"总结是对经验和教训的总结和归纳,是我们成长的一个重要途径。"写总结时,可以尝试采用一些实例或案例,增加总结的具体性。下面是一些总结的示例,希望能够对大家写好总结提供一些建议和参考。
数学近似数教学设计篇一
本节课从生活情景入手,让学生知道数学源自于生活,很大空间给了学生独立思考,在真实化的情境中体验感悟数学。在教学例7的时候,以谈话方式引出数学问题,营造一种利于学习的氛围,引导学生体验数学来源于生活,让学生经历求商的近似数的过程,更加能让学生加深理解记忆。
学生总结出方法后,再进行加强联系。但在练习中我发现有一部分学生还是不能明白“比要求多除一位”的意思,比如要求商保留三位小数,学生做竖式时就只除到小数第三位,没有多除一位,导致结果出错。因此,只要不断强调方法中加强巩固,学生熟悉了自然错误就减少了。
在求商的近似数时,学生最感到困难的是根据实际情况进行保留,提醒学生并不是任何时候都可以用四舍五入的方法保留,有时要用“进一法”,有时用“去尾法”,我让学生举例说说什么时候“进一”,什么时候“去尾”,帮助学生理解。
数学近似数教学设计篇二
教学内容:
教材第11~12页“近似数” “试一试”“填一填、说一说”
教学目标:
1、能结合生活实际判断哪些数是精确数;哪些数是近似数。
2、能用“四舍五入”的方法得到一个数的近似数。
教学重点:
用“四舍五入”法求一个数的近似数。
教学难点:
能根据实际问题的需要求一个数的近似数。
教学具准备:
电脑课件 。
一、创设情境,提出问题。
教学内容。
教师活动。
学生活动。
课件逐一出示图片及一组数据。
根据这组数据区分准确数和近似数。思考:你是怎样理解近似数的?
你知道生活中的哪些近似数?
提出课题:用“四舍五入”的方法取一个数的近似数。
学生观察倾听。
学生思考,个别回答。
学生思考举例。
二、合作交流,共同探究。
教学内容。
教师活动。
学生活动。
教材第11页“填一填、说一说”
电脑出示:教材第11页“填一填、说一说”引导学生阅题。,并逐一解决问题。
1、教学问题1。怎样用四舍五入法求这个数的近似数呢?首先引导学生理解四舍五入到十位的含义。然后引出小淘气为我们提供了解决问题的方法,根据淘气提供的办法引导学生共同探究,得到所需的近似数。最后教学约等号的意义、读、写。
2、教学问题2。在原有的基础上引导学生解决问题,。
3、教学问题3。学生独立思考后请个别回答。
4、教学问题4。出示提示语,学生独立完成后集体订正。
5、解决以上几个问题后,引导学生谈发现从这组近似数中,你发现了什么?
6小组讨论:怎样用四舍五入法取一个数的近似数?
学生观察思考积极参与。
学生独立思考个别回答。
学生独立完成再集体订正。
学生独立思考个别回答。
小组合作交流。
三、巩固练习,提高能力。
教材内容。
教师活动。
学生活动。
第12页试一试3。
1、按要求填表,说一说你发现了什么。
2、拓展题。
19□785≈20万。
9□4765≈900000。
60□907≈60万。
9□8765≈1000000。
3、第12页试一试1、2。
将表格按横行分三次出现。
1、请学生代表完成表格中的第一行,将1个数四舍五入到十位、百位、千位、万位。
2、出示第二行,让全体学生独立完成。
3、出示第三行,让全体学生独立完成。
4、通过练习交流发现。
逐一出示。
填写在课本上。
4位学生板演,其余学生观察思考。集体订正。
独立练习后集体订正。
互相交流。
独立思考完成。
集体订正。
独立作业。
数学近似数教学设计篇三
小数除法经常会出现除不尽的情况,或者商的小数位数较多的情况。但是在实际工作和生活中,并不总是需要求出很多位小数的商,而往往只要求出商的近似值就可以了。本节课是在学生已经学过求一个小数的近似值,以及求小数乘法的积的近似值的基础上进行教学的,这里只是通过例7一道计算钱数的应用题,让学生自己想一想,怎样取商的近似值。由于计算钱数时一般算到“分”就可以了,那么题中的结果应保留两位小数,除的时候要除到千分位,也就是要先算出三位小数。然后让学生自己确定,怎样把小数点后面第三位小数按“四舍五入法”处理。接着,让学生试算“做一做”中的练习题。这一题是让学生根据不同要求取商的近似值。使学生更明确,算出的小数位数都要比要求保留的小数位数多一位,然后按“四舍五入法”省略尾数。
1、在读题中理解题意,渗透思想教育。例题给学生留出了更为自由发挥的空间,一句“从中读出了什么信息”的开放问题,引导着学生建立条件与条件间的联系,培养了学生根据条件提出问题的能力,提高了学生收集、处理信息的水平。
2、在试算中发现问题,联系旧知思考。教师有意制造“除不尽”的矛盾冲突,把学生推到自主探究的前台。学生联系求小数的近似数这一旧知,明确了解决问题的方向——取近似数;把握题目中的一个“元”字,结合已有的关于人民币的处理经验,获得了保留两位小数的信息,使学生亲历了“做数学”的过程,学会了用旧知识解决新问题的策略,体验到了学习数学的快乐。
3、在交流中相互启发,探寻取值方法。除到小数位数的哪一位是求商的近似值的关键,教师以同一问题“还要继续除下去吗?”充分开发和利用教学中的现有资源,加强生生之间的互动,在对比中探寻取值方法,把教学建立在更广阔的交流背景之上,为课堂教学注入新的活力。
4、在小结中对比沟通,形成整体认识。充分利用课堂,致力于学生反思意识的培养,有利于学生把零碎的知识串联起来,建构自己的知识系统;让每一位学生站在元认知的高度重新审视自己的学习方式,这既是对知识本身的反思,更是对整个学习过程的反思,对知识、情感、能力、方法等各个方面的反思,这无论是培养学生从小养成良好的学习品质,还是对学生的终身发展都有着重要的意义。
从课后的练习中来看,学生对于这部分内容的算法是清楚的,但是在笔算的错误率还比较高,还需要对计算技能进行训练。
将本文的word文档下载到电脑,方便收藏和打印。
数学近似数教学设计篇四
先说说这节课的三个难点:1,虽然学生在四年级上册已经学习了“求整数的近似数”,但相隔这么长时间,况且在后来的学习中,又不怎么用到这一知识,所以,学生已有的经验淡忘了;2、对于例题中“精确到十分位”这样的数学术语,学生还是第一次接触,不容易理解这句话的含义。即使学生读懂了题意,理解了精确到十分位就是保留一位小数,也必须熟练掌握“四舍五入”这一技术。弄清楚要看十分位下一位百分位上的数决定是舍还是入。学生会误以为精确到十分位就是将十分位上的数四舍或五入。不掌握技术要领,题目要求一有变化,学生会像无头的苍蝇,不知从何下手。3、是遇到需要连续进位的。如:将0.996保留两位小数。这里有两次向前进“1”第一次是因为千分位上是6,比5大要向百分位进l;第二次是因为百分位上9加上进来的l,满十写0向十分位进1。两次进1,原因却各不相同。特别是第二次进1,由于小数加法的内容位于本单元之后学习,因此,这又是一个难点。有的学生不理解进位的原因,在后面练习中遇到题目中有数字9的,就会不管三七二十一,都往前进1。几个难点像三个难关挡在学生面前,学生当然不容易学懂。
我想,在设计这节课的时候应该想办法突破上面三个难点,是不是可以这样做:
一、新课前的复习中,应当想办法唤醒学生对以前知识的记忆:如56640=( )万 327900000=( )亿 56640≈( )万 327900000≈( )亿 复习中,唤起学生“用四舍五人求整数近似数方法”的回忆,明确求“用万或亿作单位的近似数”时,要看万(或亿)后面一位干位(或千万位)上的数来决定“四舍”还是“五入”。在此基础上,引出本课学习内容“继续用四舍五入的方法求小数的近似数”。
二、新授中要由浅入深,逐步掌握“求小数近似数”的方法:1.教学“试一试”,初步掌握“保留一位小数”的方法。2.教学例题第1个问题,再次体会“保留一位小数”的方法。3.教学连续进位的题目,进一步积累经验。4.比较取近似数1.5和1.50方法的不同,感知近似数1.50比1.5更精确。然后提问:近似数1.50末尾的“0”能去掉吗?为什么?5.结合板书,总结求小数近似数的方法。
三、巩固知识,完善“求近似数”的认知结构。要设计有针对性的课堂作业。
例如:按要求写出小数的近似数:
9.9674≈ (精确到个位)。
9.9674≈ (保留一位小数)。
9.9674≈ (精确到百分位)。
这是我的一些浅薄想法,希望老师们给予点评。
数学近似数教学设计篇五
教学要求:使学生理解商的近似值的意义;掌握用“四舍五入”法取商的近似值的方法,能正确地按照题意求出商的近似值。
教学过程:
一、复习。
1.口算。
0.63?7=0.090.24?0.3=0.80.65?0.13=5。
72?144=0.51.44?0.6=2.45.6?0.08=70。
2.按照“四舍五入”法求出下面各小数近似值。
保留整数。
保留一位小数。
保留两位小数。
保留三位小数。
板演后结合算式教师把计算法则再复习一遍。
二、新授。
1、引入新课。
小数除法有时会碰到永远除不尽的情况,有时虽然能除尽但实际上不需要那么多的`小数位数,这样求出的商就只要按题目要求取它的近似值。今天我们学习:求商的近似值。(板书课题)。
2.教学例6。
例6:一个玩具厂试制了35架玩具飞机,共花156元,平均每架飞机多少元?
(1)读题、审题,根据题目说出已知条件和问题。列出算式。
156?35?4.46(元)。
(2)指导学生按照整数除小数的计算法则进行计算:
(3)除到小数第三位商时,组织学生讨论。
1.为什么这里除到第三位就可以了?(计算钱数时,通常只算到分,也就是说,得数只要保留两位小数就可以了,除到小数第三位就行了)。
2.现在该怎么办?(用“四舍五入”法取近似值)。
(4)讨论书写的计算格式。
答:平均每架玩具飞机约4.46元。
(5)指出答句中“约”是什么意思?
(6)教师归纳小结:计算钱数的时候,通常只算到“分”,算式只要保留两位小数,商除到小数第三位就可以了。千分位上是7,根据“四舍五入法”,7向前一位进1,5变成6,约等于4.46,写答句时要加上一个“约”字,表示近似值。
3、补充例题:计算132?437(得数保留两位小数)。
a)学生独立进行计算。
b)讨论得数保留两位小数的一般方法。
4、总结:算小数除法,需要求商的近似值的时候,一般除到比需要保留的小数位数多一位,再按照“四舍五入法”把末一位去掉。
三、巩固练习。
1、指导看书,后练习课本24页做一做。
2、练习六第1,3题。
四、作业。
练习六第2、4、5题。
数学近似数教学设计篇六
其次我根据学情补充介绍了一种求商近似数的简便方法.即除到要保留的小数位数后不再继续除,只把余数同除数做比较,若余数比除数的一半小,就说明求出下一位商要直接舍去;若余数等于或大于除数的'一半,就说明要在已除得的商的末一位上加1。介绍了这种方法感觉好的同学算得更快了,但悟性较差的学生听完后连最基本的保留两位小数应除到小数点后面第几位也混淆不清了。所以下次再教时,此方法的介绍时间可以适当后移,放在练习课上。
数学近似数教学设计篇七
各位专家、评委、老师,大家好,我是大连代表队的3号选手,我叫穆晓慧。很荣幸能站到这个讲台上来。面对这么多的教育大家,我的内心很是惶恐,不敢说点评,因为会有班门弄斧、关公门前耍大刀的感觉,那我就从本节课的教学设计与实施方面谈一下我的几点认识,说出来与大家探讨,不当之处或有贻笑大方的地方,还望各位领导老师不吝批评指正。
1、教学目标落“实”。
纵观本课的教学,可以看到教师很好地完成了本课预定的教学目标,即使是今天的学生群体,也都有了自己的独特理解和掌握。学生经历了从生活中寻找近似数的过程,感受了近似数的价值,经历了探究求一个数的近似数的过程,理解了求近似数的方法,这样知识与技能目标,过程与方法目标都得以顺利的完成。
估算是新课程中十分重视和加强的内容,而求近似数是进行合理估算的知识基础之一。但本课的教学设计没有把认识近似数的目标仅仅指向为估算教学服务,而是把建立数感也作为本课教学的重要目标之一。从实际的教学过程中,我们不能看出这一目标的达成。
本节课是本册教材起始单元,属于数与代数这一领域的内容。教师在备课和上课的过程中没有因为学生对近似数的知识不生疏,而使近似数的产生的过程,近似数的价值及如何求近似数等内容流于形式。我们可以看到在教师朴实的设计中处处渗透着教者的细心。在交流的过程中感受数据的实际意义,在自主学习的过程中体会近似数的意义,在探究讨论的过程中掌握了用四舍五入法求近似数的方法。
本课的主题图分为两个部分,一是生活中的常见数量,二是测量的数据。教材之所以以这样的内容作为主题情境图,就是要学生感受到不仅数据会根据需要求近似数,即使在测量中由于测量的工具,测量的方法等因素的影响,也会产生误差,所以其产生的测量数据也是近似数,从而感受到现实世界中数的实际意义,也为学生的数感建立做了很好的铺垫。本课教师紧紧抓住这一主线,充分而全面的展示了本课的教学内容,同时教师也没有拘泥于教材所提供的主题情境,而是创造性地使用了教材,如对主题图的取舍,对植树棵树的改变以及为学生的学习设置适度的障碍等等。
教师引领学生交流自己所搜集的数据,并引导学生观察这些数据的特点,根据这些特点来分类,体现了分类的标准在分类中的作用,这不仅渗透了分类的数学思想,抽象出准确数和近似数,同时也建立了数感。我们还注意到,教师在引导学生进行交流的过程中,鼓励学生用不同的方式表达学生所搜集的近似数,如用“左右”、“多一些”、“少一些”和大约来表示近似数,和对“约等于15万”的不同表达方式等,这种多样化的表达方式满足了学生多样化的学习需求。
教师充分利用了学生和教师搜集的贴近学生实际的生活背景数据。因为心理学的研究表明,学习内容和学生的生活背景越接近,学生自觉接纳知识的程度就越高。所以学生对自己所搜集数据的分类,对教师出示的数据的分析,再对自己搜集的数据进行分析等内容使得近似数概念的产生以及近似数产生的必要性、价值、概念本身等教学重点就得以突出。再之后教师出示了经过自己处理过的教材主题图,让学生感受到现实生活中会根据需要对数据求不同的近似数以及求近似数的方法,本课的教学难点的出现就是水到渠成的事了,同时这样也使学生初步感受了“四舍五入法”出现的必要性,产生了进一步学习的需要。正是由于教者对教材的朴实、细致、清晰的分析,教学的有效性才得以顺利达成。
数学近似数教学设计篇八
使用说明及学法指导:
1、结合问题阅读例6的主题图及题目,用红笔勾画出疑惑点;
2独立思考自主完成p.10页的“做一做”学习任务,并总结规律方法。
3、针对自主学习中找出的疑惑点,课上小组讨论交流,答疑解惑。
学习目标:
1、使学生会根据需要,用“四舍五人法”保留一定的小数位数,求出小数的近似值。
2、使学生会根据需要,用“四舍五人法”正确求出积的近似值。
3、体验自主探究、合作学习带来的学习乐趣。
学习重点:用“四舍五人法”截取积是小数的近似值的一般方法。
学习难点:根据题目要求与实际需要,用“四舍五人法”截取积是小数的近似值。
一、自主学习。
预习(课前)任务:用“四舍五人法”求积的近似数。
1、用“四舍五人法”求出每个小数的近似数。
保留整数保留一位小数保留两位小数。
2.095。
4.307。
1.8642。
2、阅读教材第10页主题图,理解图意,并把解题过程补充完整。
3、练一练:p.10页的“做一做”。
4、想一想:要保留一、两位小数,如何求积的近似数?
5、思考发现:求积的近似数所用的方法同求一个小数的近似数的方法(),关键是看()。
任务:探究积的近似数方法(课内):
1、按要求求下面小数的近似数。
435.5(整数)14.53(一位小数)4.537(两位小数)。
二、合作探究、归纳展示(小组合作完成下列各题,一组展示,其余补充、评价)。
1、求积的近似数方法:先根据,再按法保留一定的小数位数,关键是看。
2、按要求保留积的小数位数(依次分别保留一位、两位、三位小数)。
7.5×2.31.56×0.17。
3、“四舍五人法”求积的近似数关键是看.是否满五.
过关检测:
1、1.61×1.5的积有()位小数,保留两位小数约是()。
;0059×1.7的积有()小数。保留三位小数约是()。
2、《小小科学》(月刊)每本5.80元,小华打算订一年的,要花多少钱?(得数保留整数)。
3、两个因数的积保留两位小数的近似值是3.58。三位小数准确值最小是(),最大是().
数学近似数教学设计篇九
p23例7、做一做,p26练习四第10、11题。
1、使学生学会用“四舍五入”法取商的近似数。
2、培养学生的实践能力和思维的.灵活性,培养学生解决实际问题的能力。
3、引导学生根据生活中的实际情况多角度思考问题,灵活地取商的近似数。
知道为什么要求商的近似数,会用“四舍五入”法取商的近似数。
能根据生活中的实际情况多角度思考问题,灵活地取商的近似数。
一、复习。
1.按“四舍五入法”,将下列各数保留一位小数.。
6。037。98。
2.按“四舍五入”法,将下列各数保留两位小数.。
8。7857。6024。0035。8973。996。
做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.。
3。计算0。38*1。14(得数保留两位小数)。
二、新课。
1.教学例7:
教师出示例6,口述图意,再列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候要除到哪一位?为什么?(应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)横式应该怎样写出?教师板书。
教师问:表示计算到“角”需要保留几位小数?除的时候要除到哪一位?应该约等于多少?
教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)。
我们学习班了求积的近似值和求商的近似值,比一比这两者有什么相同点和不同点?
2.p23做一做:
教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)。
师:解题时用了什么技巧?
三、巩固练习。
3.81÷732÷42246。4÷13。
2、p26第10题第(1)题。
四、作业:p26第10题第(2)题、第11题。
本以为求近似数是教学难点,所以在新授前安排了大量相关知识的复习。但在实际教学中才发现计算才是真正的教学难点,由于例题及做一做中所有习题全是小数除以整数,所以当作业中出现小数除以小数计算时,许多学生装都忘记了"一看,二移"的步骤。所以在设计巩固练习时应增加小数除以小数的练习。
其次我根据学情补充介绍了一种求商近似数的简便方法。即除到要保留的小数位数后不再继续除,只把余数同除数做比较,若余数比除数的一半小,就说明求出下一位商要直接舍去;若余数等于或大于除数的一半,就说明要在已除得的商的末一位上加1。介绍了这种方法感觉好的同学算得更快了,但悟性较差的学生听完后连最基本的保留两位小数应除到小数点后面第几位也混淆不清了。所以下次再教时,此方法的介绍时间可以适当后移,放在练习课上。
数学近似数教学设计篇十
一、教学内容的说明:(教材分析)。
本单元是在学生对小数和分数有了初步认识的基础上进行学习的。这部分内容是学生系统学习小数知识的开始,同时又是学习小数四则计算的基础。
信息窗呈现了三个同学用游标卡尺测量绿毛龟蛋长径和宽径的情境,通过学生质疑测量同一个蛋的长度,为什么两人读数不一样的问题,引入对小数的近似数知识的学习。
二、教学目标:
依据《数学课程标准》的要求,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求,根据本节课的具体内容,我制定了以下教学目标:
知识与能力目标:
掌握把一个较大的数改写成用万或亿作单位的数后再求它的近似值。能正确区分改写和保留的要求以及各自的方法。
掌握用四舍五入法求小数的近似值的方法。使学生理解保留的位数越多,精确度就越高。
过程与方法目标:
通过情境图引出怎样求小数的近似数,学生在教师的指导下探索求小数近似数的方法,并在此基础上学习和区分改写和保留的不同要求和方法。
对所学知识进行拓展,迁移到新知,培养学生知识迁移能力,和利用已掌握知识探索新知识的能力。
情感态度与价值观目标:
让学生体会知识间的紧密联系,体验获取新知的乐趣。
基于以上的分析我确定本节课的教学重点是:
教学难点是:
理解保留和精确之间的区别与联系以及保留位数越多,精确度越高。
三、教学方法。
为了突出重难点,使学生达到本节课设定的目标,我准备采用以下教学方法:
教法:教学充分以学生为主体,调动学生的学习积极性,通过学生发现问题、提出问题、小组合作讨论解决问题,挖掘学生的潜力,培养学生的能力,提高学生的素质。
学法:为了更好地突出、突破重难点,按学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在观察比较概括应用的学习过程中掌握知识。激发每一个学生的学习兴趣,同时让学生获得成功体验!
四、教学过程的设计:
为了全面、准确地引导学生探索发现求小数近似数的方法,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了复习旧知,探索新知,巩固练习,课堂小结,四个环节。
第一个环节:复习导入。
这一环节我设置了两个习题:
1、把下面各数省略万后面的尾数,求出它们的近似数。
9865345874132100398210。
2、下面的里可以填上哪些数?
32()64532万47()05047万。
在此环节重点让学生说一说自己是怎么想的,四舍五入是什么意思,为后面的学习做好知识迁移的准备。
第二个环节:探索新知。
这一环节有两个知识点:求小数的近似数;把一个数改写成用万或亿作单位的数。
您现在正在阅读的小学数学《求小数的近似数》说课稿文章内容由收集!本站将为您提供更多的精品教学资源!小学数学《求小数的近似数》说课稿从而引导学生仿照求整数近似数的.方法(四舍五入法)来求小数的近似数:
出示:3.94保留一位小数是多少?3.94保留整数是多少?
学生分组讨论,自主探索求小数近似数的方法,再通过学生的汇报,总结出:求小数的近似数和整数一样也可以用四舍五入法,进一步让学生明白:求近似数时,的数保留整数,表示精确到个位,保留一位小数,表示精确到十分位,保留两位小数,表示精确到百分位。
小组讨论:比较3.9和4与精确值3.94比较谁更接近3.94。总结出:保留的位数越多,精确度越高,保留的位数越少,精确度越低。
再出示:绿毛龟蛋(2.04厘米)的宽径是多少厘米?(保留一位小数)并让学生思考:末尾的0可不可以省略,进一步让学生体会求一个小数的近似数时保留位数不同,精确度也不同,而且0在这里也起到了占位的作用。为了巩固这一知识,我设计了一个动手测量课桌的活动,比一比谁的结果更精确,说明理由。
第二个知识点:把一个数改写成用万或亿作单位的数。
出示课本71页材料,引导学生阅读材料,说一说能获得哪些信息,并提出相关问题。
(1)把1754000改写成用万作单位的数是什么?
先让学生尝试改写,根据学生的情况,如果有正确的改写可以先让学生讲解他的方法,如果没有,老师可作说明:改写时在万位后面点上小数点,写上万字,去掉小数末尾的0就可以了。
作单位的数,让同学们独自探索方法,同桌交流,在此基础上再引导学生用四舍五入法求出287.95亿的近似数。
第三个环节:巩固练习。
在这一环节安排了自主练习的4个小题。
1-3题是用多种形式巩固求小数近似数的基本练习题,让学生独立完成,订正时关注有困难的学生,切实巩固求小数近似数的方法。
4题用把大数改写成用万或亿作单位的数。学生独立完成,交流时重点让学生说一说是如何改写的。
第四个环节:课堂小结。
为了使学生对本节课所学的内容有一个整体的感知,我让学生共同回忆本节课研究了哪些问题?通过这些问题的解决你有哪些收获?自己在学习上有哪些提高?让学生在交流的过程中进一步深化求一个小数的近似数的方法,感受知识之间的内在联系,同时增强对迁移推理的数学思想的认识。
布置作业:
针对学生的差异布置适当的作业,既能使学生掌握知识,又能使有余力的学生得到提高。
板书设计:
板书作为课堂教学语言的另一种表现形式,它具有启发性、艺术性、实用性,所以本节课我注重发挥其引导功能,做了一下设计:
数学近似数教学设计篇十一
多媒体课件。
把下面各数省略万位后面的尾数,求出它们的近似数:
12953≈986534≈560890≈697010≈。
1、课件出示情景图1:
师:(1)为什么售货员阿姨要把17.904元取近似数为17.90元呢?(提示:人民币)。
(2)是怎样把17.904取近似数为17.90的呢?(四舍五入)。
2、课件出示情境图2:为什么可以这样说呢?
3、师:我们都知道求整数的近似数时,可以用“四舍五入”法,那么求小数的.近似数时,也可以用“四舍五入”法。
1、课件出示:0.984≈(保留两位小数)。
小于5,舍去。
师:保留两位小数,就要将第三位小数省略,精确到百分位,看千分位上的数。
2、课件出示:还可以说课桌高约1米。为什么可以这么说?
0.984≈(保留一位小数)。
大于5,向前一位进1。
师:在表示近似数时,小数末位的0不能去掉。
3、课件出示:想一想0.984≈(保留整数)。
让学生独立思考完成,老师进行总结。
总结:求近似数时,(1)保留整数,精确到个位,看十分位;
(2)保留一位小数,精确到十分位,看百分位;
(3)保留两位小数,精确到百分位,看千分位;
2、用“四舍五入”法写出近似数。(课件出示)。
学生独立完成,抽生到前面演示并讲解。
教材86页第三题。
这节课你都学到了哪些知识?还有什么不明白的吗?
数学近似数教学设计篇十二
(二)使学生学会把较大的整数改写成以“万”或“亿”作单位的小数.。
教学重点和难点。
求一个小数的近似数及把较大数改写成以“万”或“亿”作单位的小数是教学重点.。
学习新课。
(一)复习准备。
求一个小数的近似数与求整数的近似数相似,我们今天来研究怎样求一个小数的近似数.。
数学近似数教学设计篇十三
数学源于生活,本节课从生活的“真实”入手,从自然引入,还情境为生活本来的面貌,给学生自主思考的时间,自由表达的空间,让学生情入生活、心入生活,在真实化的情境中体验、感悟数学知识。收到了良好的教学效果。
我在教学《商的近似值》一课时,对教材进行处理,我有意识地开发生活资源。首先教师出示例7:爸爸给王鹏新买了1筒羽毛球。一筒羽毛球是12个,这筒羽毛球是19.4元,买一个大约要多少钱?并以谈话的方式引出数学问题,营造一种有利于学生学习的氛围,使其积极主动地学习。同时体现了数学来源于生活。再要求学生根据提出的信息列式计算.当学生除到商为两位小数时,还除不尽。教师巡视中发现,有的学生一直往下除根本没有停下来的意思。这时教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)听后,同学们都明白了保留两位小数的道理,使学生学会了根据实际生活需要用四舍五入法求商的近似数。
本以为求近似数是教学难点,所以在新授前安排了大量相关知识的复习.但在实际教学中才发现计算才是真正的教学难点,由于例题及做一做中所有习题全是小数除以整数,所以当作业中出现小数除以小数计算时,许多学生装都忘记了“一看,二移”的步骤.所以在设计巩固练习时应增加小数除以小数的练习.
其次我根据学情补充介绍了一种求商近似数的简便方法.即除到要保留的小数位数后不再继续除,只把余数同除数做比较,若余数比除数的一半小,就说明求出下一位商要直接舍去;若余数等于或大于除数的一半,就说明要在已除得的商的末一位上加1。介绍了这种方法感觉好的同学算得更快了,但悟性较差的学生听完后连最基本的保留两位小数应除到小数点后面第几位也混淆不清了。所以下次再教时,此方法的介绍时间可以适当后移,放在练习课上。
其实在上课的时候,不能因为需要保留两位小数或保留一位小数而强调学生说只能除到小数部分的第三位或第二位,遇到学生除到了比实际需要更多的数位,应加以鼓励表扬,并及时提示学生根据实际需要去除,决不能“一味扼杀,一棒子打死”。这也许是学生创新的灵感之花,是一种钻研精神的表现,新课程改革需要的是这样的教学,也需要这样的老师,更需要作为教师的我们要培养有创新精神的学生。新教材为我们提供了广阔的思维空间,我们要结合课改,挖掘教材,合理、科学的利用教材,全面贯彻课改精神,实现学生在学习活动上的“知识与技能、过程与方法、情感态度与价值观”三维目标而努力教学,这样才无愧于学生,才能称得上是一名新课改下的老师。
数学近似数教学设计篇十四
教材分析:
求商的近似数是第二单元的内容,是在学习小数除法的基础上学习的。小数除法有时会出现除不尽的情况,还有商的小数位数较多的情况。但是在实际工作和生活中,并不总是需要求出很多位小数的商,而往往只要求出商的近似值就可以了。因此这部分内容的教学很重要。在本册前面,已经学过用“四舍五入法”求一个小数的近似值,以及求小数乘法的积的近似值,本节课通过学习应用题,让学生体验求商的近似数的必要性。让学生自己想一想,怎样取商的近似值。
学情分析。
教学内容:教科书第23页的例7和“做一做”中的题目。
学习目标:
1、使学生学会根据实际需要用“四舍五入”来求小数的近似数.。
2、提高学生的比较、分析、判断的能力。
评价任务。
1、结合具体事例根据实际需要用“四舍五入”来求小数的近似数.。
2、通过学习提高学生的比较、分析、判断的能力。
教学重点:掌握求商的近似值的方法。
教学难点:比较求商的近似值与求积的近似值的异同。
教学过程:
1.按“四舍五入法”,将下列各数保留一位小数.。
3.724.185.256.037.98。
2.按“四舍五入”法,将下列各数保留两位小数.。
1.4835.3478.7852.864。
7.6024.0035.8973.996。
做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.。
1.教学例6.。
教师出示例6,要求根据书上提出的信息列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)。
教师问:保留一位小数,应该等于多少?表示计算到“角”。
教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)。
2.做第23页“做一做”中的题目.。
教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)。
教师问:你解题时用了什么技巧?
3.81÷732÷42246.4÷13。
2、书上的作业。
数学近似数教学设计篇十五
教学内容:p23例7、做一做,p26练习四第10、11题。
教学目的:
1、使学生学会用“四舍五入”法取商的近似数。
2、培养学生的实践能力和思维的灵活性,培养学生解决实际问题的能力。
3、引导学生根据生活中的实际情况多角度思考问题,灵活地取商的近似数。
教学重点:知道为什么要求商的近似数,会用“四舍五入”法取商的近似数。
教学难点:能根据生活中的实际情况多角度思考问题,灵活地取商的近似数。
教学过程:
一、复习。
1.按“四舍五入法”,将下列各数保留一位小数.。
6。037。98。
2.按“四舍五入”法,将下列各数保留两位小数.。
8。7857。6024。0035。8973。996。
做完第1、2题后,要让学生说明其中小数末尾的.“0”为什么不能去掉.。
3。计算0。38*1。14(得数保留两位小数)。
二、新课。
1.教学例7:
教师出示例6,口述图意,再列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候要除到哪一位?为什么?(应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)横式应该怎样写出?教师板书。
教师问:表示计算到“角”需要保留几位小数?除的时候要除到哪一位?应该约等于多少?
教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)。
我们学习班了求积的近似值和求商的近似值,比一比这两者有什么相同点和不同点?
2.p23做一做:
教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)。
师:解题时用了什么技巧?
三、巩固练习。
3.81÷732÷42246。4÷13。
2、p26第10题第(1)题。
四、作业:p26第10题第(2)题、第11题。
课后小记:
本以为求近似数是教学难点,所以在新授前安排了大量相关知识的复习。但在实际教学中才发现计算才是真正的教学难点,由于例题及做一做中所有习题全是小数除以整数,所以当作业中出现小数除以小数计算时,许多学生装都忘记了“一看,二移”的步骤。所以在设计巩固练习时应增加小数除以小数的练习。
其次我根据学情补充介绍了一种求商近似数的简便方法。即除到要保留的小数位数后不再继续除,只把余数同除数做比较,若余数比除数的一半小,就说明求出下一位商要直接舍去;若余数等于或大于除数的一半,就说明要在已除得的商的末一位上加1。介绍了这种方法感觉好的同学算得更快了,但悟性较差的学生听完后连最基本的保留两位小数应除到小数点后面第几位也混淆不清了。所以下次再教时,此方法的介绍时间可以适当后移,放在练习课上。
【本文地址:http://www.xuefen.com.cn/zuowen/16047368.html】