函数的单调性教案一(汇总12篇)

格式:DOC 上传日期:2023-11-27 15:59:05
函数的单调性教案一(汇总12篇)
时间:2023-11-27 15:59:05     小编:MJ笔神

教案可以帮助教师预测学生的学习反应,从而更好地调整教学策略。教案还应当考虑不同学科的特点和教学任务的要求,以实现综合素质教育的目标。通过阅读下面的教案范文,你可以了解更多关于教案的写作和应用。

函数的单调性教案一篇一

函数的单调性一节属高中数学第一册(上)的必修内容,在高考的重要考查范围之内。函数的单调性是函数的一个重要性质,也是在研究函数时经常要注意的一个性质,并且在比较几个数的大小、对函数的定性分析以及与其他知识的综合应用上都有广泛的应用。通过对这一节课的学习,既可以让学生掌握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质认识。也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。

(2)了解能用图形语言正确表述具有单调性的函数的图象特征;。

(4)培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看问题。

重点是对函数单调性的有关概念的本质理解。

难点是利用函数单调性的概念证明或判断具体函数的单调性。

根据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体辅助教学”的模式。力图通过提出问题、思考问题、解决问题的过程,让学生主动参与以达到对知识的“发现”与接受,进而完成对知识的内化,使书本知识成为自己知识;同时也培养学生的探索精神。

在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。然后通过对函数单调性的概念的学习理解,最终把问题解决。整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。

通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。

设置问题情景。

[引例]学校准备建造一个矩形花坛,面积设计为16平方米。由于周围环境的限制,其中一边的长度长不能超过10米,短不能少于4米。记花坛受限制的一边长为x米,半周长为y米。

写出y与x的函数表达式;。

(用多媒体出示问题,并让学生思考)。

函数的单调性教案一篇二

重点难点。

教学重点:函数单调性的概念、判断及证明.。

教学难点:归纳抽象函数单调性的定义以及根据定义证明函数的单调性.。

教学方法。

教师启发讲授,学生探究学习.。

教学手段。

计算机、投影仪.。

教学过程。

创设情境,引入课题。

课前布置任务:

(1)由于某种原因,北京奥运会开幕式时间由原定的`7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.

(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.。

引导学生识图,捕捉信息,启发学生思考.。

问题:观察图形,能得到什么信息?

预案:(1)当天的最高温度、最低温度以及何时达到;

(2)在某时刻的温度;

(3)某些时段温度升高,某些时段温度降低.。

问题:还能举出生活中其他的数据变化情况吗?

预案:水位高低、燃油价格、股票价格等.。

归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.。

函数的单调性教案一篇三

引入课题1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:

yx1-11-1yx1-11-1yx1-11-1。

1随x的增大,y的值有什么变化?2能否看出函数的最大、最小值?

2.画出下列函数的图象,观察其变化规律:

f(x)=x1从左至右图象上升还是下降______?2在区间____________上,随着x的增大,f(x)的值随着________.

yx1-11-1。

2.f(x)=-2x+11从左至右图象上升还是下降______?2在区间____________上,随着x的增大,f(x)的`值随着________.

1在区间____________上,f(x)的值随着x的增大而________.

2在区间____________上,f(x)的值随着x的增大而________.

函数的单调性教案一篇四

本节课采用导学案引导自学法。首先,复习函数单调性的定义,单调性又名增减性,判断函数的单调性有两种方法:图像法和定义法。然后,要求学生自行阅读课本p57—p58,完成表格,表格将课本实例分析中的8个函数全部罗列出来,完成后观察表格的第3列和第6列,说明导数的正负与函数的单调性有何关系?学生易得出结论。从而说明判断函数的单调性还可以用导数法。接下来,讲解例1,实际操作,说明如何利用导数判断函数单调性,根据讲解过程,让学生总结求解的一般步骤,并做了2个练习。很不巧,此时下课铃声响了,本节教学任务没有完成。本节课,我设计了三个题型,仅完成了一个。课堂时间之所以把控的不好,原因很多,我反思之后,主要原因有以下两点:

(1)学生基础差,对单调性的知识点掌握不扎实,且自主学习习惯尚未养成,导致阅读课本填表格的时间过长。我在想,是否可以让学生提前复习单调性的概念,并预习课本完成表格,以提高课堂效率。其实,本来也是这样打算的,但由于对学生的学习态度不自信,所以放弃了,想着课堂上也能完成,结果估计不足。应该对学生多一点信心和耐心,行为习惯的养成不是一朝一夕能做到的。

(2)例1中,求导后的计算涉及到不等式的求解,学生对此知识点的把握也不是很到位,教师只能先带领学生回忆不等式的解法,再进行例1的求解。如此,时间又被耽误了。对于这一点,我也预估不足,说明我在备课时,对学情的分析不足。

函数的单调性教案一篇五

各位老师:

你们好!我今天说课的内容是全日制普通高中教科书第一册(上)第二章第三节《函数的单调性》。以下我从六个方面来汇报我是如何研究教材、备课和设计教学过程的。

一、教材分析。

1、教材内容。

本节课是人教版第二章《函数》第三节函数单调性的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题。

2、教材所处地位、作用。

函数的单调性是对函数概念的延续和拓展,也是后续研究几类具体函数的单调性的基础;此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用。在方法上,教学过程中还渗透了数形结合、类比化归等数学思想方法。它是高中数学中的`核心知识之一,在函数教学中起着承上启下的作用。

二、学情分析。

1、知识基础。

高一学生已学习了函数的概念等知识,并且接触了一些特殊的单调函数。

2、认知水平与能力。

高一学生已初步具有数形结合思维能力,能在教师的引导下解决问题。

3、任教班级学生特点。

学生基础较扎实、思维较活跃,能较好地应用数形结合解决问题,但归纳转化的能力还有待进一步提高,观察讨论能力有待加强。

三、目标分析。

(一)知识技能。

1、让学生理解增函数和减函数的定义;

3、了解函数的单调区间的概念,并能根据图象说出函数的单调区间。

(二)过程与方法。

1、通过证明函数的单调性的学习,培养学生的逻辑思维能力;。

2、通过运用公式的过程,提高学生类比化归、数形结合的能力。

(三)情感态度与价值观。

让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲。领会用从特殊到一般,再从一般到特殊的方法去观察分析事物。

由教学目标和学生的实际水平,我确定本节课的重、难点:。

教学难点:利用函数单调性定义或者函数图象判断简单函数的单调性。

解决策略:

本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。利用数形结合、类比化归的思想,层层深入,通过学生自主观察、讨论、探究得到单调性概念;同时,借助多媒体的直观演示,帮助学生理解,并通过范例后的变式训练和教师的点拨引导,师生互动、讲练结合,从而突出重点、突破难点。

四、教学法分析。

(一)教法:

1、从学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。

2、在鼓励学生主体参与的同时,不可忽视教师的主导作用。具体体现在设问、讲评和规范书写等方面,教会学生清晰的思维、严谨的推理,并成功地完成书面表达。

3、应用多媒体,增大教学容量和直观性。

(二)学法:

1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。

2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的认知飞跃。

五、过程分析。

教学流程:

(一)问题情景,引出新知(3’)。

(二)学生活动,归纳特征(5’)。

(三)对比抽象,建构定义(7’)。

(四)定义讲解,理解概念(3’)。

(五)数学应用,巩固提高(18’)。

(六)归纳讨论,引导小结(5’)。

六、评价分析。

1、设计体现了新课标的核心要求:发展学生的能力:

a、新课的引入-数形结合的能力;

b、直观性概念提出-由特殊到一般-观察讨论的能力;

c、数学语言的提出-由感性到理性-归纳总结的能力;

d、概念的应用-由一般到特殊-学以致用的能力。

2、目标达成:。

概念的形成-知识目标1。

数学应用-知识目标2。

深化理解-能力目标。

问题解决-情感目标。

3、教学随想:

数无形时少直觉,形少数时难入微。

数形结合百般好,隔离分家万事休。——华罗庚。

以后教学中,要注意“数”和“形”的和谐统一。

将本文的word文档下载到电脑,方便收藏和打印。

函数的单调性教案一篇六

函数单调性是函数的一个重要性质,并且学生是头一次接触函数的单调性,陌生感强。函数单调性,单调区间的概念掌握起来有一定困难,特别是增函数、减函数的定义很抽象,学生很难理解,这样会增加学生的负担,不利于学生学习兴趣的激发。因此,在教学的整个过程中,弱化抽象概念的讲解,从具体函数的图象分析入手,使学生对增、减函数有一个直观的印象。进一步,通过分析函数图象的变化趋势,启发学生归纳总结出增、减函数中函数值与自变量之间的变化规律,使学生会熟练的通过函数的图象来判断一个函数是增函数,还是减函数。在次基础上,给出函数单调性,函数单调区间的概念。在课堂上重点训练了学生从函数图象上来判断函数单调区间,以及在每个单调区间上的单调性的能力,从学生的的课堂反应来看,学生能熟练的通过函数的图象来判断函数的单调性,然后用定义证明一个函数是增函数(减函数),整堂课下来,使学生会通过函数图象来判断函数单调性这一目标基本上达到,学生课堂反应积极、热情。当然,其中还是存在了很多的问题,譬如最大的问题就是学生探究还没有放开,教师讲多了。

在以后的教学中多注意从学生的已有知识和生活经验出发,围绕知识目标展开新知识出现的情境,丰富学生的情感体验,在知识目标得到有效落实的同时,达成能力目标.突出基础知识的应用和基本技能的运用,强化知识目标,培养学生学习数学的情感,在知识应用方面,应强调数学走向生活,解决具有现实意义的生活问题,培养学生的数学建模能力.

在教学时,我们也要适当使用多媒体教学手段,帮助学生可以更加直观的理解函数的图象变化。

将本文的word文档下载到电脑,方便收藏和打印。

函数的单调性教案一篇七

作为一位杰出的老师,就不得不需要编写说课稿,说课稿有助于提高教师的语言表达能力。怎样写说课稿才更能起到其作用呢?下面是小编精心整理的《函数单调性》高三数学说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

本课是苏教版新课标普通高中数学必修一第二章第1节《函数的简单性质》的内容,该节中内容包括:函数的单调性、函数的最值、函数的奇偶性。总课时安排为3课时,《函数的单调性》是本节中的第一课时。

函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是今后研究具体函数的单调性理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均有着广泛的应用;在历年的高考中对函数的单调性考查每年都有涉及;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。

按现行教材结构体系,该内容安排在学习了函数的现代定义及函数的三种表示方法之后,了解了在生活实践中函数关系的普遍性,另外学生已在初中学过一次函数、反比例函数、二次函数等初等函数。

在本节课是以函数的单调性的概念为主线,它始终贯穿于整个课堂教学过程;这是本节课的重点内容。

利用函数的单调性的定义证明具体函数的单调性一个难点,也是对函数单调性概念的深层理解,且在“作差、变形、定号”过程学生不易掌握。

学生刚刚接触这种证明方法,给出一定的步骤是必要的',有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助。另外,这也是以后要学习的不等式证明的比较法的基本思路,现在提出来对今后的教学也有了一定的铺垫。

教学目标的制定与实现,主要取决于我们对学习者掌握的程度。只有了解学习者原来具有的认知结构,学习者的准备状态,学习风格,情感态度等,我们才能制定合适的教学目标,安排合适的教学活动与评价标准。

不同的教学环境,不同的学习主体有着不同的学习动机和学习特点。

我所教授的班级的学生具体学情。

具体到我们班级学生而言有以下特点:学生多才多艺,个性张扬,但学科成绩不很理想,参差不齐;经受不住挫折,需要经常受到鼓励和安慰,否则就不能坚持不懈的学习;学习习惯不好,小动作较多,学习时注意力抗干扰能力不强,易被外界因素所影响,需要不断的引导;独立解决问题能力弱,畏难情绪严重,探索精神不足。只有少部分学生学习习惯良好,学风严谨,思维缜密。

根据新课标的要求,以及对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:

(一)三维目标。

1、知识与技能:

(1)使学生理解函数单调性的概念,能判断并证明一些简单函数在给定区间上的单调性。

(2)通过函数单调性的教学,逐步培养学生观察、分析、概括与合作能力;

2、过程与方法:

(1)通过本节课的学习,通过“数与形”之间的转换,渗透数形结合的数学思想。

(2)通过探究活动,明白考虑问题要细致、缜密,说理要严密、明确。

3、情感,态度与价值观:在平等的教学氛围中,通过学生之间、师生之间的交流、合作与评价,拉近学生之间、师生之间的情感距离,培养学生对数学的兴趣。

函数的单调性教案一篇八

教后记函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质,通过对本节课的学习,让学生领会函数单调性的.概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题。用解析的方法来研究函数图象的性质,如何将图形特征用严谨的数学语言来刻画是本节课的难点之一。另一难点是学生在高中阶段第一次接触代数证明,如何进行严格的推理论证并完成规范的书面表达。围绕以上两个难点,在本节课的处理上,我着重注意了以下几个问题:

1.重视学生的亲身体验.具体体现在两个方面:(1)将新知识与学生的已有知识建立了联系,引导学生借助已学过的一次函数、二次函数的图象,从图象分析入手,使学生对增、减函数有一个直观的感知,完成对函数单调性的第一次认识。教学中通过一次函数、二次函数两个具体函数的图像及数值变化特征的研究,得到“图象是上升的”,相应地即“y随着x的增大而增大”,初步得到单调性的说法,通过讨论交流,让学生尝试就一般情况进行刻画,提出函数单调性的定义,然后通过辨析、练习等帮助学生理解这一概念。(2)运用新知识尝试解决新问题,重视学生的动手实践过程,通过对定义的解读、巩固,让学生动手去实践运用定义.

2.重视课堂问题的设计。通过对问题的设计,引导学生解决问题。

3.重视方法的生成。用函数单调性的定义证明函数的单调性,将证明过程步骤化,形成思维定势,在学生刚刚接确一个新的知识时,思维定势对理解知识本身是有益的。使用函数单调性定义证明是本节课的一个难点,学生刚刚接确这种证明方法,给出一定的步骤是必要的,有利于学生理解概念。

当然本节课还是有些不足之处,忽视是课本上的一个重要的例题,反比例函数单调性的证明。这是一个重点,却在本节课的没有讲到,所以本节课的安排还是顾此失彼了,驾驭课堂的能力还是有所欠缺的。这点我还要继续努力。

函数的单调性教案一篇九

根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:

知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;

二、教法学法。

为了实现本节课的教学目标,在教法上我采取了:

在学法上我重视了:

三、教学过程。

(一)创设情境,提出问题。

(问题情境)(播放中央电视台天气预报的音乐).如图为某地区元旦这一天24小时内的气温变化图,观察这张气温变化图:

[教师活动]引导学生观察图象,提出问题:

问题1:说出气温在哪些时段内是逐步升高的或下降的?

问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?

(二)探究发现建构概念。

[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答.。

在学生对于单调增函数的特征有一定直观认识时,进一步提出:

[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当时,都有”,告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:

问题4:类比单调增函数概念,你能给出单调减函数的概念吗?

最后完成单调性和单调区间概念的整体表述.。

(三)自我尝试运用概念。

1.为了理解函数单调性的概念,及时地进行运用是十分必要的.。

[教师活动]问题6:证明在区间(0,+∞)上是单调减函数.。

(四)回顾反思深化概念。

[教师活动]给出一组题:

[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.

[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.

[教师活动]作业布置:

(1)阅读课本p34-35例2。

(2)书面作业:

必做:教材p431、7、11。

四、教学评价。

函数的单调性教案一篇十

重点难点:含参问题的讨论,抽象函数问题.

教学过程。

一、复习引入函数单调性的概念,复合函数的单调性.

二、例题.

例1.如果二次函数在区间内是增函数,求f(2)的取值范围.

分析:由于f(2)=22-(a-1)×2+5=-2a+11,f(2)的取值范围即一次函数y=-2a+11的值域,固应先求其定义域.

例2.设y=f(x)在r上是单调函数,试证方程f(x)=0在r上至多有一个实数根.

例3.设f(x)的定义域为,且在上的增函数,

(1)求证f(1)=0;f(xy)=f(x)+f(y);。

(2)若f(2)=1,解不等式。

分析:利用f(x)的性质,脱去函数的符号,将问题化为解一般的不等式;注意,2=1+1=f(2)+f(2)=f(4).

例4.已知函数.

(1)当时,求函数f(x)的最小值;

(2)若对任意恒成立,试求实数a的取值范围.

分析:(1)利用f(x)的单调性即可求最小值;

(2)利用函数的性质分类讨论解之.

令即函数的定义域为[-3,1];

作业:《精析精练》p73智能达标训练.

函数的单调性教案一篇十一

1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。“二面角”是人教版《数学》第二册(下b)中9.7的内容。它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。因此,它起着承上启下的作用。通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。

2、教学目标:。

知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

(2)进一步培养学生把空间问题转化为平面问题的化归思想。

能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的.情感距离。

3、重点、难点:

重点:“二面角”和“二面角的平面角”的概念。

难点:“二面角的平面角”概念的形成过程。

二、教法分析。

1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。

2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。

三、学法指导。

1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。

2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。

3、会学:通过自己亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新,既能解决问题,更能发现问题。

四、教学过程。

心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。

(一)、二面角。

1、揭示概念产生背景。

问题情境1、在平面几何中“角”是怎样定义的?

问题情境2、在立体几何中我们还学习了哪些角?

问题情境3、运用多媒体和身边的实例,展示我们遇到的另一种空间的角——二面角(板书课题)。

通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为它与我们的生活密不可分,激发学生的求知欲。2、展现概念形成过程。

问题情境4、那么,应该如何定义二面角呢?

创设这个问题情境,为学生创新思维的展开提供了空间。引导学生回忆平面几何中“角”这一概念的引入过程。教师应注意多让学生说,对于学生的创新意识和创新结果,教师要给与积极的评价。

问题情境5、同学们能举出一些二面角的实例吗?通过实际运用,可以促使学生更加深刻地理解概念。

(二)、二面角的平面角。

1、揭示概念产生背景。平面几何中可以把角理解为是一个旋转量,同样一个二面角也可以看作是一个半平面以其棱为轴旋转而成的,也是一个旋转量。说明二面角不仅有大小,而且其大小是唯一确定的。平面与平面的位置关系,总的说来只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,我们有必要来研究二面角的度量问题。

问题情境6、二面角的大小应该怎么度量?能否转化为平面角来处理?这样就从度量二面角大小的需要上揭示了二面角的平面角概念产生的背景。

2、展现概念形成过程。

函数的单调性教案一篇十二

1.使学生了解奇偶性的概念,回会利用定义判断简单函数的奇偶性.

2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的思想方法.

3.在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神.

教学重点,难点。

重点是奇偶性概念的形成与函数奇偶性的判断。

难点是对概念的认识。

教学用具。

投影仪,计算机。

教学方法。

引导发现法。

教学过程 。

一.引入新课。

前面我们已经研究了函数的单调性,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质.从什么角度呢?将从对称的角度来研究函数的性质.

(学生可能会举出一些数值上的对称问题,等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数具体化,如和等.)。

学生经过思考,能找出原因,由于函数是映射,一个只能对一个,而不能有两个不同的,故函数的图象不可能关于轴对称.最终提出我们今天将重点研究图象关于轴对称和关于原点对称的问题,从形的特征中找出它们在数值上的规律.

二.讲解新课。

学生开始可能只会用语言去描述:自变量互为相反数,函数值相等.教师可引导学生先把它们具体化,再用数学符号表示.(借助课件演示令比较得出等式,再令,得到,详见课件的使用)进而再提出会不会在定义域内存在,使与不等呢?(可用课件帮助演示让动起来观察,发现结论,这样的是不存在的)。

从这个结论中就可以发现对定义域内任意一个,都有成立.最后让学生用完整的语言给出定义,不准确的地方教师予以提示或调整.

(1)偶函数的定义:如果对于函数的定义域内任意一个,都有,那么就叫做偶函数.(板书)。

(给出定义后可让学生举几个例子,如等以检验一下对概念的初步认识)。

提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出或的图象让学生观察研究)。

学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义.

(2)奇函数的定义:如果对于函数的定义域内任意一个,都有,那么就叫做奇函数.(板书)。

(由于在定义形成时已经有了一定的认识,故可以先作判断,在判断中再加深认识)。

(1);             (2);。

(3);;。

(5); (6).

(要求学生口答,选出1-2个题说过程)。

解:(1)是奇函数.(2)是偶函数. 。

(3),是偶函数.

学生经过思考可以解决问题,指出只要举出一个反例说明与不等.如即可说明它不是偶函数.(从这个问题的解决中让学生再次认识到定义中任意性的重要)。

从(4)题开始,学生的答案会有不同,可以让学生先讨论,教师再做评述.即第(4)题中表面成立的=不能经受任意性的考验,当时,由于,故不存在,更谈不上与相等了,由于任意性被破坏,所以它不能是奇偶性.

可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论.

(3)定义域关于原点对称是函数具有奇偶性的必要但不充分条件.(板书)。

由学生小结判断奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明.

例2. 已知函数既是奇函数也是偶函数,求证:.(板书)  (试由学生来完成)。

证明:既是奇函数也是偶函数,。

=,且,。

=.

即.

(4)函数按其是否具有奇偶性可分为四类:(板书)。

(1);      (2);  (3).

由学生回答,不完整之处教师补充.

解:(1)当时,为奇函数,当时,既不是奇函数也不是偶函数.

(2)当时,既是奇函数也是偶函数,当时,是偶函数.

(3)当时,于是,。

当时,,于是=,。

综上是奇函数.

教师小结(1)(2)注意分类讨论的使用,(3)是分段函数,当检验,并不能说明具备奇偶性,因为奇偶性是对函数整个定义域内性质的刻画,因此必须均有成立,二者缺一不可.

三.小结。

1.奇偶性的概念。

2.判断中注意的问题。

四.作业 略。

五.板书设计 。

2.函数的奇偶性例1.                例3.

(1)偶函数定义。

(2)奇函数定义。

具备奇偶性的必要条件。

【本文地址:http://www.xuefen.com.cn/zuowen/15702680.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档