比例尺的应用教学设计一等奖 比例尺的应用教学设计苏教版(7篇)

格式:DOC 上传日期:2023-03-16 06:43:37
比例尺的应用教学设计一等奖 比例尺的应用教学设计苏教版(7篇)
时间:2023-03-16 06:43:37     小编:zdfb

在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

比例尺的应用教学设计一等奖 比例尺的应用教学设计苏教版篇一

义务教育课程标准实验教科书数学六年级下册p49、50“练一练”和练习十一的第3、4、5题

1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。

2、使学生在认识比例、应用比例的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略,发展对数学的积极情感。

能按给定的比例尺求相应的实际距离或图上距离。

能按给定的比例尺求相应的实际距离或图上距离。

本课时主要是学生在对比例尺含义理解的基础上,进一步体会比例尺的运用,所以在设计着重体现实用性,设计中采用不同的问题情境,才学生身边的事物说起,引导学生解决身边的数学问题,激发学生学习兴趣。再有是进一步学生加强对比例尺含义的理解,设计中,引导学生自主分析,利用知识迁移,自主尝试列式解决,有扶到放,能有效培养学生解决问题的策略水平,主动探索问题的方法,以及不断积累解决问题的经验。

教师活动学生活动

一、复习旧知

引入新课1、在一幅地图上扬州到南京相距5厘米,实际相距100千米,你能找出这幅地图的比例尺吗?

2、什么叫比例尺?求比例尺时要注意哪些问题?

学生练习,找出图上距离与实际距离,再写出比例尺。

二、理解明确

实践运用

1、出示例7,明确题意

找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。

2、分析比例尺1:8000所表示的意义。

引导分析:比例尺1:8000,说明实际距离是图上距离的8000倍。也可以理解为比例尺1:8000也就是图上距离1厘米表示实际距离80米。

3、尝试列式

根据对1:8000的理解你能尝试列出算式吗?

师:交流算法,说说为什么这样算?(引导学生进一步理解不同算法,为什么会这样列式,关键是要让学生根据对比例尺的意义的理解去解决问题,帮助学生掌握不同算法以及之间的联系。)

4、归纳、选择、

教师允许学生按照自己的思考选择方法进行解答,重点引导学生理解和掌握用列比例式求实际距离的方法。

5、练习

教师引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?

学生分析题意,明确已知比例尺,已知图上距离,求实际距离。

学生分析1:8000表示的意义。

学生根据自己的思考自己选择合适的方法进行解答后先小组交流算法,再大组交流。

学生可能出现的方法:

1、5×8000=40000……2、5×80=400……

3、5/x=1/8000……

图上距离/实际距离=比例尺,可以用解比例的方法求出实际距离。

学生列式5/x=1/8000并计算。

三、尝试练习

巩固提高1、做“试一试”。

先选择自己合适的方法算出学校到医院的图上距离。再引导学生讨论怎样把医院的位置在图上表示出来。

2、做“练一练”先独立解题,在组织交流

3、做练习十一第4题

引导学生在地图上测两地之间的距离和在地图上如何找比例尺。

3、做练习十一第5题。

引导学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。

学生练习

在图中表示医院的位置。

学生练习后交流

四、全课总结

回顾反思1、通过本课的学习,你又掌握了什么新的本领?有哪些收获?

2、你还有什么疑问,或你能给同学提出什么新问题?

五、知识拓展

激发兴趣p51“你知道吗?”

1、收集地图资料,展示给学生观看。

2、介绍国家基本比例尺地图。

学生观看

阅读后适当交流

比例尺的应用教学设计一等奖 比例尺的应用教学设计苏教版篇二

1、理解比例尺的概念,能正确、熟练地进行求比例尺计算。

2、掌握根据比例尺求图上的距离或实际距离的方法。

3、培养学生对知识的灵活运用能力,从中感悟到比例尺在实际生活中的重要性。

:根据比例尺的意义求图上距离或实际距离

设未知数时单位的正确使用教学准备:多媒体课件1套,学具图若干张。

一、创设情境,揭示课题

1、创设情境:播放歌曲《春天在哪里》,教师在音乐中朗诵描写奏的诗歌,音乐停,师问:你感受到了什么?有什么想法?(感受到春的气息,想去旅游)

2、揭示课题:我们到一个陌生的地方旅游,首先要做什么呢?(找地图,了解城市情况)从地图上可以获取哪些信息(比例尺、图距、实距、方向)师:比例尺的计算方法我们已经学过了,今天我们就来学习比例尺在生活中的运用(板书课题:比例尺的应用)

二、自主探索

1、谈话:刚才同学们说了那么多想去的地方,老师想带你们到南京玩一玩,你想吗?(想)

2、出示下面地图,思考从图上你能获得哪些信息。

3、学生汇报:从图上可以看到想去的地方的'方位,比例尺是多少,可以看出居住地及旅游的线路

4、学习求实际距离的方法。假设我们到南京旅游,住在金陵饭店,想去南京博物馆参观,你能计算出从金陵饭店到南京博物馆的距离吗?试试看。

(1)学生讨论计算方法,然后小组代表发言、集体交流。(要求实际距离可以根据比例尺的意义用解比例尺的方法做,也可以用其它公式做)

(2)学生试做,并指名板演。

(3)集体订正,(采用不同方法解答,说一说每一种方法思路及注意点)

5、学习求图上距离的方法

(1)出示:已知南京博物馆长600米、宽300米,现在做成比例尺是1:10000的平面图,你能求出南京博物馆在图上的长和宽各是多少厘米吗?

(2)学生讨论解决方法,然后小组代表发言,集体交流。(可以根据比例尺的意义用比例的方法解答,也可以用公式图上距离=实际距离比例尺解答)

(3)学生试做并板演。

(4)集体订正,说一说,每种方法的思路及注意点。

6、学生看书3738页,提出不懂的问题,集体解决。

三、反馈提高

1、学校的操场长300米、宽100米,要把平面图给制在作业本上,你认为选用哪个比例尺比较合适?(1)1:1000(2)1:2000(3)1:5000(4)1:10000

选第(3)个最合适,让学生说明原因

2、量一量下图中小明家到学校公园、商场的距离各是多少厘米,然后算一算小明家到学校、公园、商场的实际距离各是多少米?指名板演,并说一说列式的依据及解题思路。

3、根据条件绘制金山镇镇区平面图

(1)金石路在繁荣路和开发路之间并与两条路平行,距繁荣路300米(在图上画出金石路)

(2)金山小学在金中路东侧,在开发路北100米处,(标出金山小学位置)

四、小结:今天你学习了什么内容?有哪些收获?

五、作业:测量出学校的实际长和宽,然后选用适当的比例尺一出学校平面图。

比例尺的应用教学设计一等奖 比例尺的应用教学设计苏教版篇三

本节课主要是应用比例尺的知识解决一些简单的实际问题。遵循“解决实际问题的活动价值不只是获得具体问题的解,更重要的是学生在解决问题的过程中获得的发展”这一理念。本节课在教学设计上重点突出了以下几个方面:

在教学中,对于“解比例”,从审题、分析、列比例,到求出的解所表示的实际长度及所用单位,都通过相应的问题加以突出,使学生都能够运用“列比例法”去解决各种相关的问题。

在教学中,为学生提供独立思考的机会,结合相关例题,巧妙提出问题,引发学生广泛思考,使学生充分发挥自己的聪明才智,在找到自己个性化的解题策略的同时,也在交流、讨论中感受并理解其他同学的不同解题方法。

在教学中,引导学生对不同的解题策略进行比较,使学生在理解不同解题策略的同时,选择比较简捷易懂的解法,从而实现解决问题策略的优化。

教师准备ppt课件

学生准备地图

1.复习提问。

(1)什么是比例尺?关于比例尺你了解了哪些内容?

(引导学生从比例尺意义的认识及数值比例尺和线段比例尺的认识等方面回答)

(2)说一说下列比例尺表示的具体意义。

①比例尺1∶250000。

②比例尺80∶1。

③比例尺

(引导学生交流后说一说每种比例尺的实际意义)

2.导入新课。

通过交流,可以看出同学们对比例尺的相关知识掌握得很好,这节课我们就一起来探究如何应用比例尺的知识解决实际问题。(板书:比例尺的应用)

设计意图:全面回顾比例尺的相关知识,为学生应用比例尺的知识解决问题奠定基础。

1.教学例2,根据比例尺和图上距离求实际距离。

(1)课件出示教材54页例2。

(2)审题,找出已知条件和所求问题。

预设

生:本题已知比例尺是1∶400000,图上的长度是7.8cm,求实际长度是多少。

(3)思考、交流:如何求从苹果园站至四惠东站的实际长度?

预设

生1:先设从苹果园站至四惠东站的实际长度是xcm,再根据比例尺的意义,列出比例式,求出实际长度是多少厘米。

生2:根据比例尺的意义,直接用图上长度7.8乘比例尺中的400000,求出实际长度是多少厘米。

生3:根据比例尺的意义计算:400000÷100000=4(km),7.8×4=31.2(km)。

(4)重点理解基本解法。

问题1:为什么设的实际长度要以“cm”为单位?

问题2:列比例的依据是什么?

问题3:“400000”表示什么?

预设

生1:设的实际长度以“cm”为单位,是因为图上的长度单位是“cm”,只有图上的长度单位和实际的长度单位统一了,才能计算出正确的结果。

生2:列比例的依据是“=比例尺”。

生3:“400000”表示图上1cm的长度相当于实际400000cm的长度。

(5)学生独立用解比例的方法解决问题后,指名板演并订正。

比例尺的应用教学设计一等奖 比例尺的应用教学设计苏教版篇四

教材第37页例5、试一试和练一练,练习七第4~日题。

1.使学生进一步认识比例尺,学会根据比例尺求图上距离或实际距离。

2.使学生体会数学在实际生活里的应用,提高解决简单实际问题的能力。

进一步认识比例尺。

根据比例尺求图上距离或实际距离。

一、揭示课题

1.提问:什么是比例尺,

2.出示一些数据比例尺,让学生说一说比例尺前项、后项的倍数关系和比例尺的实际含义。

3.说明:利用比例尺,可以解决一些简单的实际问题,这节课就学习比例尺的应用。

二、教学新课

1.教学例5。

出示例5,读题。提问:题里已知什么,要求什么?按照比例尺的意义,你能解答吗?让学生自己讨论并进行解答,通过巡视看一看不同的解法。指名口答解题过程,老师板书。其间结合说明设未知数x的单位与图上距离的单位统一,用厘米,解题后再化成米数。提问:用不同方法解答这道题的过程是怎样的?指出;已知图上距离求实际距离,可以按照实际距离与图上距离的倍数关系来解答,也可以按图上距离:实际距离=比例尺列出比例,用解比例的方法就可以求出结果。

2.做练一练第1题。

指名板演,其余学生做在练习本上。集体订正,指名学生说一说怎样想的,要注意什么问题?

3.教学试一试。

出示试一试,读题。提问;题里已知什么,要求什么?你能自己解答吗,让学生自己做在练习本上。指名学生口答解题过程,老师板书。用比例解的指名学生说一说根据什么列比例的,应该设谁为x。指出:已知实际距离求图上距离,可以把实际距离缩小相应的倍数,也可以按图上距离:实际距离=比例尺列出比例,再解比例求出结果.

4.做练一练第2题。

指名扳演,其余学生做在练习本上。集体订正,指名学生说说怎样想的,解答时还要注意什么。

5.做练习七第4题。

让学生做在练习本上,然后口答,老师板书。

6.做练习七第5题。

学生完成在练习本上。

三、课堂小结

这节课学习了什么内容?你学到了些什么?

四、布置作业

课堂作业:练习七第6、8题。

家庭作业:练习七第7题。

比例尺的应用教学设计一等奖 比例尺的应用教学设计苏教版篇五

1、能根据地图推算实践以及根据实距绘制平面图,培养学生运用所学知识技能解决实际问题的能力。

2、培养学生自主探究自主探究、合和交流的能力。

3、感受数学与生活的联系,体验学习数学的价值,增强学习数学的情感。

理解比例尺的含义,能根据比例尺求图上距离或实际距离。

:理解比例尺的含义,能根据比例尺求图上距离或实际距离。

:共2课时。第1课时

师:通过课前的交流,我知道有不少同学到外地旅游过。这是因为现在的生活水平高了,有这方面的条件。最近几年,我们家也会利用节假日出外游玩,不过,我个习惯,到哪个城市,就想找那个城市的地图看看。请同学们猜一猜:王老师主要是想从地图上了解哪些方面的信息?

估计学生可能猜出以下几种:看这个城市有哪几个景点,景点在这个城市的什么位置?看地图上的比例尺等,教师适时追问:①地图上怎么确定方向?②根据地图上的比例尺还能了解到什么?

1、看地图推算实距。

教师出示南京市地图放在展示台上。

(1)指名读出比例尺,并说说所表示的意思。

(2)找出“雨花台”和“中山陵”2个景点,让学生辨认中山陵在雨花台的哪个方向?

师:在地图上,这2个景点之间的实际距离还不到我一根手指那么长,而生活中它们之间的距离还很远的,那么怎样知道2点之间的实际距离呢?

(3)指名测量图上距离,其它学生记录并列式计算实际距离。(4)集体交流计算方法。

对于用到方程的方法解答的步骤要板书并予以强调。要求学生说清各种算法的算理。估计会出现多种算法,课堂上给予充分的时间交流。

师:请同学们要注意,刚才计算出来的数是两个景点间的直线距离,二实际生活中,这两点间没有直来直去的路,而要绕弯走,因此实际走的路程要比实际距离来得多,我们现在研究的是两点间的直线距离。师:请同学们来总结一下,在刚才的测量与计算中,应该注意一些什么?

2、练习:完成教材第49页例2

学生独立完成,板书交流。

10/x=1/500000

x=10×500000

x=5000000

5000000厘米=5千米

3、根据比例尺做平面图。

出示例3:学校要建一个长80米,宽60米的长方形操场,请画出操场的平面图。

(1)知道学生分组讨论。(2)你觉得应该怎么办?

小组汇报:这道题没有比例尺,要画出平面图形,应该先确定比例尺。

(3)很好,这是解决这道题的关键。用什么样的比例出尺比较合适呢?

(4)根据比例尺确定图上的操场的长和宽。

下面大家以1:1000为比例尺,算一算操场在平面图上的长和宽。

80米=8000厘米60米=6000厘米

8:8000=1:10006:6000=1:1000

(5)让学生按正确的数据,做出图形。

(6)下面同学们再试一试,先确定线段比例尺,看能不能解决。

(7)引导学生总结根据比例尺做平面图形的一般方法。

4、小结并板书课题:

请同学们回顾一下刚才的学习过程,不管是看地图还是画地图都要用到什么知识?这说明比例尺在我们的生活、工作中是很有用的,因此,我们不仅要知道它的意义,还要会利用它解决一些实际问题。

1、请同学们想一想:在我们的生活、工作中,你还知道哪些地方会用到比例尺?

2、我校明年要扩建一个大操场,计划长为120米,宽为80米,请你根据图纸的大小,从下面选出一个合适的比例尺,画出它的平面图。

①1:500②1:600③1:800

板书设计:比例尺的应用

80米=8000厘米60米=6000厘米

8:8000=1:10006:6000=1:1000

比例尺的应用教学设计一等奖 比例尺的应用教学设计苏教版篇六

感受并理解比例尺的意义,会计算图上距离和实际距离,并能解决相关的实际问题。

①培养学生发现问题、分析问题、解决问题能力;

②在实际应用中感受数学、亲近数学,培养学生学习数学的兴趣;

③辩证唯物主义的初步渗透

教学重点比例尺的应用。

教学难点比例尺的实际意义。

1、估计黑板的长和宽:教室前的这块黑板同学们熟悉吗?

请你估计一下黑板的长和宽。

2、丈量黑板的长和宽:(板书:黑板实际长3.5米,宽1.5米)

3、画黑板:你能照样子把黑板画在本子上吗?(师巡视)

4、质疑:这么大的黑板,为什么能画在这么小的一张纸上呢?(长和宽按一定的比例缩小了。)

[评析:照样子画黑板是同学们美术课上再熟悉不过的举动,但以此为本节课的开始,让学生在不知不觉中体会到了比例尺,实为教者的匠心之笔!]

5、挑两个黑板图(一个画得不像一个画得较像)出示:

a)评价:①谁画得更像一点?

②分析图a画得不像原因可能是什么?(长和宽缩小的比例不一样。)

b)师生合作,算一下长和宽分别缩小了多少倍?得数保留整数。(屏幕显示)

图上长7厘米,长缩小:3507=50图上长5厘米,长缩小:3505=70

宽1.5厘米,宽缩小:1501.5=100宽2.5厘米,宽缩小:1502.5=60

c)点拨:从上面计算结果来看图a长和宽缩小的比例差距较大(即比例失调),所以看上去画得不像;而图b长和宽缩小的比例接近,所以看上去画得较像。

[评析:实践出真知!让学生分析画得像与不像使学生真真切切地感受到了比例尺的作用,以此激发学生学习比例尺的兴趣。]

1、想一想怎样画得更像?(长和宽缩小的比例要保持相同。)

2、课件展示准确的平面图:

3、请你帮老师算算长和宽分别缩小多少倍?

图上长3.5厘米缩小:3503.5=100宽1.5厘米缩小:1501.5=100

4、小结:当长和宽缩小的倍数相同时,黑板的平面图就十分逼真!由此可见,为了能反映真实的情况,画图时必须要有个统一的标准,这个统一的标准就是比例尺。(板书:比例尺)

[评析:从画黑板提出问题到比比谁画得像分析问题再到如何画得更像解决问题。教者均是置学生于熟悉的生活背景下,感受并理解比例尺意义,体现了数学的生活性。]

①讲授:课件中的长方形是按缩小100倍来画的,我们就说这幅图的比例尺是1﹕100。

②谁来说说比例尺1﹕100表示什么?(图上距离是实际距离的一百分之一;实际距离是图上距离的一百倍;图上距离1厘米表示实际距离100厘米等等)。

③图a、图b长和宽比例尺各是多少?分别表示什么?

小结:一幅图一般只有一个比例尺,当长和宽的比例尺不一样时,所画黑板就会失真。

④用自己话说说什么叫做比例尺?怎样计算比例尺?

小结:图上距离与实际距离的比叫做比例尺;比例尺通常写成前项是1的比。

①下图是我校附近的平面图(屏幕同时显示),新华五村菜场距我校直线距离约300米,可在这幅图上只画了3厘米,这幅图的比例尺是多少?

评讲:你是如何算得?结果是多少?(1﹕10000)要注意些什么?

②从1﹕10000这一比例尺上,你能获取那些信息?

板书:图上距离是实际距离的一万分之一;实际距离是图上距离的一万倍;图上距离1厘米表示实际距离10000厘米等等。

[评析:比例尺是一个实用性很强的知识点,教师在帮助学生理解比例尺意义时,运用实例让学生说一说、算一算,口脑并用,从多角度多方位理解比例尺的实际含义,为下面多种角度计算实际距离、图上距离打下知识准备。]

1、还是在这幅图上,现在要标上区委,估计一下我校离区委直线距离有多远?(400米)你看在这幅图上要画多长?

①独立思考,试试看,如感觉有困难小组内小声讨论。

②评讲:你是怎么想的?还可以怎么算?你觉得要注意些什么?

方法一:400米=40000厘米方法二:400米=40000厘米

4000010000=4(厘米)400001/10000=4(厘米)

方法三:10000厘米=100米方法四:用比例解(略)等等

400100=4(厘米)

小结:求图上距离可以用乘法计算,也可以用除法计算,关键是理解的角度不一样。

③如何画?自己画画看。(按上北下南左西右东常规去画,注意方向。)

[评析:怎样计算图距和实距?教者一改以往根据比例尺计算方法去死套公式(图距=实距比例尺;实距=图距比例尺)的做法,也一改教材中烦琐的比例解法,而是借助于学生对比例尺的多角度理解,不把知识点讲死,让学生灵活的选择解决方法,很好的体现了新课标的理念以人为本,即让不同的学生学不同的数学,让不同的学生得到不同的发展。]

2、练一练:

区委东北是我区闹市区十村,已知区委和十村实际距离是2.5千米,在这图上应画多长?如何画?自己画画看。(课件演示)

3、画一画:

①请准确地画出教室前黑板的平面图。(怎样画才算准确?)

②评讲:你是如何画的?方法一:自己定一个比例尺算出图上长和宽然后画;方法二:在原有图上以长的比例尺为比例画出宽;方法三:在原有图上以宽的比例尺为比例画出长。

1、西厂门在区委的东南面,(课件演示)量得图上距离是9厘米,如何算实际距离?有几种算法?

①独立思考;②合作交流;③讲评算理。(略)

2、练习:南钢宾馆在区委西南(课件演示)量得图上距离是18厘米,如何算实际距离?

[评析:用学生熟悉的生活场景大厂区各地名,采取学生感兴趣的活动画地图联系实际应用比例尺意义计算图距和实距,使学生对数学倍感亲切,感觉数学就在我们身边,突出的体现了数学的生活性。]

1、南京距大厂40千米,画在这幅图上要画多少厘米?

①独立列式计算(400厘米)。

②要画400厘米,你有何感觉?(太长画不下)

③画不下怎么办?(调整比例尺)

④说说你的调整方案?

[评析:一石激起千层浪!在矛盾冲突中培养学生发现问题、分析问题、解决问题的能力,同时达到使学生跳出大厂看比例的目的。]

2、请拿出标有南京上海的地图,找出比例尺并说说意义。

①同座位间合作算出实际距离。

②一辆汽车从南京早上9﹕00从南京出发赶往上海,要赶下午2﹕00的飞机,如果车速是每小时80千米,问能否赶及?为什么?

2、五一长假是旅游的黄金季节,请同学们采访一下听课的老师,最向往哪个大城市,然后根据地图帮老师算出实际距离,再告诉被采访的老师。

[评析:很有创意!采访老师,就地取材增加课的参与度;学生下位采访,体现课的开放性,培养学生解决实际问题能力的同时培养学生的交际能力。使课堂教学内容得到了再延伸!]

[总评:本节课循着一根知识主线比例尺的意义与应用,引入新知别出心裁,探究新知有章有法,练习设计富有创意;同时循着一根能力主线培养学生解决实际问题能力,无论是哪个环节的例子都来源于学生熟悉的生活,重视学生的独立探究与合作讨论相结合。同时多次运用多媒体辅助教学,充分体现了以教师为主导,学生为主体,训练为主线的严禁课堂教学结构,使学生学的轻松,学有成效。]

比例尺的应用教学设计一等奖 比例尺的应用教学设计苏教版篇七

1、使学生进一步理解比例尺的意义,掌握利用比例尺求图上距离和实际距离的方法。

2、使学生能综合运用比例尺知识,解决有关问题,提高学生解决问题的能力。

求图上距离和实际距离。

求实际距离。

(一)旧知铺垫。

1、什么叫做比例尺?

板书:图上距离:实际距离=比例尺

2、说一说下列各比例尺表示的具体意义。

(1)比例尺1:45000。

(2)比例尺80:1。

(3)0——40㎞。

3、教学例2。

(1)出示课文例题及插图。

(2)说一说从中你得到哪些信息。

已知条件:

①1号线的图上长度是10㎝。

②这幅地图的比例尺1:500000。

所求问题:1号线的实际长度是多少?

(3)你认为可以用什么方法解决问题?

①学生尝试解决问题。

②教师巡视课堂,了解解答情况,并对个别学生进行指导,帮助他们找到解决问题的方法。

③汇报解答情况。

方程解:

解:设地铁1号线的实际长度是x厘米。

根据图上距离:实际距离=比例尺,可以例比例式解答。

10/x=1/500000

x=10500000(问:根据什么?)

根据比例的基本性质。

x=5000000

5000000㎝=50㎞

算术解:

根据图上距离除以实际距离等于比例尺,得出:实际距离等于图上距离除以比例尺。

101/500000=10500000=5000000(㎝)5000000㎝=50㎞

4、教学例3。

(1)出示例题,学生了解题目要求。

(2)讨论:你想怎样画?

通过讨论,使学生进一步理解在绘制平面图的时候,需要把实际距离按一定的比缩小,再画在图纸上。这时,就要确定;图上距离和相对应的实际距离的比。

①确定比例尺;

②求出图上的距离;

③画出操场的平面图。

(3)小组同学合作,解决问题。

学生练习活动时,教师巡视课堂,了解学生解决问题的情况,记录存在的问题。

(4)汇报,交流。

【本文地址:http://www.xuefen.com.cn/zuowen/1624201.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档