总结是一种自我反思和成长的方式,可以加深我们对自己的认识和理解。在写总结时,我们还可以借鉴他人的经验和观点,丰富自己的思考和总结。不同领域和不同类型的总结都有其各自的特点,需要我们根据具体情况进行调整。
可能性教学设计可能性教学设计课视频篇一
2、通过丰富的游戏活动和对生活中几种常见游戏(或现象)剖析与解释,使学生初步体会数学与生活的紧密联系。
体验事件发生的等可能性以及游戏规则的公平性,会用分数表示事件发生的可能性。
能按要求设计公平的游戏方案。
教、学具准备:cai课件;硬币;实验记录表;骰子;六个面上分别写上数字1-6的长方体等。
一、情境导入
师:同学们,你们看过足球比赛吗?还记得足球比赛开始前用什么方法决定哪个队先开球吗?请同学们看屏幕。
课件演示:如下图情境(教科书第99页的情境图)。
师:请观察图片,你们能不能说一说他们是用什么方法决定哪个队先开球的?
二、探究新知
1、动手实验,获取数据。
师:在开始实验之前,同学们要弄清楚实验要求哦,请看屏幕。
课件出示实验要求:1、抛硬币40次,抛硬币时用力均匀,高度适中;2、以小组为单位分别统计相关数据,填入实验报告单(如下表);3、小组成员分工协作,看哪个小组合作最好,完成得最快!
出现的情况正面朝上反面朝上总次数
出现次数
师:很好,我们要得到正面朝上的次数和反面朝上的次数,老师建议你们最好用画“正”字的方法来统计,那就动手开始实验吧!
师:大家做完实验了吗?请各个小组汇报实验结果。
课件出示统计表(如下表),根据学生的汇报教师填入数据。
小组正面朝上反面朝上总次数
1
2
3
4
5
…
合计
2、分析数据,初步体验。
师:请你们认真观察实验数据,发现正面朝上的次数和反面朝上的次数相等吗?
师:对,既有相等的也有不相等的,但正面朝上的次数和反面朝上的次数接近吗?
教师把所有小组的正面朝上次数、反面朝上的次数、总次数分别求和。
师:通过分析,我们发现正面朝上的次数和反面朝上的次数仍然是非常接近的。
3、阅读材料,加深体会。
师:如果我们继续抛下去,会是怎样的结果呢?历史上有很多数学家就做过抛硬币的实验。请看屏幕。
课件出示几位数学家的实验结果(如下表)。
数学家总次数正面朝上反面朝上
德摩根409220482044
蒲丰404020481992
费勒1000049795021
皮尔逊240001201211988
罗曼列夫斯基806403969940941
让学生观察数据,发现正面朝上次数和反面朝上次数很接近。
4、分数表示,科学验证。
师:对,它们的可能性相同的,你们能用一个分数表示它们相同吗?
师:通过做实验,你们认为抛硬币决定谁先开球公平吗?为什么?
三、应用拓展
师:好,请看第一题,正方体的各面分别写着1、2、3、4、5、6.掷出每个数的可能性都是……?(出示教科书练习二十第1题)
课件出示方案一(如下图):转盘上红色占一半,蓝色、黄色各占。
方案一
师:你们觉得这个转盘设计得公平吗?
师:既然大家都认为这个转盘不公平,那怎样设计转盘才公平呢?
师:就按照你们的修改意见,改成三种颜色各占的转盘。
课件出示方案二(如下图)。
方案二
师:设计好转盘后,我们就开始转动转盘决定哪个组来回答第一题,好吗?
转动转盘,决定哪个组回答。
2、师:恭喜你们获得了第一面红旗。我们看下一题,指针停在这四种颜色区域的可能性各是多少?(课本练习二十第2题的第1题)
可能性教学设计可能性教学设计课视频篇二
1、通过学习,让学生进一步感受事件发生的不确定性,增强学生量化的数学意识。
2、学会初步预测不确定事件发生的可能性的大小,理解并掌握用分数表示可能性大小的基本思考方法。
3、认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。
4、进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。
理解并掌握用分数表示可能性的大小。
在认识事件发生的不确定现象中感受统计概率的数学思想。
演示课件、乒乓球、布袋、棋子、纸盒等。
一、情境与问题
1、课前谈话,狄青百钱定军心
2、问题引入
师:让我们用数学的眼光来审视这个故事,抛100钱币,有没有可能全部正面朝上?(生:有可能)
师:100枚全部正面朝上的可能性你认为有多大呢?(生:很小)
师:可能性有大有小。(板书:可能性的大小)
二、探究与交流
1、教学例1
出示例1场景图
问:裁判在做什么?(猜球。场景再现)
问:用猜左右的方法决定由谁先发球公平吗?为什么?
学生讨论后小结:乒乓球可能在左手,也可能在右手,猜对或猜错的可能性是相等的。
指出:用猜左右的方法决定由谁先发球时,每个运动员猜对的可能性都可以用1/2来表示。
师:你是怎样理解这里的1/2?
2、同步体验
学生提问:其中有几个球?其中几个黄球?
动手摸一摸,边摸边问:这时可以得出结论了吗?
(袋中放着一个黄球一个白球,从中任意摸一个球,摸到黄球的可能性是1/2。)
试一试:从口袋里任意摸一个球,摸到黄球的可能性是几分之几?
学生完成后,追问:如果口袋里再放入一个白球,任意摸一个,
摸到黄球的可能性又是几分之几?
问:摸到黄球的可能性怎么会不同呢?(任意摸一个球,摸到球的情况分别是两种三种四种,而摸到黄球只是其中的一种情况,所以摸到黄球的可能性分别是1/2、1/3、1/4。
问:如果要使摸到黄球的可能性是1/5,口袋里该怎样放球?
小结:放5个球,其中黄球1个。
三、迁移与提升
1、教学例2
出示例2中的实物图(逐一出示,学生说出各是什么牌)
问:把这些牌洗一下反扣在桌上,从中任意摸一张,摸到红桃a的可能性是几分之几?
讨论后明确:一共有6张牌,红桃a有1张,摸到红桃a的可能性是1/6。
一共有6张牌,摸到每张牌的可能性都是1/6。
问:你还想到什么问题?
小组讨论交流汇报。(小组选择有代表性的问题写在纸条上)
汇报一:从中任意摸一张,摸到“2”的可能性是几分之几?
(展示方法:摸到红桃2的可能性是1/6,摸到黑桃2的可能性是1/6,摸到“2”的可能性是1/3。一共有6张牌,“2”有两张,摸到“2”的可能性是2/6,也就是1/3。
汇报二:从中任意摸一张,摸到“红桃”的可能性是几分之几?
(对比练习:红桃a红桃2红桃3黑桃a黑桃2五张,从中任意摸一张,摸到“红桃”的可能性是几分之几?)
2、同步练习
看清楚每个骰子六个面上点数,落下后每个数朝上的可能性分别是多少?
(自由说一说)
3、阅读拓展
阅读教材94、95页,还有什么问题吗?
出示“你知道吗?”
四、实践和应用
1、成语里的数学(用分数表示成语里某个事件的可能性的大小)
十拿九稳百发百中智者千虑必有一失
2、操作和推测
根据多次摸的结果,猜一猜口袋里放着什么颜色的棋子?各是几个?
组织操作,搜集摸球结果,汇总发现。
指出:在大量重复试验的情况下,它的发生呈现出一定的规律性、运用数据进行推断。
可能性的大小离不开统计。
3、活动里的数学
现场设奖现场抽奖
学生拿出课前拿到的号码,打开抽奖软件,抽奖中询问:抽中一等奖的可能性是几分之几?获奖的可能性是几分之几?在抽出三等奖后再问一个类似的问题。
4、故事释疑
可能性教学设计可能性教学设计课视频篇三
摘要:一直以来课堂都是学校教学的主阵地,是数学教学任务和目标高效完成的主要场所。如何充分利用课上45分钟,提高小学数学的课堂教学质量,是大家一直关心的问题。近几年,素质教育在小学教育中深入开展,新课程标准对小学数学课程教学做了重点指导,提高学生的综合素质、培养学生自主探究数学的能力成为其核心要求。众多一线数学教师深刻反思现代教学思想,钻研各种教学方法,进行了一系列教学改革与试验。在此过程中,我们力求博采众长,在教学交流中取其精华、去其糟粕,广泛汲取营养,将理论与实际相结合,边试验,边改进,边筛选。俗话说:“教无定法,贵在得法。”虽然在小学数学教学中还没有找到固定的模式,但是本人根据多年的教学经验,提出了一些设想,以期引起大家的重视。
关键词:小学数学;教学;提高;效率
由于长期应试教育的影响,传统的小学数学观念认为,要想提高教学效率,课堂秩序是首要的保证,这使得数学教育与整个普通教育一样偏离了素质教育的轨道。教师在台上教,学生在下面听,要求学生正襟危坐,“竖起耳朵”认真听,不许交头接耳,不许随意讨论,否则将会受到老师的批评甚至惩罚。教学把学生当作消极、被动地接受知识的容器。如此学生的数学素质得不到实质性的提高,削弱了数学素质在人的综合素质中所占的成分。现代的教学观相比较传统的教学观,发生了翻天覆地的变化,教师从教学的主体转变成为课堂的引导者和组织者,有效、合理地组织学生的学习活动;单一的“满堂灌”“填鸭式”的教学模式转化为自主合作探究式教学,授课形式生动活泼,使所有的学生都能学得主动,学得心甘情愿。数学教学大纲规定的数学教学目的是使学生掌握数学基础知识与基本技能,形成数学能力。要提高数学课堂教学效率,教师在数学教学中,要从整体教育观上,挖掘专业素质教育的内涵与外延,运用现代教学模式进行教学。
教法制约学法,是影响教学效率的最重要的因素。因此,选择一种科学、合理的教学模式,能够有效地启发学生积极思维,使教师的教法富有艺术性,具有强烈的吸引力和感染力,使数学课堂氛围变得轻松和谐,有助于激发学生的学习兴趣,促使他们主动地参与到教学中,充分体现学生的主体地位。传统落后的教学模式已经不能满足当代小学教育的需要,教师应转变教学理念,变“教”的课堂为“学”的课堂,把以教师为主体的课堂变为以学生为主体的课堂。据报道,美国中小学学校的许多教师每节课只利用10分钟讲解基础知识,剩下的时间教师将主动权交给学生,组织他们相互交流、探讨、消化,教师在一旁作为引导者进行引导,必要的时候予以提醒和纠正,结果教学效果事半功倍。无独有偶,国内很多地区,尤其是发达地区的小学,已有很多教师采取这种合作探究式教学模式,一节课最多只讲15分钟,其余的时间组织学生发挥主观能动性,针对自己在学习中发现的问题进行探究,教师引导学生独立思考,独立分析,培养他们的创新意识和发现问题、解决问题的能力。
教学手段是师生为达到教学目的、实现教学目标而相互结合的手段方式,其中包括教师的教法和学生的学法,而学生的学法的形成关键在于教师采取何种教学手段进行引导培育。课堂教学手段多种多样,教师单靠粉笔和黑板讲解,势必影响小学数学教学质量和学生的素质提高。在现实教学实践中,一节课中只采用一种教学手段的极少,通常都是教师根据不同的教学内容、不同的授课类型,结合学生的个性心理,采取不同的教学手段。单一地运用某一教学方式,久而久之,学生会产生乏味感,容易产生厌学心理,影响学生大脑智力的发展。因此,在数学教学中要灵活运用各种教学手段,做到综合交叉,做到丰富多彩、趣味十足,这样既能吸引学生的听课兴趣,调动他们学习的积极性,又能体现时代的特点和教者的风格,提高教学实效。多媒体作为一种现代较为普及的教学手段,其本身所具有的灵活多样性能够充分满足当代小学教育需求。在教学中恰当地运用多媒体既能准确直观地传递信息,使学生视、听触角同时并用,将学到的知识深刻地印在大脑中,又能节省不必要的讲解时间,大大提高课堂教学效率。
可能性教学设计可能性教学设计课视频篇四
创设活动情境,促进新知建构。“用分数表示可能性的大小”是在学生(第一学段)学了“可能”与“一定”,初步体验了事件发生的可能性有大有小(四年级)和初步体验事件发生的等可能性的基础上进行教学的,是实现可能性从定性到定量描述的重要内容。“概率”因其有别于讲究因果关系的逻辑思维和确定性思维,具有独特的思想方法。因此,本课知识的建构和能力的形成不能只凭教师口述,而要通过创设数学活动情境,为学生提供观察、猜测、合作交流的机会,让学生在亲历活动过程中体会如何用数来表示可能性的大小。如课始摸球比赛后提出“如何表示从三个箱子中摸球的结果”,沟通了学生已有知识经验;“还有别的表示可能性大小的方法吗”则引导学生从活动中抽象出“数”,进而用“数”表示可能性大小,促进了知识的迁移;课末“归纳总结用数表示可能性大小的方法”,提升了学生对知识的系统认识,帮助学生建构新知。
加强合作交流,引导自主探索。《数学课程标准(实验稿)》指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式。”教师以“分别用什么数来表示从这三个箱子中摸到白球的可能性大小”和“为什么用1/5来表示从2号箱中摸到白球的可能性”,引导学生自主探究、合作交流,教师适时引导,较好地体现了课程改革理念。
渗透数学思想,发展数学思维。在学生知道用数表示可能性大小的基础上,适时引入用线段上的点表示可能性大小,让学生感悟数形结合的数学思想;在引导的同时,抓住有利时机向学生渗透极限思想,不仅发展了学生的数学思维,还凸现了数学教学的基础性、发展性理念。
1.通过试验操作活动,进一步认识客观事件发生的可能性大小。
2.能用适当的数表示事件发生的可能性大小。
3.在具体情境中体验可能性的大小,加强对数学实践性的理解。
一、导出课题
1.激趣。老师提供三个箱子:1号箱里面放有5个黄球;2号箱里面放有1个白球和4个黄球;3号箱里面放有5个白球。请3个学生进行摸球比赛,摸到白球最多的获胜。摸球前,各自选一个球箱,并且只能在选定的箱中摸球。每次摸出1个球,记录后放回去再摸,每人摸6次。
2.揭题。教师从摸球的结果导出“不可能”、“可能”、“一定能”,进而从“可能”中引出可能性有大有小,同时引导学生质疑:还有别的表示可能性大小的方法吗?(教师板书课题)
[课始从学生熟悉的游戏引入,能激起学生的学习欲望。]
二、自主探究
1.引导学生独立思考,自主探究:可以用些什么数分别表示从这三个箱子中摸到白球的可能性大小。(师生共同完成表格)
2.学生汇报,老师板书学生的表示方法。
三、强化新知
1.讨论:
(1)从2号箱中摸到白球的可能性大小可用哪个数表示?(学生可能会用20%、0.2、1/5表示。)
(2)为什么可能性用1/5表示呢?(引导学生分析分子、分母分别与试验中的什么有关。)
(3)师(拿出2号箱中的1个黄球):摸到黄球的可能性怎样表示?为什么这样表示?
引导小结:从2号箱中摸球,可能摸到黄球,也可能摸到白球。但由于箱中黄球、白球的数量不同,所以摸到黄球和白球的可能性也不同。
2.探究:怎样表示“不可能”和“一定”。
(类似地让学生自行设计从“3号箱”中摸球的方案并解答。)
3.练习:教师往2号箱中依次加入1个黄球、1个白球、又1个白球,让学生分别说出能摸到白球、黄球的可能性大小。
四、总结提升
1.归纳总结用数表示可能性大小的方法。
2.提升认识,发展思维。借助线段图,让学生知道可能性的大小还可以用线段上的点表示。引导学生观察某点从线段的左端移到右端引起可能性大小的变化情况,直观地描述可能性的变化趋势。
可能性教学设计可能性教学设计课视频篇五
小学六年级教科书第131页例1、例2,课堂活动第1、2题,练习二十六第1--3题。
1.通过实践操作,体验事件发生的可能性及游戏规则的公平性。
2.进一步感受事件发生的可能性是有大小的,知道可以用一个数来表示可能性的大小。
3.会求简单事件发生的可能性。
感受不确定现象,讨论比较简单的用一个数来表示事件发生的可能性。
课件、乒乓球和卡片等。
一、玩游戏导入,复习旧知
1、玩小魔术,激趣。
2、玩真的:一个小纸团,任意放在一只手中,可能在哪一只手中,(可能在左手,也有可能在右手)也就是说有两种可能性,可能性的大小是多少?(能回答给予鼓励)
今天我们就来研究可能性大小的相关知识。(板书课题---可能性大小)
3、检测对以前所学知识的掌握情况:请用“一定”、“可能”、“不可能”来判断下列事件发生的可能性,并简要说明理由。
地球每天都在转动。()
三天后下雨。()
太阳从西边升起。()
小方吃饭时用左手拿筷子。()
小明的年龄比他爸爸小。()
4、过渡语:对以前所学知识的掌握得非常好,相信这节课会合作愉快,轻松学会、掌握新知识。
二、动手操作,探究新知
1.摸乒乓球游戏(教学例1):出示课件
(2)猜一猜(四人小组内合作议一议)。
学生:可能摸出1号球、2号球或3号球。
有3种可能的结果。
1号1/3,2号1/3,3号1/3(引导或鼓励会用分数来表示可能性的大小了)
教师:也就是说,摸出三号球的可能性相同,都是1/3。
(3)试一试(摸一摸)。两个同学上台(一个同学摸,一个同学或全班记----用画“正”字的方法记录)(摸、记、放回再摸,连续3--15次):验证每个号球出现的可能性。
(4)反馈明确:(摸出每个号球的次数接近;如果继续摸下去,摸的次数越多,摸出每个号球的次数越接近),这说明从袋中摸出每个号球的可能性是相同的,摸出三号球的可能性都是(1/3)。
2、摸卡片游戏(课堂活动第1题):(出示课件)
生:齐读游戏规则。
师:这个游戏规则公平吗?你是怎么想的?
生:同桌交流后汇报(公平,共10张,1和0各5张,各占一半,可能性是1/2)
师:也就是说,可能性相同的情况下,游戏规则具有公平性。
分左右两组,各选两位代表上台,一人摸一人记录,全班同学监督:先摸3次,得分相差多少?再摸3次,......
明确:取的次数越多,得分就越接近,胜的可能性就越接近,获胜可能性是1/2。
教师小结游戏规则的公平性及事件发生的可能性。(事件发生的可能性有大有小,游戏规则中各方可能性相同的情况下,游戏规则才具有公平性。
过渡语:现实生活中,很多人为了赚钱,设计了一些不公平的游戏。希望同学们要高度警觉,不要中了这些人的圈套,上当受骗。
3.教学例2。
转盘游戏:出示一个大的转盘(上面有三个区域,红色区域占整个圆盘1/2,黄色和蓝色区域各占整个圆盘1/4)。
(1)游戏(方案)公平吗?为什么?
生:不公平,……
师:也就是说,红色区域的面积大,占了整个圆面积的1/2;黄色区域和蓝色区域的面积小,各占整个圆面积的1/4;所以这个游戏规则不公平。同时也说明,面积越大,可能性越大。
(2)怎样设计这个转盘才公平。
同桌交流后汇报:
平均分成三份,三种颜色各选择其中一种,三人的可能性都是1/3。
平均分成四份,四种颜色各选择其中一种,三人的可能性都是1/4。
(3)计算:指针停在四种颜色区域的可能性各是多少?(1/4)
如果转动指针100次,估计大约会有多少次指针是停在红色区(100x1/4=25)
4.抽牌游戏:1、2、3、4四张牌,抽出小于3的甲胜,大于3的乙胜。
这样约定公平吗?为什么?
小于3的有1和2,占四张中的二张,可能性是1/2。
大于3的只有4,占四张中的一张,可能性是1/4。
你愿意是甲,还是乙?(甲——选择可能性大的)
师:这说明了什么?(数量越多,可能性越大。
三、运用新知,解决问题
1.练习:练习二十六第2--3题。
要求:学生先独立完成,再同桌互议,最后集体反馈、评价。
四、学生谈收获
通过这节课的学习,谈一谈你有哪些收获?
附板书设计:
可能性的大小
2号---------1/3黄区-------1/4
可能性相同--------公平面积越大,可能性越大数量越多,可能性越大
可能性教学设计可能性教学设计课视频篇六
1.使学生初步本验有些事情的发生是确定的,有些则是不确定的,初步能用一定可能不可能等词语描述生活中一些事情发生的可能性。
2.能够列出简单实验中所有可能发生的结果。
3.培养学生学习数学的兴趣,形成良好的合作学习的态度。
体验事件发生的确定性和不确定性。
击鼓传花游戏,鼓声停时一位同学上台抽签,签中内容有礼物、唱歌、猜谜。
猜猜他抽中了什么签?
(引出用可能、不可能等词来表达,揭示课题:可能性)。
(一)教学例题1。
请同学们看前面,这里有个盆:1号盆、2号盆。(实物:例题上的装有不同颜色小球的盆)咱们来看看里面都有些什么颜色的球。
展示两盆中球的颜色、数量。
1、从1号盆里面任意摸出一个球,一定是红球吗?为什么?
学生讨论,教师巡视指导。
各小组都已讨论好了,谁想代表小组发言?(依次指名学生说)。
(依次板书:一定可能不可能)。
师:小朋友讨论得都非常好。下面,我们实际来摸一摸,验证一下。1号盆,谁来?(学生摸出3个后提问,如继续摸下去,结果怎么样?)。
2、从2号盆里任意摸一个呢?请小组讨论。
请学生摸一摸(摸出3个后提问,如继续措下去,能摸到红球吗?那可能摸出什么球?为什么?)(老师可根据盆里剩下的球随机提问,如:接下去可能摸出什么颜色的球?接下去一定能摸到什么球?)。
3、活动小结。
(二)教学例题2。
例如:(请学生举例几个)。
2、自已阅读书本例题2。
谁理解题目意思了,给大家解释一下。
独立完成。
3、汇报、讲评。
4、练习。
108页练习二十四第一题。
这节课我们学习了有关可能性的知识,把今天所学的知识和我们的生活联系起来,想一想生活中哪些事是一定会发生的,哪些事是不可能发生的,而哪些事是可能发生,也可能不发生的呢?你能举出一些例子,用一定可能、不可能说一说吗?请同学们先下位和你的好朋友说一说。(学生说)。
学生说完后全班交流。
p1082、3。
教材p106107。
1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
2、通过实际操作活动,培养学生的动手实践能力。
3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
用自己的话说一说什么是可能性举例子说明。
今天我们继续学习关于可能性的知识。
1、教学例3(比较两种结果的可能性大小)。
(1)观察、猜测。
出示小盒子,展出其中的小球色彩、数量,(四红一蓝)。
如果请一位同学上来摸一个球,你们猜猜他会摸到什么颜色的球?
和同桌说一说,你为什么这样猜?
(2)实践验证。
学生小组操作、汇报实践结果。
汇总各小组的实验结果:几组摸到红,几组摸到了蓝色。
从小组汇报中你发现了什么?为什么会有这样的情况?
小结:摸到红色多,摸到蓝色的少,因为盒中球红多蓝少。
可能性教学设计可能性教学设计课视频篇七
教学内容:
教材p106—107。
教学目的:
1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
2、通过实际操作活动,培养学生的动手实践能力。
3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学重、难点:
能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
教学过程:
一、引入。
用自己的话说一说什么是“可能性”举例子说明。
今天我们继续学习关于“可能性”的知识。
二、实践探索新知。
1、教学例3(比较两种结果的可能性大小)。
(1)观察、猜测。
出示小盒子,展出其中的小球色彩、数量,(四红一蓝)。
如果请一位同学上来摸一个球,你们猜猜他会摸到什么颜色的球?
和同桌说一说,你为什么这样猜?
(2)实践验证。
学生小组操作、汇报实践结果。
汇总各小组的实验结果:几组摸到红,几组摸到了蓝色。
从小组汇报中你发现了什么?为什么会有这样的情况?
:摸到红色多,摸到蓝色的少,因为盒中球红多蓝少。
(3)活动体验可能性的大小。
小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
活动汇报、
实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝的次数比红多。
(4)小组实验结果比较。
比较后,你发现了什么规律?
出示多组的实验结果,虽然数据不一致,但呈现的规律是相同的。
(1)出示盒内球(一绿四蓝七红)。
(2)猜一猜,摸出哪种颜色的球可能性最大,摸出哪种颜色的球的可能性最小?为什么?
3、p106“做一做”
图中每种颜色进行了分割,此时学生可以用数份数的方法来看三种颜色所占的区域大小。
利用前面学过的分数的知识让学生说一说每种颜色占整个圆面的几分之几,为以后学习可能性的精确值做铺垫(因为概率与这些分数相等)。
三、练习。
p1094。
第4题,是一种逆向思维。并体现开放性,如第1小题,只要红比蓝多,就能满足条件。第2小题,只要蓝比红多,都满足条件。
p1095。
教学反思:
可能性教学设计可能性教学设计课视频篇八
1、五年级的“可能性”第一课时,属于小学数学课程标准中《统计与可能性》中的范畴。本课主要教学内容是让学生认识事件发生的等可能性以及游戏规则的公性,会求简单事件发生的概率。
2、“可能性”是建立在三年级“可能性”初步知识的基础上,要求学生通过学习来体验事件的等可能性,对“可能性”的认识和理解从定性向定量过度。
同学们经常在玩游戏,却从不考虑输赢的可能性,通过本节学习让学生真正感受到数学与生活的联系,同时也为以后概率的学习打下了基础。
1、体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的.可能性。
2、能按照指定的要求设计简单的游戏方案。
3、通过多种活动,感受可能性在生活中的作用。
教学重点:体验事件发生的可能性和游戏规则的公平性,会用分数几分之一表示事件发生的可能性。
教学难点:根据制定的要求设计游戏方案,并能对简单事件发生的可能性作出预测。教、学具准备:硬币、实验记录表等。
可能性教学设计可能性教学设计课视频篇九
教学内容:
1、初步体验事件发生的等可能性以及游戏规则的公平性,会用。
分数表示事件发生的可能性;
2、通过丰富的游戏活动和对生活中几种常见游戏(或现象)剖。
析与解释,使学生初步体会数学与生活的紧密联系。
教学重点:
体验事件发生的可能性以及游戏规则的公平性,会用分数表示。
事件发生的可能性。
教学难点:
能按要求设计公平的游戏方案。
学具准备:
扑克牌若干张;课件。
教学过程:
一、感知:
(生:抛硬币)。
师:这种方式公平吗?为什么?
(生:公平。因为一枚硬币只有正面和反面,每一个足球队都有50%的先发球的机会;……)。
2、引出课题:用分数表示可能性的大小。
师:谁都不吃亏。这节课我们就要来研究(指)读“用分数表示可能性的大小”。
师:看到这个课题你想到了什么问题?
3、提出问题:
生1:都有什么分数呢?
生2:可能性有多大?……(根据学生说的重点圈出字眼)。
二、认识:
(一)活动一:
师:大家想一想,如果我抛掷10次,正面大约可能出现多少次?为什么?
师:同意他的说法吗?抛掷20次呢?
师:那么正面朝上的可能性和反面朝上的可能性都是1/2,是公平的。那么大家想一想如果我们实际操作的时候又是怎么样的呢?想不想试一试?下面我们来做一个实验。请看实验步骤:
1.每组抛20次,并把结果记录下来;
2.选择合适的统计方法正面朝上的次数。
3.试验完成后思考:正面朝上的次数与总次数有什么关系。
1、两张牌中有一张红桃a,从中任摸一张,摸到红桃a的可能性是几分之几?
生:1/2。(齐说)。
师:声音这么宏亮,怎么想的?
生:……。
2、三张牌中有一张红桃a,从中任摸一张,摸到红桃a的可能性是几分之几?(1/3)。
师:为什么会出现不同的分数?
3、四张牌中有一张红桃a,从中任摸一张,摸到红桃a的可能性是几分之几?(1/4)。
4、要使摸到红桃a的可能性为1/6,那怎么办?
(二)活动二:
1、问:现在轮到你们了,要按游戏规则来。看看你们找到的相关可能性的分数多还是教师多,开始吧。
2、生汇报:
师:哪个组派代表先来说?
组2:(几分之一)我们找到了……。
组3:(几分之几)我们找到了……。
组4:(几分之几)先说分数,再说是什么牌。……。
组5:还用不同的分数表示几一个可能性的问题。……。
3、师小结:从活动中看到大家能互相帮助,互相关心,互相提醒,做到我会你也会,我明白的你也要明白,真是不易。
三、实践:
1、圆饼图。(自做)。
安盛超市:袋里装9个球(其中有3个红球)。
永信超市:袋里装4个球(其中有2个红球)。
3、选一选。
4、3个正方体。
四、归纳。
1、师:这节课你学会了什么?
2、师:是啊,你们的表现让听课老师和我都认为你们特智慧、特勤奋、特精彩。我相信智慧和勤奋会让你们攻克一个又一个的数学问题,成就你们一次又一次的精彩。祝愿孩子们课课有精彩,一生精彩!下课。
将本文的word文档下载到电脑,方便收藏和打印。
可能性教学设计可能性教学设计课视频篇十
学校是公平教育的主阵地,教育公平主要体现在每节课的课堂教学当中,这是一节以公平为素材的课,主要有以下几处特色与亮点:
1本活动是以学生为中心的参与式教学活动,通过学生亲身体验,合作探究获得知识。
2在设计活动时,给学生给出活动目标,即让学生明确通过活动,学到那些知识和技能,获得那些体验,得到那些发展;其次选择的材料是学生容易获得的,符合学生心理特证和年龄特征的,整节课以活动为中心,通过活动学生掌握了知识和技能,个性发展等方面达到了预期目标。
3为学生创设了问题情景,让学生自己提出假设,通过亲身活动,感受知识,从而获得知识和技能。
4突出了课堂的公平性,达到公平教育教学的目的。
本节课是以公平为素材的课,因此在本节课上教师要着重注意以下几个问题;1要为学生营造公平和谐的课堂氛围;2提高课堂参与均等机会;3还要为学生提供课堂提问均等性;4提高课堂公平进程。
1.学生初步体验有些事件发生是确定的,有些则是不确定的,会结合已有的经验对一些事情发生的可能性进行判断并能简单地说出原因。
2.学会列举记录简单事件有可能发生的结果。
3.学生知道事件发生的可能性的大小是不同的,能对一些简单事件发生的可能性大小进行比较。
4.能由一些简单事件发生的可能性大小逆推比较事件多少。
5.培养学生简单的逻辑推理、逆向思考和与人交流思考过程的能力。
摸球
转盘游戏
1能由一些简单事件发生的可能性大小逆推比较事件多少。
2培养学生简单的逻辑推理、逆向思考和与人交流思考过程的能
3感受公平的重要性。
40分钟
1两种颜色的玻璃球各10个。(黄色10个,红色10个)小布袋一条。
2游戏转盘一个。
3活动记录表各两份
第---------组
第一轮第一轮
第二轮第二轮
第三轮第三轮
可能性总结
第---------组
第一轮第一轮
第二轮第二轮
第三轮第三轮
可能性可能性
1分组活动。
按学生实际情况进行均衡分组,力求公平。
2第一组;做摸球活动。先猜测把猜测结果填入下表,然后摸球各成员每人摸出一球后观察颜色后放回小球并搅匀布袋中的小球,下一位摸球。将小组各成员摸到红球的次数和黄球的次数纪录在下表。
第---------组
第一轮第一轮
第二轮第二轮
第三轮第三轮
可能性可能性
第二组:转盘游戏活动。先猜测结果填入下表。然后各组成员每人转动一次转盘,当转盘停止转动后,观察指针停在那个区域,并把结果纪录下表。
第一轮第一轮
第二轮第二轮
第三轮第三轮
可能性可能性
3交换活动场地。第一组做转盘游戏活动,并根据猜测实际操作填表。第二组做摸球活动,并按照猜测,实际操作填表。
5各组展示两次活动的结果并回答下列问题:
7分组讨论下列问题:
在三轮摸球过程中,摸出红球和黄球的可能性与球的总数有什么关系?
指针停在阴影部分和空白部分的可能性与什么有关系?
在现实生活中怎样才能够做到公平公正?
8各组展示讨论结果。
9评介与总结。
1本活动旨在是参与者通过亲手实验,从随机事件中发现规律,从而建立真确的可能性的直觉,体验感受可能性的稳定性。
2随即现象结果的出现是偶然的,出现一个结果事先无法预料,但在大量的实验中它明显出现规律性————稳定性。
3本活动中,布袋中虽然所放红球数量和黄球数量虽然相等。但三轮摸球的纪录也不尽相同,摸球的次数越多红球出现的可能性和黄球出现的可能性就越稳定,依此做出的推断就越准确。
4本活动中,虽然在转盘上,黄色区域的面积占转盘总面积的八分之六(即四分之三),但指针并不一定都停在黄色区域,但随着转动转盘次数的增多,指针停在黄色区域内的可能性就越稳定。
5本活动中,让学生通过动手做实验知道只有可能性相等时,这个游戏才公平。
可能性教学设计可能性教学设计课视频篇十一
1通过摸球,装球等活动,初步体验有些事件的发生是确定的,有些事件的发生是不确定的,并能用“一定”,“可能”,“不可能”等词语来描述事件发生的可能性,获得概率的思想。
2 培养初步的判断和推理能力。
3培养学习数学的兴趣,形成良好的合作学习的态度。
教学重点:感受体验有些事件发生的确定性和不确定性。
难点:理解,辨析“可能”,“一定”,“不可能”发生的事件。
教学过程 :
一 联系生活,激趣引入。
“今天,智慧爷爷带了个幸运王冠想戴在我们班一位扎两条小辫的女小朋友头上,谁可能会成为这个幸运的小天使呢?她坐在第一大组,猜猜她可能是谁? ( 学生猜测 )师强调可能。
指一男生,可能会是他吗?(不可能),为什么呢?
智慧爷爷悄悄告诉大家,那是穿红衣服的女孩,你能判断出什么结论吗?一定吗?
为什么不猜a a ,bb了?
在智慧爷爷没给我们缩小范围之前,可能是aa ,也可能是bb, 在我们的生活中,很多事情一时是不能确定的,都有他的可能性,这就是我们今天要学习的新本领“可能性”
二 创设情境 探索新知。
小朋友们喜欢玩游戏吗?智慧爷爷带来了三种颜色的球,装在四个口袋里,我们来个比手气游戏,每组派2个同学,一个摸球,一个上黑板记录。哪一组小朋友摸到代表喜气的红球次数最多,哪一组就获胜。
每组推选代表。下面的同学先猜一下,哪组可能获胜呢?(学生猜测)智慧爷爷悄悄告诉大家,第一组一定会胜。李老师不相信,你们相信吗?我们一起来试试。
宣布规则:摸的同学不许看,每人摸5次。开始后,李老师说第一次,你们开始摸,说了第2次才能摸第2次。记录的同学看好你们组小朋友摸到球的颜色,摸一次就在对应颜色旁打钩。(学生摸球)。
他们都摸了5次,分别摸出了什么球?哪一组获胜了?
看到这样的结果,你们是不是很惊讶啊,智慧爷爷告诉小朋友,他为什么猜得那么准呢?原来这四个口袋里分别有秘密呢?你能猜出来吗?请大家在小组里商量商量。
谁来大胆猜测一下第一组的口袋里到底有什么秘密?
都是红球。(打开看一下)那么任意摸一个,会是什么情况呢?
一定是红球。如果学生能说出一定,教师表扬。小朋友的这个词用得真好。(师板书一定)。
学生猜测一下2、3、4组口袋里分别有什么秘密?
一一出示可能,不可能。
小结:通过刚才的游戏,我们发现在全是红球的袋内任意摸一个,(“一定”是红球,)在没有红球的袋内任一摸一个,(“不可能”是红球,)在既有红球又有其他颜色的球的袋内任一摸一个,(有“可能”是红球。)。
三 找找好朋友。
四人为一组,先小组里猜猜自己可能会转到哪个朋友,轮流自己转转,每人转1次,看看分别转到了谁。
谁交到唐老鸭了?为什么没有人交到呢?(没有7号)所以我们不可能交到。
李老师想和2号的小动物交朋友,你能设计一个股子,不管怎么转,一定是和米老鼠交到朋友?小组商量一下。
四 摸果冻。
小朋友们真了不起,智慧爷爷拿来三种口味的果冻招待小朋友和你们的新朋友。 。
(1) 出示3袋果冻,全是草莓味,桔子味和草莓味,柠檬味和橘子味。
问:“从每袋内任意摸一个果冻,一定是草莓味的吗?
小组商量讨论,集体交流。
五 小小装配员。
智慧爷爷今天为我们带来了许多果冻,在分给大家之前,还想考考小朋友的智慧呢?你们愿意接受智慧爷爷的考验吗?请小朋友当小小装配员。按定单要求装果冻,看哪组合作的又快又好。
订单:1 随意拿一个,一定是草莓味的。
2 随意拿一个,可能是草莓味的。
3 随意拿一个,不可能是草莓味的。
一一出示定单,说说是怎样放的,为什么那样放。
我们生活中,有些事是可能发生的,有些事是一定发生的,有些事是不可能发生的。
选择:
1 太阳从东方升起。(一定,不可能,可能)。
2 公鸡下蛋。(一定,不可能,可能)。
3 明天考试我得100分。(一定,不可能,可能)。
生活中的事情很多很多,你能不能利用这三个词来说说生活中的事情。
同桌交流互说,全班交流。
生活中的例子很多很多,我们要做个有心人。
七;出示转盘,分布均匀,转动指针,会停哪呢?
出示另一转盘,分布不均。(标设奖品)商家为什么这样设计呢?
八 课堂总结。
今天你有什么收获?
可能性教学设计可能性教学设计课视频篇十二
教学目标:
知识与技能:
1、会运用有序搭配列举出事件发生的所有可能的结果。
2、会判断事件的可能性的大小,体验游戏规则的公平性。
过程与方法:经历事件可能性结果的探究分析过程,体验列举分析问题的学习方法。
情感态度与价值观:通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。
教学重难点:会判断事件发生的可能性的大小。
教学过程:
1、出示单元主题图:回顾击鼓传花游戏中的公平性。
说明:要判断游戏是否公平,关键是看男女生获得表演节目的可能性是否相等。
2、导入新课,揭示课题。(板书课题)。
1、出示图,提出问题:
(1)图中的小朋友在玩什么游戏呢?(跳房子)。
(2)他们用什么游戏来决定谁先跳?(玩石头、剪子、布)。
2、通过游戏方式理解游戏规则。
两名学生玩“剪子、石头、布”的游戏感受这种游戏的多种情形。
3、判断游戏是否公平:
(1)你认为用“石头、剪子、布”决定谁先跳公平吗?
(2)怎样判断这个游戏是否公平呢?
4、自主探究,验证规则公平性。
(1)小组讨论:一共有多少种可能的结果?
讨论之后,完成表格。
(2)汇报交流。
你罗列出了几种可能的结果?(多生汇报)。
哪9种?
指名汇报。(根据学生填表情况汇报交流)。
预设:
a无序排列的所有可能的结果。
b有序排列出所有可能的结果。
结合课堂生成,灵活处理。
(3)说明:像这样有序思考,能很快列举出所有可能的结果,并能做到既不重复、不遗漏。
5、对比例2与例3,今天学习的可能性与例2有什么不同?
小结判断游戏公平性的方法和步骤。
1、教材第103页“做一做”
(1)引导学生读题,理解题意。
(2)学生独立解答,交流、订正。
预设:
1、列举法。
2、直觉判断。
2、拓展:练习二十二第1题。
通过今天的学习,你们有什么收获?
可能性教学设计可能性教学设计课视频篇十三
教学内容:
教材p107—109。
教学目的:
4、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
5、通过实际操作活动,培养学生的动手实践能力。
6、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学重、难点:
知道事件发生的可能性是有大小的。
教学过程:
一、引入。
出示小盒子,展出其中的小球色彩、数量,
如果请一位同学上来摸一个球,他摸到什么颜色的球的可能性最大?
二、探究新知。
(1)每小组一个封口不透明袋子,内装红、黄小球几个。(学生不知数量、颜色)小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
记录次数。
黄
红
活动汇报、
(2)袋子里的红球多还是黄球多?为什么这样猜?
小组内说一说。
总数量有10个球,你估计有几个红,几个黄?
(3)开袋子验证。
让学生初步感受到实验结果与理论概率之间的关系。
2、练习。
p107“做一做”
3、
三、巩固练习。
p1096。
[1]学生说说掷出后可能出现的结果有哪些。
[2]猜测实验后结果会有什么特点。
[3]实践、记录、统计。
[4]说说从统计数据中发现什么?
[5]由于实验结果与理论概率存在的差异,也可能得不到预期的结果,可以让学生再掷几次,让学生根据试验的结果初步感受到硬币是均匀的,两种结果出现的可能性是相等的。
p1097。
学生讨论完成。
教学反思:
可能性教学设计可能性教学设计课视频篇十四
1、认识简单的等可能性事件。
2、会求简单的事件发生的概率,并用分数表示。
感受等可能性事件发生的等可能性,会用分数进行表示。验证掷硬币正面、反面朝上的可能性为。
主体图挂图,老师、学生收集生活中发生的一些事件(必然的、不可能的、不确定的),硬币。
一、信息交流。
1、学生交流收集到的相关资料,并对其可能性做出说明。
师出示收集的事件,共同讨论。
2、小结:在生活中有很多的不确定的事件,我们现在一起来研究它们的可能性大小。
二、新课学习。
1、出示主体图,感受等可能性事件的等可能性。
观察主体图,你得到了哪些信息?
在击鼓传花中,谁得到花的可能性大?掷硬币呢?
生:击鼓传花时花落到每个人的`手里的可能性相等,抛一枚硬币时正面朝上和反面朝上的可能性也是相等的。
在生活中,你还知道哪些等可能性事件?生举例…..
2、抛硬币试验。
(1)分组合作抛硬币试验并做好记录(每个小组抛100次)。
抛硬币总次数正面朝上次数反面朝上次数。
(2)汇报交流,将每一组的数据汇总,观察。
(3)出示数学家做的试验结果。
试验者抛硬币总次数正面朝上次数反面朝上次数。
德摩根409220482044。
蒲丰404020481992。
费勒1000049795021。
皮尔逊240001201211988。
罗曼若夫斯基806403969940941。
观察发现,当实验的次数增大时,正面朝上和反面朝上的可能性都越来越逼近。
3、师生小结:
掷硬币时出现的情况有两种可能,出现正面是其中的一种情况,因此出现正面的可能性是。
三、练习。
1、p.99.做一做。
2、练习二十第1---3题。
四、课内小结。
通过今天的学习,你有什么收获?
课题统计与可能性第一课时事件发生的可能性。
可能性教学设计可能性教学设计课视频篇十五
通过判断小丽和小强采用“石头、剪子、布”来决定谁跳是否公平这一活动,引导学生对小丽获胜和小强获胜的可能性进行思考和分析。但与例1例外不同,例3并没有给出小丽和小强玩“石头、剪子、布”的所有可能的结果,所以不能直接计算出小强获胜的可能性,而应先罗列出他们两人玩“石头、剪子、布”的所有可能的结果。
1、通过罗列出两人玩“剪子、石头、布”的所有可能的结果,计算出其可能性。
2、了解采用“剪子、石头、布”游戏的公平性。
3、通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。
教学重点不重复、不遗漏的列出所有可能的结果。
教学难点不重复、不遗漏的列出所有可能的结果。
教学准备投影仪、生收集生活中的等可能性事件。
一、复习。
1、生交流收集的等可能性事件,并说明其发生的可能性。
2、计算发生的可能性,首先看一共有多少种可能的结果,再看发生的事件有几种,最后算出可能性。
二、新授。
1、同学们都会玩“石头、剪子、布”的游戏,谁能和老师一起玩?
(游戏……)。
这样确定谁胜谁败公平吗?
生发表意见。
下面我们就用可能性的指示,看看这个游戏是否公平?
2、罗列游戏中的所有可能。
可交流怎样才能将所有的可能都列出来,方法的交流。
小丽石头石头石头。
小强剪子布石头。
结果小丽获胜小强获胜平。
3、通过观察表格,总结。
一共有9种可能;小丽获胜的可能有3种,小强获胜的可能也是3种,平的可能也是3种。所以小丽获胜的可能性是39,小强获胜的可能性是39,二者相等,所以用“石头、剪子、布”的.游戏来决定胜负是公平的。
4、反馈练习。
p.103.做一做。
重点说明:一共有多少种可能,如何想的。
注重学生判断的方法多样化,
(1)计算出单数、双数的可能性;
(2)其他方法,如双数只有一个6,而单数则有两个,因此末尾出现单数的可能是双数的两倍,因此这是不公平的。
三、练习。
1、练习二十三第一题独立完成,集评。
2、练习二十三第二题可以采用初步判定,然后罗列验证的方法。
3、练习二十三第三题制定游戏规则,小组内合作完成!
四、课内小结。
通过今天的学习,你有什么收获?
可能性教学设计可能性教学设计课视频篇十六
背景:课标把“统计与概率”作为四大内容之一,并在第一学段就对可能性作出了明确的要求:
1.初步体验有些事件的发生是确定的,有些则是不确定的。
2.能够列出简单试验所有可能发生的结果。
3.知道事件发生的可能性是有大小的。
4.对一些简单事件发生的可能性作出描述,并和同伴交换想法。
概率发生的基础是随机现象,这就涉及到确定事件(肯定与不可能两种,概率分别是1和0)与不确定事件,在不确定事件中,有很多种可能出现的结果,虽然每种结果都是随机出现的,但出现的次数在统计上存在一定的规律性(这也决定了概率与统计是不可分的,在本册教材中也基本上是以实验数据的统计为基础来探讨可能性的大小),概率就是以此为基础进行数学定义的:某一结果发生的次数占所有可能结果发生的总次数的比。要注意的是,概率是一个人为定义的概念,实验结果只能作为一种辅助的证明手段,严格的概率只能通过公式求得。
在本册,还不是要精确地计算某个结果发生的可能性,只是对可能性的大小有个初步的理解和判断就可以了。
一、教学内容。
1.事件的确定性和不确定性。
2.可能性的大小(两种结果、三种结果)。
二、教学目标。
1.使学生初步体验事件发生的确定性和不确定性。
2.使学生学会列出简单试验所有可能发生的结果。
3.使学生知道事件发生的可能性大小是不同的,能对一些简单事件发生的可能性大小进行比较。
三、编排特点。
1.选取学生熟悉的生活情境帮助学生理解抽象的数学知识。
主题图选取学生熟悉的抓阄表演节目的活动。
例2选取了学生熟知的自然现象来描述事件的确定性与不确定性。
2.设计丰富的游戏活动,使学生通过观察、猜想、实验验证等过程来体会可能性大小。
摸棋子、摸球活动、转盘游戏、涂色活动、掷硬币、猜硬币游戏、抽签游戏。
四、具体编排。
1.主题图。
提供了一个抓阄表演节目的情境,学生都非常熟悉。通过贴近学生生活的游戏活动,学生很容易理解在抓阄过程中,抓到的结果是不定的。如果预先知道哪种节目的纸条多,学生也能初步感知自己表演哪种节目的可能性大。
教师还可以利用买体育彩票、抽奖等现实题材来引入可能性的内容。
2.例1(确定事件与不确定事件)。
(1)通过摸球活动让学生体验肯定、不可能与可能等概念。虽然肯定与不可能都是确定事件,但不要求学生掌握这一点,只要能用上面三个词描述一下就可以了。
(2)教学时,可以让学生先猜测,再用实验验证一下,并用自己的语言叙述一下判断的理由。
(3)提问的方式可以多样。可以像教材上说的“哪个盒子肯定能摸出红棋,不可能摸出绿棋,可能摸出绿棋?”也可以问“第一个盒子肯定能摸出什么颜色的棋子,不可能摸出什么颜色的棋子?第二个盒子不可能摸出什么颜色的棋子,可能摸出什么颜色的棋子?”(最后一问也是为后面列出所有可能结果做准备。)。
3.例2。
借助于生活中的自然现象使学生进一步巩固对确定事件、不确定事件的理解。因为这些都是学生利用常识就能判断的,所以教材上只给出一个答案,让学生判断其他几个事件。
4.例3(比较两种结果的可能性大小)。
(1)两个层次:列出所有的可能结果,比较这些结果出现的可能性大小。
(2)通过先观察、猜测,再用小组实验验证的方式来展开活动。
(3)实验时要注意以下几点:
a.实验所用的东西除了颜色以外,其他特性完全一致,否则不能保证结果的随机性。
b.要有足够多的实验次数,这样才有统计学的意义。
c.每一次实验的状态都一样(摸出的球要放回去)。
(4)实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝棋的次数比红棋多。
(5)出示两组的实验结果,虽然两组的数据不一致,但呈现的规律是相同的,在这儿,其实也是让学生巩固收集数据的过程。
(6)教学时可以问一下学生,为什么都是摸出蓝棋的次数比红棋多,引导学生把摸出某种结果次数的多少和棋子的数量多少联系起来,这就可以了。
(7)最后提问“再摸一次,摸出哪种颜色棋子的可能性大?”实际就是利用前面的统计结果所表现出来的趋势进行判断(在二年级下册的统计部分已经学习了利用统计结果进行预测),虽然摸出蓝球的可能性大,但在实际操作时,由于单次实验的结果是随机的,如果是一个小组摸的话,摸出来的结果仍可能是红球,此时,可以让所有小组同时摸一次,看摸出来的红棋多还是蓝棋多。
5.“做一做”
利用转盘游戏,可以先让学生不转圆盘来判断,通过摸棋子游戏的类推,让学生把指针停留在哪种颜色的可能性大小和不同颜色占整个圆面的区域大小联系起来。如果学生发现不了这一结论,可以让学生通过实验来验证。实验时同样要注意几点:圆盘的重心正好在中心,以使转动后停留在任意位置的机会均等,实验的次数要足够多。
6.例4(三种结果的可能性大小)。
此时,可以不用实验加以验证,直接让学生运用例3的知识加以类推,直接判断。
7.例5(可能性大小的逆向思考)。
通过不同结果出现的次数多少来判断不同颜色棋子数量的多少,主要是让学生作理论的思考。也可以让学生验证一下,如小组内先由两人把不同数量的两种颜色的球(或棋子)放进纸袋或盒子,让另两人摸,根据摸的结果来判断哪种颜色的球多,再来验证一下。
8.“做一做”
左图每种颜色都在一起,右图中每种颜色进行了分割,此时学生可以用数份数的方法来看三种颜色所占的区域大小。教学时教师也可以利用前面学过的分数的知识让学生说一说每种颜色占整个圆面的几分之几,为以后学习可能性的精确值做铺垫(因为概率与这些分数相等)。
8.练习二十四。
第2题,是一种逆向思维。并体现开放性,如第2小题,只要不涂蓝色,就能满足条件。第3小题,只要涂黄色的数量在1个到4个之间,都满足条件。
第3题,让学生利用生活经验说说生活中的确定事件和不确定事件。
第4题,编排意图和第2题相同。
第5题,通过实验来巩固可能性的大小。
第6题,渗透等可能性,在这儿只是让学生初步感受一下,而且两面朝上的学生人数不一定很接近,都没关系。(因为掷硬币这一事件的独立性和随机性,全班每人掷一次和每人掷很多次的效果是一样的。)。
第7题,其实是把可能性和某种颜色的球在所有球所占的比例联系起来(第一个盒中是2/15,第二个盒中是9/15),在这儿,两个盒里的球的总数相等,所以绿球占的比例大小与绿球的数量是一致的。学生只要能用自己的语言大致说出道理来就可以了,不必分析以上原理。
第8题,让学生列出所有可能出现的结果,并初步体会每面朝上的可能性是相等的。
第9题,与主题图相对应,借助于学生熟悉的活动理解可能性的大小,把可能性的大小与每种签的数量对应起来。
第10题,变换形式,让学生巩固可能性的大小,其中隐含了“每个人猜哪个盒里有硬币这一事件是随机的”这一原理。
第11题,可能性大小的逆向思考的练习,又体现开放性,只要红色比蓝色多就可以。
第12题,可能性大小的逆向思考的练习,又体现开放性,只要保证10张卡片中“1”的张数最多,“5”的张数最少即可。
1.引导学生借助观察、猜测、实验等来体验事件的确定性与不确定性,感受可能性的大小。
但也要注意一点,虽然在这儿都是借助于实验来验证,但也要逐渐引导学生从实验结果所呈现的规律性来认识可能性的大小与某一结果次数占总结果次数的比例之间的关系,逐渐过渡到从理论的角度来加以判断。
2.把握好教学要求。
只要学生有初步的体验就可以了,对于确定事件、不确定事件、等可能性以及概率的具体值,还不要求。
【本文地址:http://www.xuefen.com.cn/zuowen/16574762.html】