探索勾股定理教学设计(精选18篇)

格式:DOC 上传日期:2023-11-30 16:00:08
探索勾股定理教学设计(精选18篇)
时间:2023-11-30 16:00:08     小编:书香墨

总结是一个反思的过程,能够让我们更好地规划未来的目标与计划。总结要注重条理清晰,逻辑严密,使读者能够快速理解和把握。以下是小编为大家收集的总结范文,仅供参考,希望能给大家一些启示和帮助。

探索勾股定理教学设计篇一

教材所处的地位与作用。

“探索勾股定理”是人教版八年级《数学》下册内容。“勾股定理”是安排在学生学习了三角形、全等三角形、等腰三角形等有关知识之后,它揭示了直角三角形三边之间的一种美妙关系,将数与形密切联系起来,在几何学中占有非常重要的位置。同时勾股定理在生产、生活中也有很大的用途。

二、教学目标。

综上分析及教学大纲要求,本课时教学目标制定如下:

1、知识目标。

知道勾股定理的由来,初步理解割补拼接的面积证法。

掌握勾股定理,通过动手操作利用等积法理解勾股定理的证明过程。

2、能力目标。

在探索勾股定理的过程中,让学生经历“观察——合理猜想——归纳——验证”的数学思想,并体会数形结合以及由特殊到一般的思想方法,培养学生的观察力、抽象概括能力、创造想象能力以及科学探究问题的能力。

3、情感目标。

通过观察、猜想、拼图、证明等操作,使学生深刻感受到数学知识的发生、发展过程。

介绍“赵爽弦图”,让学生感受到中国古代在勾股定理研究方面所取得的伟大成就,激发学生的数学激情及爱国情感。

三、教学重难点。

本课重点是掌握勾股定理,让学生深刻感悟到直角三角形三边所具备的特殊关系。由于八年级学生构造能力较低以及对面积证法的不熟悉,因此本课的难点便是勾股定理的证明。

四、教学问题诊断。

本节主要攻克的问题就是本节的难点:勾股定理的证明。我打算采用面积法来讲解,但这种借助于图形的面积来探索、验证数学结论的数形结合思想,对于学生来说,有些陌生,难以理解,又加之数学课本身的课程特征,在讲解时,没有文科那么深动形象,所以针对这一现状,我在教法和学法上都进行了改进。

五、教法与学法分析。

[教学方法与手段]针对八年级学生的知识结构和心理特征,本节课选择引导探索法,由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,并利用多媒体进行教学。

[学法分析]在教师组织引导下,采用自主探索、合作交流的方式,让学生自己实验,自己获取知识,并感悟学习方法,借此培养学生动手、动口、动脑能力,使学生真正成为学习的主体。让学生感受到自己是学习的主体,增强他们的主动感和责任感,这样对掌握新知会事半功倍。

1、创设情境,引入新课。

本节课开始利用多媒体介绍了在北京召开的国际数学家大会的会标,其图案为“赵爽弦图”,由此导入新课,是为了激发学生的兴趣和民族自豪感,它是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段迅速集中学生注意力,把他们的思绪带进特定的学习情境中,激发学生浓厚的学习兴趣和强烈的求知欲。多媒体展示这一有意义的图案,可有效开启学生思维的闸门,激励探究,使学生的学习状态由被动变为主动,在轻松愉悦的氛围中学到知识。

2、观察发现,类比猜想。

让学生仔细观察毕达哥拉斯朋友家的瓷砖(图1),从而得到特殊的等腰直角三角形三边关系,紧接着由特殊到一般,让学生合理猜测:是否任意直角三角形都符合这个“三边关系”的结论?同学们很轻易的得到了结论。最后对此结论通过在网格中数格子进行验证,让学生经历了“观察——合理猜测——归纳——验证”的这一数学思想。在数格子的验证过程中,发现任意直角三角形(图2)斜边上长出的正方形中网格不规则,没法数出。通过同学们的.讨论,发现数不出来的原因是格子不规则,从而想到了用补或割的方法进行计算,其原则就是由不规则经过割补变为规则。

3、实验探究,证明结论。

因为勾股定理的出现,使数学从单一的纯计算进入了几何图形的证明,所以为了让学生感受数形结合这一数学思想,让学生亲自动手,互相协作,拿一块由a2和b2组成的不规则的平面图形经割补,变为规则的c2,又因两块割补前后面积相等,从而得到勾股定理:a2+b2=c2,也因此引入了“等积法”证明勾股定理。

4、练兵之际。

这是“总统证法”,此时让学生自己探索,然后讨论。选用“总统证法”,第一是为了让同学们熟悉“等积法”,第二让学生感受数学的地位之高,第三在没有讲解的情况下,学生自己得出了“总统证法”,大大增强了学生的自信心和自豪感。

5、自己动手,拼出弦图。

让同学们拿出了提前准备好的四个全等的边长为a、b、c的直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了学生,让他们在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,学生们拼得很好,并且都给出了正确的证明,在黑板上尽情地展示了一番。

6、总结反思。

通过这一堂课,我认为数学教学的核心不是知识本身,而是数学的思维方式,而培养这种数学思维方式需要丰富的数学活动。在活动中学生可以用自己创造与体验的方法来学习数学,这样才能真正的掌握数学,真正拥有数学的思维方式,这一课的学习就是通过让学生自主探索知识,从而将其转化为自己的,真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习,教学模式也从教师讲授为主转为了学生动脑、动手、自主研究,小组学习讨论交流为主,把数学课堂转化为“数学实验室”,学生通过自己活动得出结论,使创新精神与实践能力得到了发展。

七、设计说明。

1、根据学生的知识结构,我采用的数学流程是:创设情境引入新课——观察发现类比猜想——实验探究证明结论——自己动手拼出弦图——总结反思这五部分。这一流程体现了知识的发生、形成和发展的过程,让学生经历了观察——猜想——归纳——验证的思想和数形结合的思想。

2、探索定理采用了面积法,引导学生利用实验由特殊到一般的数学思想对直角三角形三边关系进行了研究,并得出了结论。这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好的思维品质的形成有重要作用,对学生终身发展也有很大作用。

探索勾股定理教学设计篇二

勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。《20xx版数学课程标准》对勾股定理教学内容的要求是:

1、在研究图形性质和运动等过程中,进一步发展空间观念;

2、在多种形式的数学活动中,发展合情推理能力;

3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;

4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

本节课的教学目标是:

1、能正确运用勾股定理及其逆定理解决简单的实际问题。

教学重点和难点:

应用勾股定理及其逆定理解决实际问题是重点。

把实际问题化归成数学模型是难点。

根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。

在教学设计中,尽量考虑到不同学习水平的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。

第一环节:情境引入。

情景1:复习提问:勾股定理的语言表述以及几何语言表达?

设计意图:温习旧知识,规范语言及数学表达,体现。

设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。

第二环节:合作探究(圆柱体表面路程最短问题)。

情景3:课本引例(蚂蚁怎样走最近)。

第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题)。

设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。

第四环节:议一议。

设计意图:

第五环节:方程与勾股定理。

第六环节:交流小结内容:师生相互交流总结:

1、解决实际问题的方法是建立数学模型求解、

2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题、

3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。

意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史、《勾股定理的应用》教学设计第七环作业设计:

第一道题难度较小,大部分学生可以独立完成,第二道题有较大难度,可以交流讨论完成。

探索勾股定理教学设计篇三

勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。《20xx版数学课程标准》对勾股定理教学内容的要求是:

1、在研究图形性质和运动等过程中,进一步发展空间观念;

2、在多种形式的数学活动中,发展合情推理能力;

3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;

4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

本节课的教学目标是:

1、能正确运用勾股定理及其逆定理解决简单的实际问题。

教学重点和难点:

应用勾股定理及其逆定理解决实际问题是重点。

把实际问题化归成数学模型是难点。

根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。

在教学设计中,尽量考虑到不同学习水平的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。

第一环节:情境引入。

情景1:复习提问:勾股定理的语言表述以及几何语言表达?

设计意图:温习旧知识,规范语言及数学表达,体现。

设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。

第二环节:合作探究(圆柱体表面路程最短问题)。

情景3:课本引例(蚂蚁怎样走最近)。

第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题)。

设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。

第四环节:议一议。

设计意图:

第六环节:交流小结内容:师生相互交流总结:

1、解决实际问题的方法是建立数学模型求解、

2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题。

3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。

第七环作业设计:

第一道题难度较小,大部分学生可以独立完成,第二道题有较大难度,可以交流讨论完成。

知识技能:了解勾股定理的文化背景,体验勾股定理的探索过程、

数学思考:在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想、解决问题:

1、通过拼图活动,体验数学思维的严谨性,发展形象思维、

2、在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果、

情感态度:

1、通过对勾股定理历史的了解,感受数学文化,激发学习热情、

2、在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神、

2、难点是用拼图的方法证明勾股定理、

探索勾股定理教学设计篇四

教学过程:

一、创设情境。

出示有规律的葡萄,让学生们猜一猜下一串会是什么颜色?说说你是怎么知道的?

师:像葡萄这样一串紫一串绿连续重复出现的,我们就说它们是有规律的,有规律的排列帮大家猜准了葡萄的颜色。其实在生活中对规律的排列还有很多,今天这节课我们继续探索规律。(板书:探索规律)。

二、探索新知。

1、出示超市开业情境图,让同学们仔细观察,图中哪些东西的排列是有规律的?它们的排列有什么规律?小组合作,互相说一说吧!开始。

2、找同学说一说你发现了什么东西的排列是有规律的?

学生可能回答:

我发现彩旗的排列是有规律的。(有什么规律,你能说说吗?)。

彩旗的排列规律是……(多找同学说)(和同桌说一说)。

师:我们看彩旗的排列规律是一面红色,一面黄色,一面蓝色,三个一组连续重复出现的,也就是这一组的后面紧跟着又出现一组,又一组,这就是连续重复出现。

(板书:一组一组连续重复)。

师:我们找到了彩旗的排列规律,下面我们接着看,图中还有哪些东西的排列是有规律的?

(学生想说哪个说哪个,提示学生用完整的话说)。

三、游戏。

师:好了,现在我们放松一下。

做拍手、跺脚、伸手臂游戏。

师:其实我们都发现了规律,知道后面怎么做了,我们把拍手、跺脚、伸手臂这一组动作连着做了三次,我们就发现了规律,找到了规律,我们就知道怎么做了。其实一组固定的事物,他就是要连续重复出现三次,也就是至少要三次,三次可以,比三次多也可以,它们的排列是有规律的,我们就能找出规律,并且按规律接着去完成了。

师:好了,等了这么久,我们去超市看一看。

瞧,这些物品多整齐啊,它们的排列有规律吗?(小组合作学习,找同学汇报)。

五、闯一闯。

(学生说一道解释为什么?)。

第三关设计一幅有规律的图形,请同学们拿出老师给大家准备的学具,倒出里边的学具,再拿出作业纸,把长长的双面胶撕下来,用这些学具在作业纸上摆出有规律的图形。听明白了吗?开始。(你可以边摆边说)。

找同学说设计想法,并把作品粘贴在黑板上。

六、欣赏。

下面就请同学们开动你的小脑筋去想一想在我们身边还有哪些有规律的事物?

生:自由说。(说出具体的规律)。

师:为了奖励大家,老师这也有几幅有规律的图片,我们一起看一看。

最后,请同学们设计一幅有规律的图画。

探索勾股定理教学设计篇五

勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。

教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制定教学目标如下:

3、培养学生观察、比较、分析、推理的能力。

4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:

以自学辅导为主,充分发挥教师的`主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:

1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4。那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。

2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

3、板书课题,出示学习目标。

教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。

1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。

2、教师引导学生按照要求进行拼图,观察并分析;

(1)这两个图形有什么特点?

(2)你能写出这两个图形的面积吗?

(3)如何运用勾股定理?是否还有其他形式?

这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。

1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。

2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。

探索勾股定理教学设计篇六

1、体验勾股定理的探索过程,由特例猜想勾股定理,再由特例验证勾股定理。

2、会利用勾股定理解释生活中的简单现象。

(二)能力训练要求。

1、在学生充分观察、归纳、猜想、探索勾股定理的过程中,发展合情推理能力,体会数形结合的思想。

2、在探索勾股定理的过程中,发展学生归纳、概括和有条理地表达活动过程及结论的能力。

(三)情感与价值观要求。

1、培养学生积极参与、合作交流的意识。

2、在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的勇气。

二、教学重、难点。

难点:在方格纸上通过计算面积的方法探索勾股定理。

三、教学方法。

交流探索猜想。

在方格纸上,同学们通过计算以直角三角形的三边为边长的三个正方形的面积,在合作交流的过程中,比较这三个正方形的面积,由此猜想出直角三角形的三边关系。

四、教具准备。

1、学生每人课前准备若干张方格纸。

2、投影片三张:

第一张:填空(记作1、1、1a);

第二张:问题串(记作1、1、1b);

第三张:做一做(记作1、1、1c)。

探索勾股定理教学设计篇七

1、知识与技能目标。

能运用勾股定理及直角三角形的判定条件解决实际问题.2、能力达成目标。

(1)会用勾股定理及直角三角形的判定条件解决实际问题,逐步培养“数形结合”和“转化”数学能力。(2)发展学生的分析问题能力和表达能力。

3、情感态度目标。

(1)在提升分析问题能力和完整表达解题过程能力的同时,感受“数形结合”和“转化”的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利。

(2)积极参加数学学习活动,增强自主、合作意识,培养热爱科学的高尚品质。

(一)创设情景,引入新课;

(二)引入实例,体会勾股定在现实生活中的作用,体现数学来源于现实生活。

如放映的:可爱的小鸟、帮一帮消防员、电视的大小问题,这些都是现实生活中体现勾股定理应用的很好的例子。进而引入勾股定理的应用。

(三)实战濱示。

生活中路径最短问题转化为几何中的解直角三角形问题,即勾股定理的应用。先演示在长方体中,小蚂蚁吃农食物这个情境问题,在分析问题的过程中由学生讨论分析会出现几种情况,最后师生共同。

总结。

合作完成不但很好地应用了勾股定理而且还巩固了把几何体展开为平面图形的知识体现了数形结合的数学思想。

由绕一圈到两圈,最后提出问题:到多圈该怎么处理?学生课后自行讨论完成。给学生以自己思考的空间,体现不同的学生在数学上有不同的发展。

(七)练习,以上面的形式分层次出现。

(八)感悟与反思(让学生来小结本节课的内容):

1、通过这节课的学习活动你有哪些收获?

2、对这节课的学习,你还有什么想法吗?

(九)作业:见卷子。

(十)紧扣主题,观看给出的勾股定理的应用的图片,体会本节课的教学内容,以及勾股定理在现实生活中的具大作用。

探索勾股定理教学设计篇八

勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。《20xx版数学课程标准》对勾股定理教学内容的要求是:

1、在研究图形性质和运动等过程中,进一步发展空间观念;

2、在多种形式的数学活动中,发展合情推理能力;

3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;

4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

本节课的教学目标是:

1、能正确运用勾股定理及其逆定理解决简单的实际问题。

教学重点和难点:

应用勾股定理及其逆定理解决实际问题是重点。

把实际问题化归成数学模型是难点。

二、教学设想。

根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。

在教学设计中,尽量考虑到不同学习水平的`学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。

三、教学过程分析。

第一环节:情境引入。

情景1:复习提问:勾股定理的语言表述以及几何语言表达?

设计意图:温习旧知识,规范语言及数学表达,体现。

设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。

第二环节:合作探究(圆柱体表面路程最短问题)。

情景3:课本引例(蚂蚁怎样走最近)。

第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题)。

设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。

第四环节:议一议。

设计意图:

第六环节:交流小结内容:师生相互交流总结:

1、解决实际问题的方法是建立数学模型求解、

2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题。

3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。

第七环作业设计:

第一道题难度较小,大部分学生可以独立完成,第二道题有较大难度,可以交流讨论完成。

探索勾股定理教学设计篇九

1、知识目标:

(2)学会利用勾股定理进行计算、证明与作图;。

2、能力目标:

(1)在定理的证明中培养学生的拼图能力;。

(2)通过问题的解决,提高学生的运算能力。

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;。

(2)通过有关勾股定理的历史讲解,对学生进行德育教育.

教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育。

教学用具:直尺,微机。

教学方法:以学生为主体的讨论探索法。

探索勾股定理教学设计篇十

(1)有利于激发学生学习的兴趣。西方经济学是一门理论性很强的学科,常常要通过大量的图形、表格、数学论证来加以分析和说明,让学生感到抽象枯燥且难以掌握。例如,在厂商均衡理论一章中,要比较分析在不同市场结构平均成本曲线、边际成本曲线、平均可变成本曲线等多条曲线的相对位置及生产规模的决定;在分析经济增长时,则是用不同学派的多种模型。而通识教育作为一种素质教育,其重心并不在于理论的探究和公式的推导,所以有必要寻求一种恰当的载体,将西方经济学中的基本理论以一种生动的形式呈现给学生,而案例教学在这方面有独特的作用。尤其是通识教育经济学案例往往是以现实经济问题作为依托,其中不乏一些经济社会的热点问题,足以引起学生浓厚的兴趣,吸引他们主动思考、积极讨论,变被动学习为主动学习。

(2)有利于提高学生分析问题、解决问题的能力。案例教学最突出的优势之一便是采集大量的经济事例作为教学内容,对学生具有启发教育的作用。开展综合案例讨论,可以培养学生分析处理内容复杂的实际经济问题的能力。尤其以现实问题为研究对象,例如讲完宏观经济政策原理后,可以以这一原理为依据对当前热点的国际金融危机进行剖析,以事实和数据为依据,并将理论知识寓于案例之中,学生运用创造性思维,将大量的感性体验上升到理性认识高度,从而进一步认识经济现象的本质并学会用基本原理指导今后的实际工作。

(3)有利于培养学生经济思维的习惯和意识。《西方经济学》通识教育的教学目的不是简单的要求学生掌握课本上的知识,而是要求学生掌握课本知识所体现出的思考方法或分析工具。案例教学的最终目的是要将学生的知识转化为技能,本课通识教育与专业教育不同,不以教师经济学原理的讲述为切入点,而让学生从精选出的案例入手,案例教学为学生提供一个逼真的、具体的情景,迫使他们去思考、分析、处理问题,从而得到实际锻炼的机会,而通过实际锻炼掌握了经济学分析工具和方法,对培养学生的综合素质和创造性思维大有裨益。同时,案例教学本身也需要学生之间的合作、交流、分析与研讨,这也有利于培养学生合作共事和沟通交流的能力。

将本文的word文档下载到电脑,方便收藏和打印。

探索勾股定理教学设计篇十一

1、知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。

2、过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3、情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育。

知识点1:(已知两边求第三边)。

1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为xx。

2.已知直角三角形的两边长为3、4,则另一条边长是xx。

3.三角形abc中,ab=10,ac=17,bc边上的高线ad=8,求bc的长?

知识点2:

利用方程求线段长。

(1)使得c,d两村到e站的距离相等,e站建在离a站多少km处?

(2)de与ce的位置关系。

(3)使得c,d两村到e站的距离最短,e站建在离a站多少km处?

利用方程解决翻折问题。

3、在矩形纸片abcd中,ad=4cm,ab=10cm,按图所示方式折叠,使点b与点d重合,折痕为ef,求de的长。

谈一谈你这节课都有哪些收获?

本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的'有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。

探索勾股定理教学设计篇十二

知识与技能:

了解勾股定理的一些证明方法,会简单应用勾股定理解决问题。

在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。

通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。

1、创设情境。

师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。

设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。

观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界。

追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?

师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。

设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论。

问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。

师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。

探索勾股定理教学设计篇十三

作为一名数学教师,如何才能引领一年级学生走进数学,培养学生学习数学的兴趣呢?我想,应该从孩子们接触到的真正意义上的第一堂数学课开始,用心地为孩子们翻开这精彩的第一页。于是,我把各种教学常规、学生的实际情况以及相应的数学知识进行有机整合,精心设计了以下两个环节,和大家一起共享。

环节一:我和数学书交朋友。

1、认一认数学书。(片段摘要)师:小朋友,这一节是数学课,那你认识数学书吗?

师:(拿数学书演示)请小朋友仔细观察数学书的封面上都有些什么呢?他们在干什么?(生自由说,重点引导学生说出有几个小朋友在干什么。)。

师:你能找到“数学”两个字吗?谁会指着读一读?你还认识封面上的哪些字呢?(师可带领学生认一认,读一读,如:一年级,上册等等。)。

反思:刚上一年级的小朋友,通过三年的幼儿园学习,已经掌握了一些知识,但在孩子们的思想中对语文、数学、音乐等课程的区分并不清楚,也从未接触过具体的课本,于是,在这真正意义上的第一堂数学课上,指导他们来认一认数学书是很有必要的。实践也证明,通过此环节的设计,在后来的教学中,我很难发现学生有拿错数学课本的现象。

2、闻一闻数学书。我一直保留着一个习惯,不,应该是一种癖好,就是一拿到新书,就会不自觉地随手一翻,然后用鼻子靠近书页,去闻一闻新书所特有的那种浓浓的油墨香味。细细想来,这个癖好是从何而起?记忆最深处,还是和这群学生一样大时,跟几个同龄人背着一大包新书聚在一起,用隔年的年历纸小心翼翼地包书,期间,就会不时闻到一缕缕幽幽的油墨香味,渐渐地,便记住并喜欢上了这种独特的味道。无独有偶,跟同事或朋友谈起这个话题,他们竟然也有着同样的感受。于是,我坚信,让学生来闻一闻新书的味道是学习的开始,让他们在这种浓浓的油墨香味中感受到要学习新知的美好憧憬,并教育学生要爱惜书本,等把这本书都学完了,再让他们来问闻闻它的味道。

3、翻一翻数学书。翻书最基本的要求是要认识页码,还要准确地知道数字的排列规律。一年级的小朋友基本上都会熟练地从1数到100,也会比较一些数字的大小。根据这一情况,我设计了一个翻书的小游戏“比谁找得快”。

(片段摘要)。

师:请小朋友把书翻到第8页。

师:你是怎样找到第8页的?

生1:我是一页一页翻过去的。

生2:因为第8页在很前面,我就先翻一点点,看看是不是,我翻到的是第10页,第8页在前面,我就再往前翻过一页。

师:你真会动脑筋,想的方法很好,鼓掌表扬。小朋友们,看来翻书也有很大的学问呢。接着,我有连续地变换着方式来让学生找页数。

-反思:备课时,这一环节的设计旨在让学生学会翻书,认识页码,知道数字的大小,也便于自己能更好地熟悉和了解学生对已有知识的掌握情况。但学生的实际反应太让我惊讶了,原来他们已经对数字有把如此深刻的理解。而且在具体的操作中有部分同学已经有了估计的意识,对于具体的数字页码,他们没有一页一页地去翻,而是会用“先翻过一些,再比较”的方法来快速找到教师所要求的页码,这是一条捷径,这条捷径就是学生对于认识数字的已有经验,也是教师进行再次教学的一个起点,教师若摸不清学生原有的`知识基础,也就找不到再次教学时的这个关键起点,更不能抓住学生学习的生长点,那样在以后的教学中,必将多走重复路、冤枉路。

环节二:我的“新家”在哪里?

1、认一认教室。师:小朋友,你知道自己在哪个班吗?

(开学初,经常有学生会走错教室,此设计旨在让学生认清并记住自己的班级所在地。)。

师:小朋友,这个教室就是你们在学校里的“新家”,看一看,我们的“新家”布置得怎样?你会按着前后左右的顺序来说一说吗?(鼓励并引导学生按一定的顺序来叙述)。

2、找一找位置。教师先介绍教室课桌的摆放,告诉学生什么叫“一排”,什么叫“一组”,然后举例:×××坐在第3排,×××坐在第2组第5个。让学生学着说说自己的位置。

变换方式:说出你好朋友的位置,让大家来猜一猜。

(这一环节的设计旨在让学生认识并喜欢自己的教室,熟悉身边的同学、老师,在交流中培养学生的观察能力和语言表达能力。)。

探索勾股定理教学设计篇十四

一是让学生自己回顾总结本节的收获。(多数为具体的知识和方法)。

二是教师要引导学生学习科学家敏锐的观察力和勤于思考的作风,不断提高自己的数学素养,适时对大家进行思想教育。

通过本节课的教学,让我更深刻地认识到:

3.要相信学生的能力,为学生创造自我学习和创造的机会。我相信:只要坚持不懈地这样去做,不但能很好地实施新课改,实现教育的本来目标,而且也一定能让学生“考出”好的成绩。

探索勾股定理教学设计篇十五

教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的“形”的特点,转化为三边之间的“数”的关系,它是数形结合的典范。它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。

学生分析:

1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。

2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。

设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的自豪感和探究创新的精神。

教学目标:

1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。

2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的'文化价值。

3、培养学生学习数学的兴趣和爱国热情。

4、欣赏设计图形美。

教学准备阶段:

学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。

老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。

(一)引入

同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探索这一小秘密。(板书课题:探索直角三角形三边关系)

(二)实验探究

设网格正方形的边长为1,直角三角形的直角边分别为a、b,斜边为c,观察并计算每个正方形的面积,以四人小组为单位填写下表:

(讨论难点:以斜边为边的正方形的面积找法)

交流后得出一般结论:(用关于a、b、c的式子表示)

(三)探索所得结论的正确性

当直角三角形的直角边分别为a、b,斜边为c时,是否一定成立?

1、指导学生运用拼图、或正方形网格纸构造或设计合理分割(或补全)图形,去探索本结论的正确性:(以四人小组为单位进行)

在学生所创作图形中选择有代表性的割、补图,展示出来交流讲解,并引导学生进行说理:

如图2(用补的方法说明)

师介绍:(出示图片)毕达哥拉斯,公元前约500年左右,古西腊一位哲学家、数学家。一天,他应邀到一位朋友家做客,他一进朋友家门就被朋友家的豪华的方形大理石地砖的形状深深吸引住了,于是他立刻找来尺子和笔又量又画,他发现以每块大理石地砖的相邻两直角边向三角形外作正方形,它们的面积和等于以这块大理石地砖的对角线为边向形外作正方形的面积。于是他回到家里立刻对他的这一发现进行了探究证明……,终获成功。后来西方人们为了纪念他的这一发现,将这一定理命名为“毕达哥拉斯定理”。1952年,希腊政府为了纪念这位伟大的数学家,特别选用他设计的这种图形为主图发行了一枚纪念邮票。(见课本52页彩图2―1,欣赏图片)

如图3(用割的方法去探索)

师介绍:(出示图片)中国古代数学家们很早就发现并运用这个结论。早在公元前20xx年左右,大禹治水时期,就曾经用过此方法测量土地的等高差,公元前1100年左右,西周的数学家商高就曾用“勾三、股四、弦五”测量土地,他们对这一结论的运用至少比古希腊人早500多年。公元200年左右,三国时期吴国数学家赵爽曾构造此图验证了这一结论的正确性。他的这个证明,可谓别具匠心,极富创新意识,他用几何图形的割、来证明代数式之间的相等关系,既严密,又直观,为中国古代以“形”证“数”,形、数统一的独特风格树立了一个典范。他是我国有记载以来第一个证明这一结论的数学家。我国数学家们为了纪念我国在这方面的数学成就,将这一结论命名为“勾股定理”。(点题)

20xx年,世界数学家大会在中国北京召开,当时选用这个图案作为会场主图,它标志着我国古代数学的辉煌成就。(见课本50页彩图,欣赏图片)

如图4(构造新图形的方法去探索)

本节课学习的勾股定理用语言叙说为:

1、继续收集、整理有关勾股定理的证明方的探索问题并交流。

2、探索勾股定理的运用。

探索勾股定理教学设计篇十六

1、让学生通过对的图形创造、观察、思考、猜想、验证等过程,体会勾股定理的产生过程。

2、通过介绍我国古代研究勾股定理的成就感培养民族自豪感,激发学生为祖国的复兴努力学习。

3、培养学生数学发现、数学分析和数学推理证明的能力。

探索勾股定理教学设计篇十七

这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

2、会初步运用勾股定理进行简单的计算和实际运用。

3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。

4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

本课的教学难点:以直角三角形为边的正方形面积的计算。

教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。

学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?”的问题。学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。

1、投影课本图1—1,图1—2的有关直角三角形问题,让学生计算正方形a,b,c的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将c划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形a,b,c的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1—3,图1—4,同样让学生计算正方形的面积,但正方形c的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。

3、给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。

1、归纳通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。

2、验证为了让学生确信结论的正确性,引导学生在纸上任意作一个直角三角形,通过测量、计算来验证结论的正确性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育。

让学生解决开头的实际问题,前后呼应,学生从中能体会到成功的喜悦。完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。

主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。

课本p6习题1.11,2,3,4一方面巩固勾股定理,另一方面进一步体会定理与实际生活的联系。另外,补充一道开放题。

1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的研究,得出结论。这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。

3、关于练习的设计,除两个实际问题和课本习题以外,我准备设计一道开放题,大致思路是在已画出斜边上的高的直角三角形中让学生尽量地找出线段之间的关系。

4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识的意识是有很大的促进的。

探索勾股定理教学设计篇十八

教学目标具体要求:

1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。

重点:

难点:

教案设计。

一、知识点讲解。

知识点1:(已知两边求第三边)。

1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为xx。

2.已知直角三角形的两边长为3、4,则另一条边长是xx。

3.三角形abc中,ab=10,ac=17,bc边上的高线ad=8,求bc的长?

知识点2:

利用方程求线段长。

(1)使得c,d两村到e站的距离相等,e站建在离a站多少km处?

(2)de与ce的位置关系。

(3)使得c,d两村到e站的距离最短,e站建在离a站多少km处?

利用方程解决翻折问题。

3、在矩形纸片abcd中,ad=4cm,ab=10cm,按图所示方式折叠,使点b与点d重合,折痕为ef,求de的长。

二、课堂小结。

谈一谈你这节课都有哪些收获?

三、课堂练习以上习题。

四、课后作业卷子。

本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。

【本文地址:http://www.xuefen.com.cn/zuowen/16742527.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档