乘法运算)
= (判断运算的符号)
= (约分到最简分式)
(2)
= (先把除法统一成乘法运算)
= (分子、分母中的多项式分解因式)
=
=
六、随堂练习
计算
(1) (2)
(3) (4)
七、课后练习
计算
(1) (2)
(3) (4)
八、答案:
六。(1) (2) (3) (4)-y
七。 (1) (2) (3) (4)
八年级数学教案人教版篇五
1.重点:勾股定理逆定理的应用.
2.难点:勾股定理逆定理的证明.
3.疑点及分析和解决方法:勾股定理逆定理的证明方法,又是学生前所未见的,是运用代数计算方法证明几何问题,是解析几何中研究问题的方法,以后会逐步见到,这一点要让学生有所认识.
八年级数学教案人教版篇六
1.积累“磬、攒、鳌头、琉璃、藻井、蟠龙、中轴线、金銮殿”等词语,掌握它们的读音和词义。
2.概述祖国传统的建筑艺术及故宫建筑艺术的独特风格和伟大成就。
3.简述方位词在按照空间顺序说明事物时的重要作用。
过程与方法目标
1.能够整体把握文意,理清文章的说明顺序,学会按照空间顺序说明复杂事物的写作思路。
2.灵活运用本文重点突出,有详有略地说明事物的写法,学以致用,初步学会写说明文。
情感目标
通过领略故宫博物院的宏伟艺术魅力,增强学生的民族自豪感,激发他们进一步发扬民族的创造精神,为把我们的祖国建设得更加美好而努力学习。
教学重点
1.理清本文的说明顺序,探究作者的说明技巧。
2.以太和殿为例,体会本文重点突出、详略得当的写作特色。
教学难点揣摩语言,理解太和殿里作者描绘多姿多彩的龙的用意。
教法选择讨论法和点拨法相结合延伸拓展法图示法
课前准备故宫图片
教学过程设计
教师组织与学生学习任务设计相关预设设计意图反思与改进
教学过程
一、导入:显示“故宫”全景图像
故宫集中体现了中国传统的建筑艺术和独特的民族风格,是中国数千年宫殿建筑艺术的总结性杰作,让我们随着作者去参观故宫,去感受故宫的宏大壮丽和精美绝伦吧!
二、检查预习
1.学生展示课前收集的有关故宫的图片和资料,由各位同学朗读或用自己的话介绍。学生提供的资料可能包括故宫的修建经过、规模、作用、地位和与故宫有关的重大史实,介绍这些资料,有助于学生熟悉说明对象,为理解课文作准备。
2.请游览过故宫的同学谈谈见闻和感受,也可展示拍摄的照片,激发学生的自豪感和求知欲。
3(1)辨明字音。
磬()攒()鳌()头琉()璃藻()井蟠()龙金銮()殿
(2)辨析字形卸--御拢--珑湛--斟缀--辍
谐--楷赐--踢琐--锁蟠--藩
(2)卸(推卸)--御(抵御)拢(合拢)--珑(玲珑)湛(湛蓝)--斟(斟酌)缀(点缀)--辍(辍学)
谐(和谐)--楷(楷体)赐(赐予)--踢(踢球)琐(琐碎)--锁(枷锁)蟠(蟠龙)--藩(藩篱)
3)玲珑:精巧细致。
湛蓝:深蓝。布局:全面安排。肃穆:严肃而恭敬。幽雅:幽静而雅致。悠扬:形容声音时高时低,和谐动听。井然有序:形容整齐的样子。
三、朗读课文,整体感知文意
1.教师朗读课文,学生听读,初步感知文意。
2.学生大声读课文两遍,给每个自然段加上序号,注意方位词语的运用。
3.教师要求学生画出参观故宫的路线图,同桌之间讨论、交流。
4.选三位同学口述参观故宫的路线,其余同学补充。
四、理清文章的说明顺序
1.明确空间顺序。
(1)师生一同回顾关于说明文的说明顺序的知识。
常见的说明顺序有时间顺序、空间顺序、逻辑顺序。
说明的时间顺序和记叙的时间顺序相似。说明事物的发展变化宜采用时间顺序。
空间顺序要特别注意弄清空间的位置,注意事物的表里、大小、上下、前后、左右、东南西北等的位置和方向。写建筑物的结构,离开空间顺序难以让读者看明白。
逻辑顺序,常以推理过程来表现。说明事理用逻辑顺序便于体现事理的内部联系
(2)提问:本文采用了哪一种说明顺序?
明确:本文是按照空间顺序说明介绍故宫的,大体上按照游览参观路线沿中轴线由南向北逐次介绍的。
教师总结:本文在安排说明顺序时着眼于纵贯紫禁城的中轴线,由南到北,逐次介绍建筑物。作者沿着参观路线,以天安门为起点,穿端门,进午门,过汉白玉石桥,来到前三殿。依次介绍了太和殿、中和殿、保和殿,并略提东西两侧的文华殿、武英殿。三大殿和文华殿、武英殿合称为“前朝”。然后继续向北,简单介绍了位于中轴线上的“内廷”建筑:乾清宫、交泰殿、坤宁宫以及御花园。最后出顺贞门到神武门而离开故宫,这样写井然有序,条理分明。
2.理清文章的结构层次,理解课文总说、分说相结合的特点。
五、重点分析课文5~8段,体会课文重点突出,详略得当的写作特色
1.学生齐读5~8段。
2.学生精读5~8段,思考:
(1)作者介绍了太和殿哪些方面的情况?采用了什么样的说明顺序?
(2)作者为什么把太和殿作为解说的重点?
(3)揣摩文中写“龙”的句子,探究作者这样写的原因。
同桌之间交流,选六位同学回答。
明确:(1)对太和殿,先写使三大殿成为统一整体的台基--台基修建得很高(三层台基高七米),并且设施奇巧(排水管道是一千多个圆雕龙头),这就暗示和渲染了三大殿地位之尊崇,再写太和殿外观气势雄伟(是故宫最大的殿堂),色彩壮丽(金黄色的琉璃瓦重檐屋顶,装饰着青蓝点金和贴金彩画的斗拱、额枋、梁柱,红色大圆柱,金琐窗,朱漆门),内部装饰的庄严富丽(金銮宝座、雕龙屏、金柱、藻井、额枋等上面都装饰着多姿多态的龙);最后从它的位置和功用上(皇帝举行重大典礼的地方)说明它在设计方面的象征意义--过去封建皇帝凭借雄伟的建筑显示威严。使用的说明顺序是由外到内、总说和分说相结合。
(2)因为太和殿是“前朝”以至整个故宫的重点建筑物,是封建皇帝行使统治权力和举行重大典礼的场所,它的地位非常重要;另外它在整个建筑群中最具代表性。所以文章把太和殿作为介绍的重点。
(3)文中写龙的句子有:“仰望殿顶,中央藻井有一条巨大的雕金蟠龙。从龙口里垂下一颗银白色大圆珠,周围环绕着六颗小珠,龙头、宝珠正对着下面的宝座。梁枋间彩画绚丽,有双龙戏珠、单龙翔舞,有行龙、升龙、降龙,多态多姿,龙身周围还衬托着流云火焰。”
写龙,大概是基于这样的考虑:一是说明对象的特征决定的,故宫曾是封建统治的中心,它的建筑是为封建统治者服务的;二是龙有象征意义,历朝历代的皇帝把自己神化为受命于天的“真龙天子”,把龙作为自己的化身,龙是皇权的象征。
教师总结:说明文在以空间顺序说明事物时,要抓住重点,详略分明,这样才能突出说明事物的特征。同学们在今后的写作实践中,要学习作者这种重点突出,有详有略的写作特色。平均使用笔力,只能分散读者的注意力。
六、说话训练
要求学生采用与本文不同的顺序口头介绍故宫。
教师提示:可以试着以神武门为出发点,沿中轴线前行到午门,介绍沿途的建筑;可以以三大殿为中心分别介绍三大殿前后的建筑;可以以保和殿北面的长方形小广场为中心分别介绍广场以南的建筑--前朝和广场以北乾清门以内的建筑--内廷;可以按不同的功用将故宫里的建筑分成几组逐次介绍。
选四位同学口头介绍,其余同学评价。
七、课堂小结
故宫博物院是一个庞大的建筑群,值得介绍的东西很多很多(九千多间房屋,九个多万件藏品,九百多万件档案材料),如果全部说明,难免太多太杂,中心不突出。作者抓住中轴线,采用空间说明顺序,运用总--分--总的写法,突出重点,详略分明,使读者对路线、方位、各组建筑物的特点与联系,清晰明了,使文章条理十分清楚。说明对象“故宫博物院”给我们留下了清晰而深刻的印象。
八、布置作业
阅读下面这段话,指出其说明顺序,并画出说明这种顺序的有关词语。
陵墓的入口位于最南端,标志是一座三间三楼的石牌坊。在明间的檐下,悬挂着孙中山先生手书“博爱”横匾一方。石坊北就是通往陵门的缓长坡道,汽车可循此直达陵门之前。墓道北端有一倾斜台地,东、西两侧各建面阔三间的硬山卷棚小屋一片,为过去守陵卫士的驻所。正面建陵门,高十五米,宽二十四米,深八米,蓝玻璃单檐歇山顶。屋身用花岗石砌成无梁殿式样,正中拱门楣上镌刻着中山先生手书“天下为公”几个金光大字。
(提示:采用空间顺序介绍陵墓,由南向北,依次介绍了石牌坊、墓道、卷棚小屋、陵门)
导学预设1:
让学生能够自主完成学习任务,正确朗读字音,语句的节奏,作家作品介绍。
评价预设1:
学生分组分层量化评价,按1-6号分别1-6分的办法,同时对作答的学生做口头评价。抢答的形式更具竞争性。
导学预设2:
通过朗读,收集课文信息进行勾画,填写故宫布局图
评价预设2:
评价预设3:
通过对学生的学习状态和成果的观察,发现评价点,针对特定对象作出评价。
导学预设4:
学生根据教师出示的问题
评价预设3:
通过对学生的学习状态和成果的观察,发现评价点,针对特定对象作出评价。
导学预设5:
教师要对学生小组回答内容作总结,如本小组在学习中表现的是否积极,每个人是否按要求完成任务了,谁表现的突出,谁表现的不好,得分、失分原因,和其它小组比较还有哪些不足,应该怎样改进等等。
导学预设6:
分析文章语言,让学生根据理解回答,教师对学生回答情况做必要的总结,表扬优秀小组。
导学预设7:
学生提出质疑,发挥学生的分析理解能力,学生交流后教师总结。
评价预设4:
通过对学生的学习状态和成果的观察,发现评价点,针对特定对象作出评价。
设计意图1:
明确学习任务,让学生养成学会预习的良好习惯
设计意图2:
训练学生阅读和信息提炼能力能力
设计意图3:
培养学生语言概括能力,理清文章的说明顺序
设计意图4:
1.让学生速度课文,掌握信息,准确把握人物特点
设计意图5:
.利用小组评价解决问题,通过评价引导小组派较低层次的同学回答,从而培养小组关注弱势,形成得分策略。同时也为较差学生建立自信和使他们感受成功快乐。
运用小组合作的形式,以激励学生并引发互相之间的竞争意识,在潜移默化中培养学生良好的学习习惯。
设计意图6:
虽然大的方向明确了,但细节上学生思路还不是很明确,所以提示思考方向还是非常必要的,有利于打开他们的思路,也可以平衡各组的成果,增强竞争力。
反思与改进1:
让学生到黑板板书补充内容,更能能调动学习积极性
反思与改进2:
学生做导游,提示要注意顺序,说明地位和作用,让学生查阅资料
反思与改进3:
通过对课堂效果观察,口头即时激励性评价优于隐性量化评价,灵活量化评价更具调动性,分层评价应多引导,以内化为小组关注每个成员的主动行为,因此总结性评价就显得尤为重要。
反思与改进4:
学生的自主意识还没有充分建立,所以在完成这个任务中,很多同学缺乏自信,更倾向于与同伴交流。所以培养自主意识还需要引起重视,独立思考、完成任务必须做到独立。口头激励的运用,效果明显,对学生树立自信有一定作用,需要教师有目的的去做这项工作。
反思与改进5:
有意识的随时发现评价点,并有目的的实施相应的评价,无疑是对学生良好学习习惯培养的很好的方式,需要教师重视并加以实施。
板书设计:
故宫博物院
(空间顺序)
课后回顾及反馈:
1,突出说明文教学,让学生学会判断说明顺序及说明方法。
2,突出本文详略得当的写作特点。
作业批改记录:
学生作业上交及时,大部分学生作业工整,出现问题采取集中订正和个别辅导的方法。
侯晓旭
[《故宫博物院》教案(人教版八年级上册)]
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
八年级数学教案人教版篇七
教学目标:
1.认识“左、右”的位置关系,体会其相对性。
2.能够初步运用左右描述物体的位置,解决实际问题。
3.通过生动有趣的数学活动,使学生体会到学习数学的乐趣。
教学重点:
认识“左、右”的位置关系,体会其相对性。
教学难点:
运用左右描述物体的位置,解决实际问题。
教学过程:
一、创设情境,导入新课。
1.同学对你的同桌说一说,哪只是右手,哪只是左手。
2.我们要来认识“左右”。(板书课题:左右)
二、联系自身,体验左右。
1.摸一摸。
(2)哪只是左脚?哪只是右脚?
(4)还有左耳和右耳。
(5)还有左眼和右眼。
(6)还有左肩和右肩。……
(7)生每说一种,教师都引导全体学生用手摸一摸。
三、实际操作,探索新知。
1.摆一摆。
游戏做完了,现在我们要开始摆文具了。同桌的同学互相合作,听清楚老师说的话。
请你在桌上放一块橡皮;
在橡皮的左边摆一枝铅笔;
在橡皮的右边摆一个铅笔盒;
在铅笔盒的左边,橡皮的右边摆一把尺子;
在铅笔盒的右边摆一把小刀。
生摆好后,师用出示正确的排列顺序,生检查自己的排列。
2.数一数。
从左数橡皮是第几个?从右数橡皮是第几个?
从左数橡皮是第二个,从右数橡皮是第四个。
为什么橡皮一会儿排第二?一会儿又排第四?
什么东西反了?能讲得更清楚一些吗?
(数的顺序反了,开始是从左数,后来是从右数。)
师小结:也就是说,同样一个物体,从左数和从右数,结果就可能不一样。
3.爬楼梯。上楼梯时我们要靠哪边走?
下楼梯时我们又要靠哪边走?
请你们两位示范一下,把教室中间过道当楼梯,一个从前往后走是下楼梯,另一个从后往前走是上楼梯。
(生观察时师提醒:下楼梯的同学是靠哪边走?)
(生还是有的说左边,有的说右边。)
师:教学楼中间有一个楼梯,同学们想不想去走一走?
(全体学生进行室外活动:走上楼梯,又走下楼梯。下楼梯时,师又提醒:下楼梯时你靠哪边走?)
回到教室。
现在同学们明白下楼梯时靠哪边走吗?
为什么上、下楼梯都靠右边走?
(如果不这样走,上、下楼梯的人就会相撞。)
对!特别是要做课间操时楼梯比较拥挤,如果相撞就会发生危险。
4.练一练。
(出示课本第61页第3题图)他们都是靠右走的吗?
五、运用新知,解决问题。
1.转弯判断。同学们想不想去公园玩?
那我们就坐这辆大客车去吧!(师拿出玩具客车。)
准备好,要出发了,请同学们判断客车是往左转还是往右转?
(师在“十字路口图”上演示转弯。)
小组讨论一下,客车到底是往哪边转。
(生组内讨论交流意见。)
师生共同小结:站的方向不同,左右也不同。在日常生活中,汽车转弯的方向常常以司机为准。
2.小游戏:我是小司机。
同桌的同学互相配合,左边的同学说命令,右边的同学用玩具小汽车在“十字路口图”上转弯,然后交换角色。
六、课堂总结
通过这节课,你有哪些收获?你印象最深的是什么?你有什么感想吗?
八年级数学教案人教版篇八
学习目标:
1、巩固对整式乘法法则的理解,会用法则进行计算
2、在学生大量实践的基础上,是学生认识单项式乘以单项式法则是整式乘法的关键,“多乘多”、“单乘多”都转化为单项式相乘。
3、在通过学生练习中,体会运算律是运算的通性,感受转化思想。。
4、进一步培养学生有条理的思考和表达能力。
学习重点:整式乘法的法则运用
学习难点:整式乘法中学生思维能力的培养
学习过程
1.学习准备
1.你能写出整式乘法的法则吗?试一试。
2.谈谈在整式乘法的学习过程中,你有什么收获?有什么不足?
利用课下时间和同学交流一下,能解决吗?
2.合作探究
1.练习
(1)(-5a2b)(2a2bc)(2)(-ax)(-bx3)
(3)(2x104)(6x105)(4)(x)•2x3•(-3x2)
2、结合上面练习,谈谈在单项式乘单项式运算中怎样进行计算?要注意些什么?
3、练习
(1)(-3x)(4x2-x+1)(2)(-xy)(2x-5y-1)
(3)(2x+3)(4x+1)(4)(x+1)(x2-2x+3)
4、结合上面练习,体会单项式乘多项式、多项式乘多项式运算中,都是以单项式乘单项式为基础、运用乘法分配律进行计算。
3.自我测试
1、3x2•(-4xy)•(-xy)=
2、若(mx3)•(2xn)=-8x18,则m=
3、一个长方体的长、宽、高分别为3x-4,2x和x,它的体积是
4、若m2-2m=1,则2m2-4m+的值是
5、解方程:1-(2x+1)(x-2)=x2-(3x-1)(x+3)-11
6、当(x2+mx+8)(x2-3x+n)展开后,如果不含x2和x3的项,求(-m)3n的值.
7、计算:(y+1)(y2-y+1)+y(1+y)(1-y),其中y=-.
8、(北京)已知x2-5x=14,(x-1)(2x-1)-(x+1)2+1的值。
9、某公园要建如图所示的形状的草坪(阴影部分),求铺设草坪多少m2?若每平
方米草坪260元,则为修建该草坪需投资多少元?
八年级数学教案人教版篇九
1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)
求这15个销售员该月销量的中位数和众数。
假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。
2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示:
1匹1.2匹1.5匹2匹
3月12台20台8台4台
4月16台30台14台8台
根据表格回答问题:
商店出售的各种规格空调中,众数是多少?
假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?
答案:1.(1)210件、210件(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。
2.(1)1.2匹(2)通过观察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。
八年级数学教案人教版篇十
1、知识与技能
会应用平方差公式进行因式分解,发展学生推理能力。
2、过程与方法
经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。
3、情感、态度与价值观
培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。
重、难点与关键
1、重点:利用平方差公式分解因式。
2、难点:领会因式分解的解题步骤和分解因式的彻底性。
3、关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来。
教学方法
采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维。
教学过程
一、观察探讨,体验新知
【问题牵引】
请同学们计算下列各式。
(1)(a+5)(a-5);(2)(4m+3n)(4m-3n)。
【学生活动】动笔计算出上面的两道题,并踊跃上台板演。
(1)(a+5)(a-5)=a2-52=a2-25;
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律。
1、分解因式:a2-25;2.分解因式16m2-9n.
【学生活动】从逆向思维入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5)。
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n)。
【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解。
平方差公式:a2-b2=(a+b)(a-b)。
评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式)。
二、范例学习,应用所学
【例1】把下列各式分解因式:(投影显示或板书)
(1)x2-9y2;(2)16x4-y4;
(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;
(5)m2(16x-y)+n2(y-16x)。
【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解。
【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演。
【学生活动】分四人小组,合作探究。
解:(1)x2-9y2=(x+3y)(x-3y);
(5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n)。
八年级数学教案人教版篇十一
(1)理解三角形的高、中线与角平分线等概念;
(2)会用工具画三角形的高、中线与角平分线;
2.教学目标解析
(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.
(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.
(3)掌握三角形的高、中线与角平分线的画法.
(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.
三、教学问题诊断分析
三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.
三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.
三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.
八年级数学教案人教版篇十二
5.在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是()
a、矩形 b、菱形 c、正方形 d、梯形
答案:b
知识点:等边三角形的性质;菱形的判定
解析:
解答:用两个边长为a的等边三角形拼成的四边形,它的四条边长都为a,根据菱形的定义四边相等的四边形是菱形.根据题意得,拼成的四边形四边相等,则是菱形.故选b.
分析:此题主要考查了等边三角形的性质,菱形的定义.
6.用两个边长为a的等边三角形纸片拼成的四边形是()
a、等腰梯形 b、正方形 c、矩形 d、菱形
答案:d
知识点:等边三角形的性质;菱形的判定
解析:
解答:由于两个等边三角形的边长都相等,则得到的四边形的四条边也相等,即是菱形.由题意可得:得到的四边形的四条边相等,即是菱形.故选d.
分析:本题利用了菱形的概念:四边相等的四边形是菱形.
八年级数学教案人教版篇十三
平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;
平行四边形的对角相等。
平行四边形的对角线互相平分。
平行四边形的判定
1.两组对边分别相等的四边形是平行四边形
2.对角线互相平分的四边形是平行四边形;
3.两组对角分别相等的四边形是平行四边形;
4.一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的定义:有一个角是直角的平行四边形。
矩形的性质:矩形的四个角都是直角;
矩形的对角线平分且相等。
【本文地址:http://www.xuefen.com.cn/zuowen/15566750.html】