作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。大家想知道怎么样才能写一篇比较优质的教案吗?以下我给大家整理了一些优质的教案范文,希望对大家能够有所帮助。
培智八年级数学教案 八年级数学教案教学反思篇一
1、 理解运用平方差公式分解因式的方法。
2、 掌握提公因式法和平方差公式分解因式的综合运用。
3、 进一步培养学生综合、分析数学问题的能力。
运用平方差公式分解因式。
高次指数的转化,提公因式法,平方差公式的灵活运用。
我们数学组的观课议课主题:
1、关注学生的合作交流
2、如何使学困生能积极参与课堂交流。
在精心备课过程中,我设计了这样的自学提示:
1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?
2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?
①-x2+y2 ②-x2-y2 ③4-9x2
④ (x+y)2-(x-y)2 ⑤ a4-b4
3、试总结运用平方差公式因式分解的条件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?
5、试总结因式分解的步骤是什么?
师巡回指导,生自主探究后交流合作。
生交流热情很高,但把全部问题分析完已用了30分钟。
生展示自学成果。
生1: -x2+y2能用平方差公式分解,可分解为(y+x)(y-x)
生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)
师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。
生3:4-9x2 也能用平方差公式分解,可分解为(2+9x)(2-9x)
生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。
生5: a4-b4可分解为(a2+b2)(a2-b2)
生6:不对,a2-b2 还能继续分解为a+b)(a-b)
师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……
反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:
(1) 我在备课时,过高估计了学生的能力,问题2中的③、④、⑤ 多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:
下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。
(2) 教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤ 可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。
我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。
确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有最好,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……
培智八年级数学教案 八年级数学教案教学反思篇二
一、教学目标
1、使学生理解并掌握分式的概念,了解有理式的概念;
2、使学生能够求出分式有意义的条件;
3、通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;
4、通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识。
二、重点、难点、疑点及解决办法
1、教学重点和难点 明确分式的分母不为零。
2、疑点及解决办法 通过类比分数的意义,加强对分式意义的理解。
三、教学过程
【新课引入】
前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)
【新课】
1、分式的定义
(1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:
用、表示两个整式,就可以表示成的形式。如果中含有字母,式子就叫做分式。其中叫做分式的分子,叫做分式的分母。
(2)由学生举几个分式的例子。
(3)学生小结分式的概念中应注意的问题。
①分母中含有字母。
②如同分数一样,分式的分母不能为零。
(4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]
2、有理式的分类
请学生类比有理数的分类为有理式分类:
例1 当取何值时,下列分式有意义?
(1);
解:由分母得。
∴当时,原分式有意义。
(2);
解:由分母得。
∴当时,原分式有意义。
(3);
解:∵恒成立,
∴取一切实数时,原分式都有意义。
(4)。
解:由分母得。
∴当且时,原分式有意义。
思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?
例2 当取何值时,下列分式的值为零?
(1);
解:由分子得。
而当时,分母。
∴当时,原分式值为零。
小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零。
(2);
解:由分子得。
而当时,分母,分式无意义。
当时,分母。
∴当时,原分式值为零。
(3);
解:由分子得。
而当时,分母。
当时,分母。
∴当或时,原分式值都为零。
(4)。
解:由分子得。
而当时,,分式无意义。
∴没有使原分式的值为零的的值,即原分式值不可能为零。
(四)总结、扩展
1、分式与分数的区别。
2、分式何时有意义?
3、分式何时值为零?
(五)随堂练习
1、填空题:
(1)当时,分式的值为零
(2)当时,分式的值为零
(3)当时,分式的值为零
2、教材p55中1、2、3.
八、布置作业
教材p56中a组3、4;b组(1)、(2)、(3)。
九、板书设计
课题 例1
1、定义例2
2、有理式分类
【本文地址:http://www.xuefen.com.cn/zuowen/3004499.html】