度轴对称图形教案(实用13篇)

格式:DOC 上传日期:2023-11-28 13:32:19
度轴对称图形教案(实用13篇)
时间:2023-11-28 13:32:19     小编:琴心月

教案的编写应注重学生的主体地位,促进学生的参与和积极学习。教案的内容要清晰明了,条理清晰。如果你对编写教案还不太了解,可以看看以下的范文,或许会有所帮助。

度轴对称图形教案篇一

教学目的。

使学生初步认识轴对称图形,知道轴对称的含义,能够找出轴对称图形的对称轴.。

教具、学具准备。

教师准备一些实物图、剪纸、剪刀,学生准备剪刀、方格作图纸、直尺.。

教学过程。

一、新课。

2.做教科书第100页下面的“做一做”的题目.。

让学生通过观察进行判断,教师还可以再出示一些图形让学生观察.。

4.做教科书第101页“做一做”中的题目.。

教师小结:在轴对称图形中,对称轴两侧相对的点到对称轴的距离相等.。

二、课堂练习。

做练习五的第1~6题.。

1.第1题,让学生说一说自己是怎样判断的,尤其是第4个图,多让几个学生说一说.。

4.第4题,让学生仔细观察、判断,再找出“0”、“8”各有几条对称轴.。

6.第6题,指名到前面画,观察学生第1个图怎样画对称轴,第2个图画几条对称轴.。

度轴对称图形教案篇二

人教版义务教育课程标准实验教科书二年级上册p68。

1、了解生活中的对称现象,认识轴对称图形的一正些基本特征。能正确识别轴对称图形,会设计制作简单的轴对称图形。

2、通过观察、猜想、验证、操作,经历认识轴对称图形的过程,掌握判断轴对称图形的方法,培养学生的动手、创新能力。

3、在认识、制作和欣赏轴对称图形的过程中感受物体或图形的对称美。

认识轴对称图形的基本特征。

设计制作轴对称图形。

教师准备课件、一个蝴蝶图形;学生彩纸、剪刀、直尺及若干对称图形和不对称图形。

一、创设情境,感受对称

1、认识生活中的对称现象。眼镜导入新课。

二、小组合作,探讨轴对称图形的特征

1、认识对称图形

师:看,老师还给大家带来了几张美丽的图片。

生:蜻蜓、树叶、蝴蝶、脸谱的图片

师:请孩子们仔细观察这些图形,你能发现它们共同的特征吗?

生1:它们的两边一样的。

生2:它们是对称的。

师:你是怎样理解对称的?

生2:它们的两边是一样的。

师:这些图形真像你们说的那样,左右两边完全一样吗?

生:是。

师:谁能想个办法来验证这些图形左右两边完全一样呢?

生:对折。

生:上台演示折蝴蝶图形

生齐:好。

师:那先听清楚要求:请小组长拿出1号信封里的4张图片,小组里的每个同学,把其中一个图形对折一下,看看这些图形的两边是一样的吗?开始吧。

生:动手操作

师:谁来说说你验证的结果?

生1:我折的是脸谱图形,对折后它的.两边是一样的。

生2:我折的是蜻蜓图形,它对折后,两边是一样的。

生3:我折的是蝴蝶图形,对折后它的两边是完全一样的。

生4:我折的是树叶图形,对折后,它的两边也是完全一样的。

师:孩子们刚才折这些图形,对折后,它们的两边都是完全一样的,我们就说它们对折后,它们的两边重合了。

师:老师这里还有一个图形,是什么?

生:桃子图形。

师:想折吗?

生齐:想。

生1:我发现了桃子图形一边大,一边小。

生2:它没有重合。

师:一点都没有吗?

生齐:有一点。

师:蝴蝶图形呢?

生齐:全部重合了。

师:像蝴蝶图形这样对折后两边全部重合我们就称为完全重合。

师:孩子们看大屏幕(课件演示蜻蜓、树叶、蝴蝶、脸谱四个图形对折后左右两完全重合的画面)

教师小结:像这样对折后,两边完全重合的图形,我们就把它叫做“对称图形”。(板书:对称)

2、认识对称轴

师:请大家打开对折后的对称图形,看一看,你又有什么新的发现?(把图贴在黑板上)

生:有一条线。

师:这一条线就是我们刚才折的折痕。

师:这条折痕是怎么形成的?有什么特别的地方?

生1:是对称图形对折后形成的。

生2:折痕的两边是完全一样的。

师:这样的折痕是对称图形中特有的,所以人们把这条折痕所在位置的直线,给它起了个形象简洁的名字,叫对称轴。(板书:对称轴)

师:我们通常用虚线来表示对称轴。(板书:画对称轴)

师:像这样,对折后,对称轴两边完全重合的图形我们就叫做“轴对称图形”。 (板书:轴)

三、应用拓展、巩固新知

1、判断轴对称图形

师:刚才我们认识了轴对称图形,那给你一些图形,你能找出轴对称图形吗?(课件出示:p68的做一做)

2、猜一猜

3、找对称轴

师:今天,老师还给你们带来了几个图形老朋友,打个招呼吧!

(课件依次出示:长方形、正方形、圆形)

师:这几个图形各有几条对称轴呢,请你折一折。(边说边点课件出示)

四、师生共结

师:孩子们真会观察生活,对称的物体真是无处不在,只要孩子们留心观察,我相信你们还会找到更多更美的对称。

度轴对称图形教案篇三

1、通过各种活动,发展学生空间观念,学会欣赏数学美。

2、通过观察、操作、初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形。

3、发展学生的空间观念,培养学生的观察能力和动手操作能力。

课件、实物图、各种对称图片。

长方形、正方形、圆形、彩色纸。

一、创设情境:导入新课。

1谈话交流。

3、出示图片(蜻蜓、脸谱、树叶、蝴蝶)。

边出示边问这是什么?

你觉得他们美吗?你能说说它们哪儿美呢?

(注意引导学生多角度观察物体,颜色、形状,此处引出两边一样大)。

4、生活中还有哪些图形像这样两边一样大的呢?(学生举例子)。

5、生活中这样的图形很多很多,那它们都有一个什么样的共同特点呢?

6、同学们观察的可真仔细,像这样两边一样大的图形在我们数学中把它们叫作对称图形(板书课题)。

二、动手验证,感知探究。

1、师:对称在我们的生活中应用非常的广泛,下面我们来欣赏一下(播放课件),这个图形你见过吗?在哪见过?它们美吗?(美)那你们想不想用自己的小手创造一幅对称图形呢?(想)那就请你们拿出老师准备好的材料动手剪出漂亮的对称图形吧!看谁剪的又快又漂亮,并且能把你剪的作品展示到对称天地中。

2、学生动手操作。

3、展示作品。

从每组中选出最具代表性的作品贴在黑板上。

4、交流汇报。

5、虽然它们做的对称图形的形状不一样,但他们都有一个共同的特点,你能发现吗?(一样大等)你是怎么知道它们是一样大的?在数学中,我们把它叫作完全重合。(板书:完全重合)。

6、像这样是不是完全重合呢?(师随意折)为什么?

7、下面请大家观察一下,这些对称图形的形状不一样,但都有一个共同的特点,能找到吗?我们把这条折痕所在的这条直线叫作对称轴(板书:对称轴)。

8、同学们想不想在自己创作的对称图形中画出对称轴呢?在画之前,先看老师是怎样画的,我们画对称轴的时候要用虚线画,下面就请同学在自己的对称图形中画出对称轴。

三、联系生活、拓展思维。

1、书上习题。

师:老师这里也有一组图形,看谁能找到那些图形是对称图形(出示书上做一做第一题图片)。

师:同学们观察能力可真强,就请同学们把它们的对称轴画出来,(生画一画)。

2、找三个图形的对称轴。

今天我们以前认识的三个图形也来和我们一起上课了,但它们的对称轴找不到了,希望你们动手折一折来帮助它们。(生动手折)找到之后把它画下来。(展示)。

师:(师作示范)同学们请看,只要我们把圆反复对折后,就会发现它有很多条对称轴了,所以说圆有无数条对称轴。

3、你们表现的真是太棒了,今天啊,老师想和你们做一个猜一猜的游戏,敢接受挑战吗?

出示雨花台小学的半个大写字母图片。

请大家拼一拼,看看会是什么呢?

四、课堂延伸。

老师生活的城市也很美丽,想知道老师生活在哪个城市吗?想看看老师生活的城市吗?(课件出示)这就是老师生活的城市,美吗?是啊,生活因为有了对称而变更美,我们的生活是多么幸福啊。

度轴对称图形教案篇四

1、通过观察和操作认识轴对称图形和轴对称的含义。

3、使学生在操作中加深对图形的'认识,建立空间观念。

认识图形,建立空间观念。

一、铺垫孕伏。

1、口算。

二、探究新知。

1、投影出示。

树叶图、青蜓图、天平图,任意不对称图形。

2、引导学生分组讨论。

(1)这些图形,形状有什么特点?

(2)再找出一些生活中实例图形。

3、通过汇报,在教师指导下,使学生明确到:

树叶图、青蜓图、天平图,图形左右部分一样,并且说明:这些图形给人以美感,如果想象一个图形不对称,使人觉得不舒服。

将树叶图对折、青蜓图对折,天平图对折,使学生观察到这些图形,沿着一条直线对折,两侧的图形能够完全重合。

5、同桌同学合作实验。

6、教师明确:这个图形就是轴对称图形,折痕所在的这条直线叫做对称轴。

7、投影出示,做一做和练习二十六1题,引导学生判断。

(1)教师出示投影。

(2)学生讨论、交流。

8、分组实验,组内每人画一种图形。

(1)出示101页上图。

(2)每人在方格纸上画一种图形,并剪下来。

(3)比较,哪些图形是轴对称图形,画出它们的对称轴。

(4)教师指导。

(5)使学生明确:正方形、长方形、等腰三角形、等腰梯形、圆,都是轴对称图形。

(6)启发学生,每一种图形,可以画几条对称轴。

学生分组讨论交流。

汇报:正方形可以画4条对称轴。

长方形可以画2条对称轴。

等腰三角形、等腰梯形各有一条对称轴。

圆有无数条对称轴。

(7)引导学生回忆判断,学过的平面图形,哪些是轮对称图形,哪些图形只有一条对称轴,哪些不止一条,可以出示图形。

三、课堂练习。

1、下面的数字,哪些是轴对称图形?它们各有几条对称轴?

2、把一张纸对折后,剪下一个图形,把剪下的图形展开,所得的图形是不是轴对称图形?

引导学生同桌或组内操作。

引导学生在书上填画。

四、课后作业。

运用学过的知识,用纸剪去一个对称图形,可以怎样剪?

五、板书设计。

度轴对称图形教案篇五

1、通过剪一剪的实际操作,体会到轴对称图形的主要特点。

2、在认识轴对称图形的基础上,能正确判断哪些是轴对称图形,哪些不是轴对称图形,并找到对称轴。

3、通过剪、画说找的实际操作,培养学生的观察、分析、综合、抽象和空间想象能力。

4、通过对实物及相关图片的欣赏,感受到数学与现实生活的密切联系,感受对称美。

每生准备二张彩纸,剪刀。

2、说说你为什么这样猜?

3、揭示答案。看你猜得对不对,谜底马上揭晓。

4、看这些图,你发现了什么?有什么特点。

了解轴对称图形的一般特点,对称轴的两边完全一样。

5、假如要判断一张纸是否是轴对称图形,你怎么判断?

二、找一找,画一画。

1、请你归归类。

小组讨论:哪些是哪些不是,为什么?

2、小组反馈交流。

三、欣赏。

1、你能带着今天学的知识来欣赏吗?

2、欣赏完了,你想说什么?

四、找生活中的对称。

1、其实生活中也有很多对称的.图形、物体,你能说一说吗?

2、马老师发现这样一个现象,你能帮马老师解释一下吗?课件出示倒影的图片。

五、剪一剪。

1、想设计一些对称图形吗?来打扮我们的教室。

想一想,打算怎么剪?

2、学生动手剪。

3、学生贴窗花。(学生自己的作品。)。

度轴对称图形教案篇六

(1)素质教育目标:

使学生理解轴对称图形和对称轴的概念,能准确判断一个图形是不是轴对称图形;

培养学生的观察、比较、抽象、概括及实际操作能力;

培养学生的团结协作精神。

(2)教学重点:

理解轴对称图形和对称轴的概念,作对称轴的方法。

(3)教学难点:

选择和确定对称轴的位置和条数。

(4)教学准备:

铅笔、直尺、剪刀、画有平面图形的方格纸、印有轴对称图形的卡片。

(5)教学方法:

直观式、尝试式(6)教学过程:

1、导入。

猜图形。

(这里有一张美丽的图片,不过这还只是它的一半,猜猜这是什么?)。

出示蝴蝶图形的一半,后整体出示------依次有蜻蜓、树叶图等。

这些图形有什么特点?(对称)。

今天我们就一起来认识这类有对称特点的图形。(板书课题)。

2、新授。

(1)学生操作--剪图形。

(什么是轴对称图形呢?请你利用手中的纸,通过折、画、剪,看看能得到什么样的图形。)。

学生以学习小组为单位动手操作。

作品展示的同时让学生说出:剪出的图形沿着一条直线对折,左右两边能完全重合。

以上图形,如沿着中间的直线对折,两侧的图形能够完全重合。

指出:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。(显示对称轴)强调:对称轴是一条直线!

(3)练习反馈。

你刚才剪的是什么图形?

以下图形中,哪些是轴对称图形?请指出对称轴的位置。

(课件出示)。

(4)实践操作:在已学的平面图形中,哪些是轴对称图形,

学生以学习小组为单位进行讨论。(已备画好的图形)。

汇报结果。重在突出对称轴的位置和条数。

课件演示对称轴的条数和位置。

得出:正方形、长方形、等腰三角形、等腰梯形、圆都是轴对称图形。有的对称轴不止一条。

(轴对称图形沿着对称轴对折时,为什么左右两边完全相等?如果在对称轴两边有相应的两点,你还能发现什么?)。

提示:用尺量一量。

学生动手量,分组讨论。

明确:在轴对称图形中,对称轴两侧相对的点到对称轴的距离相等。

3、巩固练习。

(你们能用所学的知识解决遇到的问题吗?)。

(1)画出下列轴对称图形的对称轴。(卡片)。

独立完成,集体订正。

课件出示一幅画,指明答。

你还能说说实际生活中见到的轴对称图形吗?

(3)下面的数字,哪些是轴对称图形?各有几条对称轴?

0123456789。

(4)动动脑,动动手。

在钉字板上围出一个只有一条对称轴的四边形;一个只有两条对称轴的四边形。

指名上台演示。

4、课堂总结。

板书设计。

度轴对称图形教案篇七

本单元是小学阶段第一次教学轴对称图形,首先结合实例感知对称现象,这是课程标准提出的内容与要求。生活中的许多物体具有对称特征,自然界有许多对称现象,联系实际教学轴对称图形离不开这些对称的物体和现象。初步认识对称的物体或现象,感受对称的奇妙与对称美,都有利于轴对称图形的教学。教学重点是轴对称图形,编排了两道例题。前一道例题教学轴对称图形的特点,让学生知道怎样的图形才是轴对称图形,学会判断一个图形是不是轴对称图形。后一道例题是制作简单的轴对称图形,通过创造性的制作,进一步感受轴对称图形的特点。编写的一“你知道吗”介绍了许多对称的昆虫、对称的自然现象、对称的著名建筑,有拓宽眼界、丰富知识,激发兴趣的作用。“奇妙的剪纸”是一次操作型的实践活动,指导学生利用轴对称图形的特点,剪出图案或花边。

1.先感受物体的对称,再体会图形的对称,加强轴对称图形的概念。

第56页例题和“试一试”的教学分四步进行。第一步是观察天安门、飞机、奖杯三个物体,发现这些物体或是左右两边,或是上下两边,或是前后两边的形状、结构、大小都完全相同,从而接受这些“物体是对称的”这个概念。并带着这样的概念到身边去寻找对称的物体。为什么先教学对称的物体?有三个原因。一是对称原先是生活中的概念,如人的脸部左右两边基本相同,就说脸是对称的。随着概念在各个学科的深入应用,概念也就逐渐分化和严格。在数学里就有中心对称,轴对称和平面对称三种情况。联系生活经验,先建立生活中的对称概念,再形成数学里的轴对称概念,教学比较顺畅。二是许多轴对称图形就是对称物体某个面的图形,认识对称的物体为认识轴对称图形宽广的现实背景。三是可以组织对称的物体与轴对称图形的对比,使轴对称图形的概念清晰、准确。尽管天安门、飞机、奖杯都是学生比较熟悉的物体,但要他们发现这三个物体的共同特征仍会有困难,教学时要给予适当的暗示或启发。如把手指或一根小棒放在天安门的中央,使学生注意到天安门的左右两边。

第二步是把天安门、飞机、奖杯的一个面画下来,得到图形,使研究的对象从物体转移为平面图形。这是教学不能忽视的环节,关系到轴对称图形的概念是否正确,会不会与物体的对称特征相混淆。

第三步通过对折图形,体会轴对称图形的特点,建立轴对称图形的概念。教材在第115页准备了天安门、飞机、奖杯的图形,可以把图形剪下来并对折。要求每个学生至少剪、折两个图形,发现的才是这些图形的共同特点。折痕两边的部分完全重合是轴对称图形的本质特征,也是概念的重要内涵。完全重合的两边必定大小一样、形状一样。但是,大小、形状相同的两边有时并不完全重合。所以,要让学生在对折的活动中仔细体会完全重合的含义,建立准确的数学概念。教材在天安门图形上介绍了对称轴,它是折痕所在的直线。介绍对称轴能帮助学生接受轴对称图形这个概念,在本单元不要求学生画出轴对称图形的对称轴,这是第二学段的教学要求。

第四步是判断四个几何图形是不是轴对称图形,进一步加强概念。判断的依据是图形对折,折痕的两边能不能完全重合。不仅凭视觉和想象作出判断,还要动手对折进行验证。平行四边形是判断的难点,要在对折活动中体会虽然折痕两边形状、大小一样,但不能完全重合,因此不是轴对称图形。要注意语言的严密,这个三角形(梯形)是轴对称图形,不能说成三角形(梯形)是轴对称图形,因为许多三角形和梯形并不是轴对称图形。

“想想做做”选择了一些常见的图案、英文字母、部分国家的国旗、部分交通标志,判断是不是轴对称图形。一方面使数学知识与现实生活联系起来,二方面帮助学生丰富社会知识,三方面能激发学习兴趣。教学时要注意三点,一是对个别较难识别与判断的图案、字母,要给学生必要的帮助。如紫荆花图案,英文字母n、s、z等。二是判断国旗的时候,不能只看整体形状,还要看图案,但不要关注颜色。三是结合判断交通标志,适当介绍这些标志的意思。

2.做轴对称图形,加深体验。

教材里安排了三次制作轴对称图形的活动。第一次是第57页例题,鼓励学生创造性地制作。第二次是第58页第3题,在方格纸上画出图形的另一半,组成轴对称图形。第三次是剪纸,做出轴对称图案或花边。这三次制作的目的,都是加深对轴对称图形的体验。

教学第57页例题要注意四点。一是适当出示一些材料,如纸和剪刀、钉子板和线、水彩画颜料和白纸,通过材料给学生启发,打开创作的思路。二是在制作前提醒学生想一想,怎样的图形是轴对称图形;在制作后看一看,做出的是不是轴对称图形。把数学概念贯穿在制作活动的全过程中,达到加强体验的目的。三是不要限于教科书里的几种制作方法,鼓励学生创新。四是加强作品的交流与,调动学生的积极性。

教学“想想做做”第3题要注意两点。一是让学生独立地画,在画的过程中体会画的方法。二是通过交流明白制作的要领:先画出图形另一半的各个顶点,再连成图形。

度轴对称图形教案篇八

《轴对称图形》是六年《数学》中继“认识圆的特征”,“计算圆的周长和面积”之后的一个学习内容。在本章教材的编排顺序中起着承上启下的作用。把它放在圆的后面,一方面可以更好地说明轴对称图形的特点,另一方面可以对所学的各种平面图形中轴对称的情况作全面的了解。从而更好地发展学生的空间观念。

掌握轴对称图形的概念。

能找出轴对称图形的对称轴。

学生已学过简单平面图形,对平面图形已有一定的认识,且初步了解研究平面图形的方式方法。高年级的学生具有好胜,好强的特点,班级中已初步形成合作交流,敢于探索与实践的良好学风,学生间相互讨论的气氛较浓。

根据基础教育课程改革的具体目标以及鼓励学生在具体、直观操作中发现知识是《数学课程标准》的一个特点。改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放式教学,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成、发展与变化。

1、通过教学向学生渗透事物的特殊性存在于普遍性之中,体会对称美。

2、通过操作活动培养学生观察能力,概括能力。

3、使学生直观的认识轴对称图形,在操作中理解掌握轴对称的概念,并能找出轴对称图形的对称轴。

2、指出:像前三个这样的图形,我们把它叫轴对称图形。

3、引入课题:轴对称图形

1、揭示轴对称图形的概念。

思考:现在你能用什么方法来检验一下这几个图形是轴对称图形。

a、学生试说轴对称图形的概念。

b、教师板书:轴对称图形的概念(完全重合重点强调)

c、让学生谈谈你是如何理解轴对称图形的。(以小组为单位,用手中图形举例说明)

d、教师结合图形说明对称轴的概念。

2、完成做一做。(让学生来汇报,同时电脑演示。)

3、我们已经学过不少平面图形,现在你动手折一折、看一看哪些图形是轴对称图形,对称轴各有几条,请你画出来。(汇报从杂乱----有规律)

4、完成做一做1(口答,屏幕演示)

5、完成做一做2(口答,屏幕演示)

教师小结:这节课我们学习了轴对称图形,知道如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。并且知道折痕所在的这条直线叫做对称轴,我们还通过动手操作知道我们学过的平面图形中哪些是轴对称图形以及各有几条对称轴。

6、质疑。

巩固练习:

1、数书p1021(口答)(屏幕)

2、数书p1024(口答)(屏幕)

3、画出每组图形的对称轴。

4、在自然界和日常生活中具有轴对称性质的事物有很多,你能不能举例说明?

5、欣赏具有轴对称性质的事物。

6、判断:

所有的平行四边形都不是轴对称图形()

所有的平行四边形都是对称图形()

度轴对称图形教案篇九

1. 通过观察和动手操作,使学生初步体会生活中的对称现象,认识轴对称图形的一些基本特征。

2. 使学生能在实物图案或简单平面图形中识别出轴对称图形,能用合理的方法做出轴对称图形,进一步丰富对图形的认识,发展初步的形象思维和空间观念。

3. 使学生在积极参与数学学习活动的过程中,对数学产生好奇心、求知欲,感受轴对称图形的对称美,激发对数学学习的积极情感。

拿出一张彩纸,对折后描出爱心图一半。

预设:(1) 左右两边是一样的;(2) 左右两边是对称的

小结:像这样的图形,两边是对称的。有趣吗?今天我们就来学习像这样的图形。(板书:对称)

二、 操作实践,探索新知

谈话:同学们想不想像老师这样也剪一个漂亮的爱心呢?请大家拿出剪刀和彩纸,跟老师一起剪一个这样的图形。

边讲解边演示,师生共同剪出一个爱心。

谈话:请大家继续看下面的几个图形。(课件出示天安门、奖杯、飞机等图片,见教科书附页)

提问:认识这些图形吗?这些图形有什么特点呢?(学生自由回答)

谈话:请同学们拿出自己从附页中剪下来的这几个图形,折一折、比一比,看看你能发现什么。

学生操作,同桌互相说一说。

反馈:谁愿意把你的发现说给全班同学听?

预设:(1) 这些图形对折后,两边都是一样的;(2)它们是对称的。

再问:对折后,哪两边完全重合了?(引导学生体会折痕的两边能够完全重合)

谈话:请同学们拿出另外两个图形,先折一折,看两边是不是也能完全重合;再指一指折痕,并和同桌说一说,每一个图形的哪两边完全重合。

指出:对折后两边能完全重合的图形,叫做轴对称图形。(板书:轴对称图形)这条折痕所在的直线,就是轴对称图形的对称轴。(板书:对称轴)

提问:你能用自己的语言说一说轴对称图形有什么特征吗?

预设:(1) 把一个图形对折后,如果两边一样,这个图形就是轴对称图形。(2) 把一个图形对折后,如果两边完全重合,这个图形就是轴对称图形。

追问:对折后,图形的两边怎样才叫完全重合?

预设:(1) 两边完全重叠在一起;(2) 两边的大小完全一样,形状也完全相同。

出示:等腰三角形、等腰梯形、正方形、正五边形、平行四边形、圆,并按顺序给图形编号。

启发:这些平面图形中,哪些是轴对称图形?哪些不是轴对称图形?(稍停)别忙着发言,先想一想,轴对称图形有什么特点?要知道一个图形是不是轴对称图形,可以怎样做?(可以把这个图形对折,看折痕的两边能不能完全重合)

谈话:请同学们从第一个信封中拿出这几个图形,先动手折一折,再和小组里的同学说一说,这些图形中,哪些图形是轴对称图形。

学生操作,教师巡视,并对个别学生进行必要的指导。

反馈:通过对折,你知道哪些图形是轴对称图形?(1号、2号、3号、4号、6号是轴对称图形)

指正方形,提问:这个正方形,为什么是轴对称图形?能演示一下吗?

追问:还有不同的折法吗?

学生演示各种不同的折法。

正方形不仅上下对折两边完全重合,左右对折或沿对角线对折,折痕的两边也能完全重合。不论怎样对折,只要折痕的两边完全重合,我们就说这个图形是轴对称图形。

指平行四边形,提问:这个平行四边形,为什么不是轴对称图形?

如果学生中有不同意见,则请判断正确的同学想办法说服不同意见的同学。

(1) 出示想想做做第1题。

谈话:你能判断下面的图形哪些是轴对称图形吗?

每一个图形,都让学生说一说自己是怎样想的,可以怎样对折,对称轴在哪里,再通过课件演示对折的过程,验证学生的判断。

(2) 出示拼音字母:wo ai chang shu。

谈话:这些拼音字母哪些可以看作是轴对称图形?

学生逐一判断,并说明理由。

提问:你知道这些拼音字母的意思吗?

全班齐读:我爱常熟。

谈话:今天我们研究了这么多轴对称图形,你们想不想自己动手做一个漂亮的轴对称图形?(想)请同学们拿出第二个信封中的材料,自己想办法做出一个轴对称图形来。

学生操作,教师巡视,并让学生把自己的作品展示在黑板上。

交流:黑板上都是同学们用剪纸的方法制作的轴对称图形,漂亮吗?

小结:同学们真聪明,做出了这么多美丽的轴对称图形,老师向你们表示祝贺。

电脑出示:五角星、大众汽车标志、工商银行标志、汉字中等图案的一半,学生回答后,展示整个轴对称图形。

提问:同学们,今天我们一起学习了轴对称图形,你有哪些收获?

着重引导学生说说轴对称图形的主要特征,以及判断一个图形是否是轴对称图形的方法。

谈话:轴对称图形给人一种对称、和谐的美感。其实,在我们的生活中就有许多美丽的对称现象,请欣赏。(课件播放:生活中的对称)

谈话:大家感觉美吗?如果把它们画下来就形成了我们今天学习的轴对称图形。希望同学们运用今天所学的知识,在生活中发现美,创造美。

度轴对称图形教案篇十

会画一个图形的轴对称图形,掌握画图的方法和步骤:先画出几个关键的对称点,再连线。

(二)过程与方法

通过观察、操作等活动,能在方格纸上补全一个轴对称图形。

(三)情感态度和价值观

让学生在探索的过程中进一步增强动手操作能力,发展空间观念,培养审美观念和学习数学的兴趣。

教学重点:掌握画图的方法和步骤。

教学难点:能在方格纸上画出轴对称图形的另一半。

方格纸、课件。

(一)复习导入

教师:同学们,我们昨天认识了轴对称图形,谁能说说它有什么特点?

预设:对应点到对称轴的距离相等。

(二)探索新知

1.画出轴对称图形。

教师:根据对称轴,补全下面的轴对称图形。

教师:要想顺利的画出另外一半的图形,你有什么办法呢?根据是什么?

(小组讨论,全班交流)

预设:我们刚刚学习了轴对称图形的对称点的特点,可以利用这个方法来画。

教师:很好,怎样来找点呢,所有的点都找吗?

预设:不用,只要数出关键点到对称轴的距离;在对称轴的另一侧点出关键点的对称点;顺次连接描出的各个点即可。

教师:谁能来展示一下你画出的轴对称图形的另一半?

学生展示自己的作品。

2.探究结果汇报。

教师:同学们,今天我们学习了哪些知识?

预设:在方格纸上画出轴对称图形的另一半时,先确定对称轴,找出关键点,数出关键点到对称轴的距离,然后点出关键点的对应点,最后依次连接各个对应点,就可以画出轴对称图形的另一半。

教师:你能简要概述一下上面画轴对称图形另一半时的步骤吗?

学生:确定对称轴后,一找关键点;二数出距离;三点对应点;四连线。

引导学生思考:补全轴对称图形的方法是这节课的难点,在学生充分的讨论后,通过学生的实践来总结出方法,进行提炼,学生记忆的会更深刻。

度轴对称图形教案篇十一

3.培养学生的动手试验能力、归纳能力和语言表述能力。

一、探究活动(一)

1.动手做剪纸:(1)将一张长方形的纸对折;(2)在纸上画出一个你喜欢的图形;

(3)沿线条剪下;(4)把纸展开;

2.观察下面的图形,它们有什么共同特征?

3.结论:

如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就是它的。这时,我们也说这个图形关于这条直线(成轴)对称。

二:尝试应用(一)

1.先想后做:下面图形是轴对称图形吗?如果是,请画出它们的对称轴。

等腰三角形等腰梯形等边三角形

平行四边形正方形圆

2.想一想下列英文字母中,那些是轴对称图形?

3.猜字游戏(抢答)

在艺术字中,有些汉字是轴对称的,

猜猜下列是哪些字的一半?

三:探究活动(二)

1.(1).看下面两组图形,和刚才的蝴蝶,枫叶等比较,有什么不同?

第一组第二组

(2)思考:这两幅图有什么共同点?

2.结论:

把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形这条直线叫做,折叠后重合的点是对应点,叫做。

四:尝试应用(二)

1.下面给出的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对称点。

2.说出图中点a、b、c、d、e的对称点。

3.思考:(1)成轴对称的两个图形全等吗?

(3)把成轴对称的两个图形看成一个整体,它就是一个什么图形?

4.比较归纳。

轴对称图形两个图形成轴对称

区别个图形个图形

联系1.沿一条直线折叠,直线两旁的部分能够

2.都有

3.如果把两个成轴对称的图形看成一个图形,那么这个图形

就是如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条直线

五:链接中考

1.下图是由小正方形组成的“l”形图。请你在下图中添画一个小正方形,使它成为轴对称图形。

六:智力测验:

1.

2.一辆汽车的车牌在水中的倒影如下图所示,你能确定该车的车牌号码吗?

七:课堂小结:本节课你有什么收获?

度轴对称图形教案篇十二

议一议:观察图片揭示轴对称概念:

(1)演示操作。

(2)用一张正方形的纸片,

折叠后,把下列图形剪出来,并与同学交流你的剪法.

3、探索思考:

如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.

自学情况在黑板上反馈出来。

(每组4人上黑板)。

指出下列图形中的轴对称图形,画出它们的`对称轴.

1、讨论、交流:轴对称与轴对称图形的区别与联系.

2、说说生活中的轴对称和轴对称图形,与同学讨论、交流,同小组互相补充.

1、课本第8页练习:1、2、3。

2、判断题:

(2).两个图形成轴对称,这两个图形是全等图形.………………()。

(3).全等的两个图形一定成轴对称.……………()。

(4).轴对称图形指一个图形,而轴对称是指两个图形而言………()。

度轴对称图形教案篇十三

优秀教案片段:

(师利用多媒体课件出示一些轴对称图形)

师:小朋友们,这些图形美吗?仔细观察这些图形,它们有 哪些特点?

生:这些图形的两边都一样。

生:这些图形都是对称的。

师:你们想自身动手做一个漂亮的对称图形吗?

生:想。

师:那就抓紧时间拿出你们准备的彩纸和剪刀,开始行动吧!不会做的小朋友可以请老师和同学帮助。

设计说明:课前我已了解到三年级同学在美术课时已学过制作对称图形。所以,我就先让同学自由创作,并充沛尊重同学的个性差别,对个别动手能力较差的同学适时给予协助引导,对于一些动手能力较强的同学,和时给予鼓励肯定。

(剪图形活动结束)

师:现在请小朋友们举起你剪好的图形,让老师看一看,大声说出它的名字。

生:(苹果、松树、小房子、小花、蝴蝶、飞机、心形、图形……)

师:请一位小朋友说一说你做的是什么图形?你是怎么做的?

生:我做的是一个圆形,我先把一张纸对折,然后用量角器在上面画出半个圆形,再剪下来,打开,就成了一个完整的圆形了。

师:你知道利用工具来做,真不简单,还有谁愿意说?

生:我做的是一棵松树,我也是把一张纸对折,先在上面画出一棵松树的一半,然后剪下来,打开,就成了一棵完整的松树了。

师:为什么要先把一张纸对折?

生:因为假如不对折,剪出的图形两边就不一样大了。

(仍有同学手高高举起)

设计说明:展示作品时,同学学习兴趣高涨,通过相互之间的交流,使同学在做数学的过程中初步感知轴对称图形的特征。

生:对折后,两边的图形重合了。

生:不一样。

师:哪些地方不一样?

生:(指着老师手中的枫叶图形)

这个图形对折后两边的图形不一样大,一边大,一边小。

老师手中的图形对折后,两边的图形没有重合完,下边还多出来一局部。

师:(趁机问)你们手中的图形对折后,是怎样重合的?

生:全部重合完了。

师:有没有多出来的局部?

生:没有。

师:有没有缺少的局部?

生:没有。

师:(指着同学的图形)这种重合就叫做完全重合。

师:(利用蝴蝶图形再次演示)像这种,对折后两边能够完全重合的图形,我们就把它叫做轴对称图形。

设计说明:我让同学充沛利用自身剪出的图形作为学具,指导同学亲自动手折一折,看一看,比一比,观察比较出两种图形对折后的不同情况,让每一位同学都主动参与,动手操作,亲身经历知识形成的过程,发现轴对称图形"对折后,两边完全重合"的特征。

师:现在,请小朋友们打开你的轴对称图形,仔细观察图形的中间,你又发现了什么?

生:(中间有1条线)

师:这条线是怎么得来的?

生:刚才我们对折的时候留下来的折痕。

师:刚才我们对折的时候就是沿着这条折痕所在的直线怎么样的?

生:对折的。

师:假如我们不沿着这条直线对折会怎么样?

生:两边的图形就不能完全重合了。

师:这说明这条线怎么样?

生:很重要。

师:你能给这条线取个名字吗?

生:中间线。

师:为什么把它叫做中间线?说说你的理由好吗?

生:因为这条线在这个图形的正中间,所以我把它叫做中间线。

师:还有谁想说?

生:对折线,因为这条线是我们对折后留下来的。

生:重合线,因为沿着这条线对折两边的图形就完全重合了。

师:小朋友们给这条线取的名字都非常有创意,想听数学小博士是怎么说的吗?

(课件演示:一个图形沿一条直线对折后,两边的图形能够完全重合,这个图形就是轴对称图形,折痕所在的这条直线叫对称轴。)

设计说明:在这一教学环节中,我再次引导同学亲身经历探索、发现知识的过程,体现同学的主体性,让同学根据自身的理解,给"这条线"取名字,培养同学的创新思维和空间想象能力,加深对"对称轴"的理解。在让同学通过动手操作,初步感知的基础上,配合课件动态出示"轴对称图形"的概念,使同学的认知结构逐步得到完善,由感性认识上升到理性认识。

【本文地址:http://www.xuefen.com.cn/zuowen/16044370.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档