小学解方程教案(通用14篇)

格式:DOC 上传日期:2023-12-01 05:07:21
小学解方程教案(通用14篇)
时间:2023-12-01 05:07:21     小编:HT书生

在教学过程中,教案起着指导和规范的作用,能够提高教师的教学效果和学生的学习效果。教案的编写需要与学校的教学大纲和教学要求相匹配,确保教学的有效性和可操作性。欢迎大家查阅以下教案范文,了解不同学科和年级的教案设计。

小学解方程教案篇一

教学内容:

教科书第12~13页,“回顾与”、“练习与应用”第1~4题。

教学目标:

1、通过回顾与,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。

2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

教学过程:

一、回顾与。

1、谈话引入。

本单元我们学习了哪些内容?

你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?

在小组中互相说说。

2、组织讨论。

(1)出示讨论题。

(2)小组交流,巡视指导。

(3)汇报交流。

你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?

(等式与方程都是等式;等式不一定是方程,方程一定是等式。)。

(含有未知数的等式是方程。)。

(等式性质:)。

(求方程中未知数的值的过程叫做解方程。)。

同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

二、练习与应用。

1、完成第1题。

(1)独立完成计算。

(2)汇报与展示,说说错误的原因及改正的方法。

2、完成第2题。

(1)学生独立完成。

(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)。

3、完成第3题。

(1)列出方程,不解答。

(2)你是怎样列的?怎么想的?大家同意吗?

(3)完成计算。

4、完成第4题。

单价、数量、总价之间有怎样的数量关系?

指出:抓住基本关系列方程,y也可以表示未知数。

三、课堂。

通过回顾与,大家共同复习了有关方程的知识,你还有什么疑问吗?

小学解方程教案篇二

学生课前认真预习课文内容,通过自主探究、合作交流,感知本课内容,提出疑难问题。

二、课始集疑。

1、揭题。

2、集疑:同学们课前都进行认真的预习,现在请同学们把预习中没有解决的、需要在本节课上请老师、同学们帮助解决的问题提出来。

过渡:刚才这些问题都提的非常好,我们这节课就重点解决这些问题。在解决这些问题之前,先请同学们认识一件物体。

三、课中释疑。

在左边放二个40克的物体,右边放一个50克的法码,这时天平怎么样?

你能用一个数学式子来表示这时候的现象吗?40+50<100。

再在左边放一个30克的物体,这时天平怎么样?

你能也用一个式子来表示这时候的现象吗?40+50+30100。

把左边的一个30克的物体换成10克的,这时天平怎么样?

你能也用一个式子来表示这时候的现象吗?40+50+10=100。

再把左边的10克与50克的物体换成未知的,这时天平怎么样?

你能也用一个式子来表示这时候的现象吗?40+x。

再把左边的未知的物体换成另一个未知的,这时天平怎么样?

你能也用一个式子来表示这时候的现象吗?40+x=100。

再把左边的物体换成二个未知的,右边另加上一个50克的砝码,这时天平怎么样?

你能也用一个式子来表示这时候的现象吗?x+x=150。

2、分类。

刚才我们写出了这么多的式子,大家能把这些式子按照一个统一的标准分类吗?请小组讨论按照什么样的标准分?并把分类结果写在卡片上。

展示同学们不同的分类,并说说你们是按照什么标准分的?

师:按照不同的标准分类,有不同的结果。刚才同学们的分类都是正确的,为了解决刚才同学们所提出的问题,我们今天就研究这一种分法。(分成等式与不等式两类的)。

3、理解概念。

师:为什么这么分?你们发现了这一类式子有什么特点?左右两边相等。

揭示:像这样表示左右两边相等的式子叫做等式。(板书:等式)。

谁来举一些例子说说什么是等式?

小学解方程教案篇三

本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。

小学解方程教案篇四

教学目标:

1.在数实物的过程中,体验不同的数数方法,能用不同的方法数数。

2.结合"先估计再数"的数学活动,培养学生估计的习惯和能力。

3.感受数学与生活的联系,增强学习的数学的信心。

教学重点:体验不同的数数方法。

教学难点:能用不同的方法数数。

教学过程:

(学生说结果并说明理由)如果学生说不出是因为没贴邮票,教师加以引导。

2、教师继续刚才的故事:咱们书中有各种各样的邮票,小朋友帮老师选一张好吗?

(一)数邮票。

1.教师出示邮票图片,学生帮老师选一张自己认为漂亮的邮票。

2.这么多漂亮的邮票,有多少张呢?咱们来猜一猜。

(学生说一说自己的想法,猜猜有多少张)。

1.师:你们想不想知道到底有多少张呢?

(学生用自己的方法来数一数)。

2.小组交流数的结果。教师引导学生明白这些邮票的摆放是很有规律的,可以一排一排的数,即:10张、20张、30张、100张。

(二)、比赛的形式数珠子。

师:小朋友们,咱们来比赛,看谁的眼睛和脑子最快。好不好?

1.教师出示3组珠子的实物图片,让学生用自己的方法数。

2.评出数的快并且对的,评出前三名。

3.全班交流,让前三名同学先说出自己数的方法,再全班交流自己的数法。

(三)、数花生。

1.教师提出题目要求。

2.小组之内完成,并交流自己数的方法。

1.出示图片,学生数。教师观察学生数数的方法,可以适当给予指导。

2.先让学生估计一下,再实际数一数。集体订正。

小学解方程教案篇五

1.使学生学会根据两个未知量之间的关系,列方程解答求含有两个未知数的应用题。

2.使学生能根据应用题的具体情况灵活选择解题方法,培养学生主动获取知识的能力和习惯。

3.使学生学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力。

形如:ax+bx=c的数量关系。

培养学生自主探究、合作交流的学习方式。提高学生的检验能力。

学生活动过程备注。

1练习二十一t1。

学生回答。

2根据条件说出数量关系式:

果园里的桃树和梨树一共有168棵。

果园里的桃树比梨数多84棵。

桃树棵数是梨树的3倍。

学生回答数量关系式。

3你能选择其中两个条件,提出问题,编成一道应用题吗?试试看!

学生自主编题,口头说题。

4依据学生回答,教师出示题目。

b.根据条件(1)、(3)编题:果园里梨树和桃树一共有168棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(例1)。

c.根据条件(2)、(3)编题:果园里的桃树比梨树多84棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(想一想)。

教师巡视,了解情况。

1.学生尝试例1。

引导学生画出线段图。

集中反馈:生说师画图。

2.教师组织学生汇报。

学生介绍算术解法时,教师引导学生画线段图理解数量间的关系。

学生介绍方程解法时,注重让学生说出怎样找数量间的相等关系。

3.小组讨论。

解这道题,你认为算术方法和列方程解哪一种比较容易找到解题的数量关系,为什么?

用方程解,设哪个数量为x比较合适?用什么数量关系式来列式呢?

4.学生独立完成想一想。

这一题与例1有什么相同的地方?有什么不同的地方?

明确三点:

1、一般设一倍数为x。

2、把几倍数用含有x的式子表示。

3、通过列式计算,可以检验两个得数的和(差)及倍数关系是否符合已知条件。

5完成课本94页练一练。

指名板演,其余集体练习,评讲时让学生说说是怎样想的,怎样检验?

本课学习了什么内容?你有哪些收获?

小学解方程教案篇六

教学目标:

1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。

2、利用探索发现的等式的性质,解决简单的方程。

3、经历了从生活情境的方程模型的建构过程。

4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。

教学重难点:

重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。

难点:推导等式性质(一)。

教学准备:

一架天平、课件及班班通。

教学过程:

一、创设情境,以情激趣。

学生讨论纷纷。

师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?

二、运用教具,探究新知。

(一)等式两边都加上一个数。

1、课件出示天平。

怎样看出天平平衡?如果天平平衡,则说明什么?

学生回答。

2、出示摆有砝码的天平。

操作、演示、讨论、板书:

5=55+2=5+2。

x=10x+5=15。

观察等式,发现什么规律?

3、探索规律。

初次感知:等式两边都加上同一个数,等式仍然成立。

再次感知:举例验证。

(二)等式两边都减去同一个数。

观察课件,你又发现了什么?

学生汇报师板书:

x+2=10。

x+2-2=10-2。

x=8。

(三)运用规律,解方程。

三、巩固练习。

1、完成课本68页“练一练”第2题。

先说出数量关系,再列式解答。

2、小组合作完成69页“练一练”第3题。

完成后汇报,集体订正。

四、课堂小结。

这节课你学到了什么?学生交流总结。

板书设计:解方程(一)。

x+2=10。

解:x+2-2=10-2(方程两边都减去2)。

x=8。

小学解方程教案篇七

教材第81页例3、例4,练习十六9---14题。

1、经历交流、讨论、练习等学习过程,理解方程的含义和等式的性质,根据等式的性质正确熟练地解方程。

2、掌握解方程的方法及列方程解决问题的步骤,解决问题的关键是找出数量之间的相等关系,能根据题意正确地列出方程,解答两、三步计算的问题。

3、能根据问题的特点选择恰当的方法来解答,进一步培养分析数量关系的能力,发展思维。

理解方程的含义和等式的性质。

较熟练地解简易方程,并能解决一些实际问题。

多媒体课件。

1、什么叫做方程?(方程是含有字母的等式。)能举几个是方程的`式子吗?

2、什么叫做方程的解?(使方程两边左右相等的未知数的值叫做方程的解。求方程的解的过程,叫做解方程。)。

3、解方程的依据是等式的性质:等式两边同时乘或除以(加或减去)相同的数,等式的大小不变。

4、出示例3学生交流。

5、出示例4学生交流。

1、出示:学校组织远足活动。原计划每小时走3.8km,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?(列方程解应用题)。

解题过程。

解:设现在平均每小时走了x千米。

2.5x=3.83。

2.5x2.5=11.42.5。

x=4.56。

答:平均每小时走了4.56千米?

2、提出问题。

这是我们熟悉的列方程解决问题,用方程解决问题是我们解题的一种方法。请你以小组为单位,合作自主梳理有关代数的知识。

(一)学生汇报各类知识。

小组汇报知识,要求按照由浅入深的顺序汇报,边汇报教师边完善,同时进行板书。

(二)解方程与方程的解。

具体知识。

4.56是方程的解,而求这个解的过程就是解方程。

方程是含有字母的等式。

补充提问:能举几个是方程的式子吗?

小学解方程教案篇八

师:通过这节课的学习,你有哪些收获?学生从各方面回答。师:今天,同学们的收获可真不小!课后让我们继续运用今天所学的知识去解决生活中的实际问题吧!最后我送给大家一句话:生活中处处充满了知识,要学会做一个生活中的有心人,你才能成为学习上的成功者。

小学解方程教案篇九

1、知识与技能。

(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;

(2)能正确利用直线的点斜式、斜截式公式求直线方程。

(3)体会直线的斜截式方程与一次函数的关系.

2、过程与方法。

在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。

3、情态与价值观。

通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。

直线的点斜式方程和斜截式方程。

问题。

设计意图。

师生活动。

1、在直线坐标系内确定一条直线,应知道哪些条件?

使学生在已有知识和经验的基础上,探索新知。

学生回顾,并回答。然后教师指出,直线的方程,就是直线上任意一点的坐标满足的关系式。

2、直线经过点,且斜率为。设点是直线上的任意一点,请建立与之间的关系。

培养学生自主探索的能力,并体会直线的方程,就是直线上任意一点的坐标满足的关系式,从而掌握根据条件求直线方程的方法。

学生根据斜率公式,可以得到,当时,即(1)教师对基础薄弱的学生给予关注、引导,使每个学生都能推导出这个方程。

3、(1)过点,斜率是的直线上的点,其坐标都满足方程(1)吗?

使学生了解方程为直线方程必须满两个条件。

学生验证,教师引导。

问题。

设计意图。

师生活动。

(2)坐标满足方程(1)的点都在经过,斜率为的直线上吗?

使学生了解方程为直线方程必须满两个条件。

学生验证,教师引导。然后教师指出方程(1)由直线上一定点及其斜率确定,所以叫做直线的点斜式方程,简称点斜式(pointslopeform).

4、直线的点斜式方程能否表示坐标平面上的所有直线呢?

使学生理解直线的点斜式方程的适用范围。

学生分组互相讨论,然后说明理由。

5、(1)轴所在直线的方程是什么?轴所在直线的方程是什么?

(2)经过点且平行于轴(即垂直于轴)的直线方程是什么?

(3)经过点且平行于轴(即垂直于轴)的直线方程是什么?

进一步使学生理解直线的点斜式方程的适用范围,掌握特殊直线方程的表示形式。

教师学生引导通过画图分析,求得问题的解决。

6、例1的教学。(教材93页)。

学会运用点斜式方程解决问题,清楚用点斜式公式求直线方程必须具备的.两个条件:(1)一个定点;(2)有斜率。同时掌握已知直线方程画直线的方法。

教师引导学生分析要用点斜式求直线方程应已知那些条件?题目那些条件已经直接给予,那些条件还有待已去求。在坐标平面内,要画一条直线可以怎样去画。

7、已知直线的斜率为,且与轴的交点为,求直线的方程。

引入斜截式方程,让学生懂得斜截式方程源于点斜式方程,是点斜式方程的一种特殊情形。

学生独立求出直线的方程:

(2)。

再此基础上,教师给出截距的概念,引导学生分析方程(2)由哪两个条件确定,让学生理解斜截式方程概念的内涵。

8、观察方程,它的形式具有什么特点?

深入理解和掌握斜截式方程的特点?

学生讨论,教师及时给予评价。

问题。

设计意图。

师生活动。

9、直线在轴上的截距是什么?

使学生理解“截距”与“距离”两个概念的区别。

学生思考回答,教师评价。

体会直线的斜截式方程与一次函数的关系.

学生思考、讨论,教师评价、归纳概括。

11、例2的教学。(教材94页)。

掌握从直线方程的角度判断两条直线相互平行,或相互垂直;进一步理解斜截式方程中的几何意义。

教师引导学生分析:用斜率判断两条直线平行、垂直结论。思考(1)时,有何关系?(2)时,有何关系?在此由学生得出结论:

且;

12、课堂练习第95页练习第1,2,3,4题。

巩固本节课所学过的知识。

学生独立完成,教师检查反馈。

13、小结。

使学生对本节课所学的知识有一个整体性的认识,了解知识的来龙去脉。

14、布置作业:第106页第1题的(1)、(2)、(3)和第3、5题。

巩固深化。

学生课后独立完成。

例3.如果直线沿x轴负方向平移3个单位,再沿y轴正方向平移1个单位后,又回到原来的位置,求直线l的斜率.

作业布置:第100页第1题的(1)、(2)、(3)和第3、5题。

课后记:。

小学解方程教案篇十

了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;应用一元二次方程概念解决一些简单题目.

1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.

2.一元二次方程的一般形式及其有关概念.

3.解决一些概念性的题目.

4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.

1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.

2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.

学生活动:列方程.

如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.

整理、化简,得:__________.

问题(2)如图,如果,那么点c叫做线段ab的黄金分割点.

如果假设ab=1,ac=x,那么bc=________,根据题意,得:________.

整理得:_________.

如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.

整理,得:________.

老师点评并分析如何建立一元二次方程的数学模型,并整理.

学生活动:请口答下面问题.

(1)上面三个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们最高次数是几次?

(3)有等号吗?或与以前多项式一样只有式子?

老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.

因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a0).这种形式叫做一元二次方程的一般形式.

一个一元二次方程经过整理化成ax2+bx+c=0(a0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

分析:一元二次方程的一般形式是ax2+bx+c=0(a0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.

解:去括号,得:

移项,得:4x2-26x+22=0。

其中二次项系数为4,一次项系数为-26,常数项为22.

例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式.

解:去括号,得:x2+2x+1+x2-4=1。

移项,合并得:2x2+2x-4=0。

其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.

教材p32练习1、2。

例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.

分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+170即可.

证明:m2-8m+17=(m-4)2+1。

∵(m-4)20。

(m-4)2+10,即(m-4)2+10。

不论m取何值,该方程都是一元二次方程.

本节课要掌握:

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.

小学解方程教案篇十一

教科书p17第9~15题。思考题。

1.通过练习,使学生进一步掌握列方程解决实际问题的思考方法,提高列方程解决问题的能力。

2.在练习中,使学生进一步感受方程的思想方法和应用价值,获得成功的体验,进一步树立学好数学的自信心,产生对数学的兴趣。

掌握列方程解决实际问题的基本思考方法。

根据情境,学生自己提出问题、解决问题。

一、基本练习。

1.先设要求的数为x,再列出方程。(口答且不解答)。

(1)一个数的12倍是84,求这个数。

(2)2.9比什么数少1.5?

(3)什么数与2.4和是6?

2.根据题意说出等量关系式并列方程。

(1)果园里有124棵梨树和桃树,梨树是桃树棵数的3倍。桃树梨树各有多少棵?

(2)书架上层有36本书,比下层少8本。书架下层有多少本书?

提问:每一题的数量关系式分别根据哪一个条件列的?

师生交流。

二、指导练习。

1.p17第9题。

(1)引导学生说一说数量关系式。

天鹅只数+丹顶鹤只数=960。

(2)根据关系式列方程。

x+2.2x=960。

2.p17第10题。

(1)引导学生说一说数量关系式。

六年级植树棵数-五年级植树棵树=24。

(2)根据关系式列方程。

1.5x-x=24。

3.p17第13题。

(1)引导学生说一说数量关系式。

历史故事总价+森林历险记总价=83。

(2)根据关系式列方程。

7x+124=83。

三、综合练习。

1.p17第11~12题。

(1)学生先说一说数量关系式。

(2)根据关系式列方程。

(5)集体评讲。

四、思考题。

(1)引导学生说一说等量关系式。

速度差追击时间=路程差。

甲路程-乙路程=路程差。

(280-240)x=400。

280x-240x=400。

五、课堂小结。

今天这节课是练习课,有谁来简单总结一下呢?还有什么问题吗?

板书设计:

列方程解决实际问题练习课。

天鹅只数+丹顶鹤只数=960六年级植树棵数-五年级植树棵树=24。

x+2.2x=9601.5x-x=24。

历史故事总价+森林历险记总价=83速度差追击时间=路程差甲路程-乙路程=路程差。

7x+124=83(280-240)x=400280x-240x=400。

小学解方程教案篇十二

教学内容:教科书第13~14页,“练习与应用”第5~7题,“探索与实践”第8~9题及“与反思”。

教学目标:

1、通过练习与应用,使学生进一步掌握列方程解决实际问题的方法与步骤,提高列方程解决实际问题的意识和能力。

2、通过小组合作,进一步培养学生探索的意识,发展思维能力。

3、通过与反思,使学生养成良好的学习习惯,获得成功体验,增强学好数学的信心。

教学过程:

一、练习与应用。

1、谈话引入这节课我们继续对列方程解决实际问题进行练习。板书课题。

2、指导练习。独立完成5~7题。展示交流。集体评讲。你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)。

二、探索与实践。

1、完成第8题。理解题意,完成填写。小组中交流第一个问题。汇报自己发现。把得到的和分别除以3,看看可以发现什么?可以得出什么结论?独立解答第二个问题。你是怎么解答第二个问题的?指导解答第三个问题。试着连续写出5个奇数,看看有什么发现?怎样求n的值呢?5个连续偶数的和有这样的规律吗?试试看。

三、与反思。

在小组中说说自己对每次指标的理解。自我反思与。说说自己的优点与不足。

四、阅读“你知道吗”可以再查找资料,详细了解。

五、课堂这节课我们复习了哪些内容?你有了哪些收获?

小学解方程教案篇十三

1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。

2、利用探索发现的等式的性质,解决简单的方程。

3、经历了从生活情境的方程模型的建构过程。

4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。

重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。

难点:推导等式性质(一)。

一架天平、课件及班班通。

一、创设情境,以情激趣。

学生讨论纷纷。

师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?

二、运用教具,探究新知。

(一)等式两边都加上一个数。

1、课件出示天平。

怎样看出天平平衡?如果天平平衡,则说明什么?

学生回答。

2、出示摆有砝码的天平。

操作、演示、讨论、板书:

5=55+2=5+2。

x=10x+5=15。

观察等式,发现什么规律?

3、探索规律。

初次感知:等式两边都加上同一个数,等式仍然成立。

再次感知:举例验证。

(二)等式两边都减去同一个数。

观察课件,你又发现了什么?

学生汇报师板书:

x+2=10。

x+2-2=10-2。

x=8。

(三)运用规律,解方程。

三、巩固练习。

1、完成课本68页“练一练”第2题。

先说出数量关系,再列式解答。

2、小组合作完成69页“练一练”第3题。

完成后汇报,集体订正。

四、课堂小结。

这节课你学到了什么?学生交流总结。

板书设计:解方程(一)。

x+2=10。

解:x+2-2=10-2(方程两边都减去2)。

x=8。

小学解方程教案篇十四

3.使学生初步养成正确思考问题的良好习惯.。

一元一次方程解简单的应用题的方法和步骤.。

一、从学生原有的认知结构提出问题。

为了回答上述这几个问题,我们来看下面这个例题.。

例1某数的3倍减2等于某数与4的和,求某数.。

(首先,用算术方法解,由学生回答,教师板书)。

解法1:(4+2)÷(3-1)=3.。

答:某数为3.。

(其次,用代数方法来解,教师引导,学生口述完成)。

解法2:设某数为x,则有3x-2=x+4.。

解之,得x=3.。

答:某数为3.。

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤。

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原先重量-运出重量=剩余重量)。

上述分析过程可列表如下:

解:设原先有x千克面粉,那么运出了15%x千克,由题意,得。

x-15%x=42500,

所以x=50000.。

答:原先有50000千克面粉.。

(还有,原先重量=运出重量+剩余重量;原先重量-剩余重量=运出重量)。

(2)例2的解方程过程较为简捷,同学应注意模仿.。

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的.方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的状况,教师总结如下:

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);

(4)求出所列方程的解;

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)。

解:设第一小组有x个学生,依题意,得。

3x+9=5x-(5-4),

解这个方程:2x=10,

所以x=5.。

其苹果数为3×5+9=24.。

答:第一小组有5名同学,共摘苹果24个.。

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.。

(设第一小组共摘了x个苹果,则依题意,得)。

三、课堂练习。

2.我国城乡居民1988年末的储蓄存款到达3802亿元,比1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款。

3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.。

四、师生共同小结。

首先,让学生回答如下问题:

1.本节课学习了哪些资料?

2.列一元一次方程解应用题的方法和步骤是什么?

3.在运用上述方法和步骤时应注意什么?

依据学生的回答状况,教师总结如下:

(2)以上步骤同学应在理解的基础上记忆.。

五、作业。

1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?

5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数。

【本文地址:http://www.xuefen.com.cn/zuowen/16828406.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档