勾股树教案(热门13篇)

格式:DOC 上传日期:2023-12-02 05:29:19
勾股树教案(热门13篇)
时间:2023-12-02 05:29:19     小编:XY字客

教案是教学活动的设计蓝本,有助于教师明确目标和组织教学内容。在编写教案过程中,要注重综合素质教育的实施。通过阅读教案范例,可以了解到教学过程的安排和教学环节的设置。

勾股树教案篇一

勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。《新版数学课程标准》对勾股定理教学内容的要求是:

1、在研究图形性质和运动等过程中,进一步发展空间观念;

2、在多种形式的数学活动中,发展合情推理能力;

3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;

4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

本节课的教学目标是:

1、能正确运用勾股定理及其逆定理解决简单的实际问题。

教学重点和难点:

应用勾股定理及其逆定理解决实际问题是重点。

把实际问题化归成数学模型是难点。

根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。

在教学设计中,尽量考虑到不同学习水平的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。

本节课设计了七个环《勾股定理的应用》教学设计节、第一环节:情境引入;第二环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:交流小结;第七环节:布置作业。

第一环节:情境引入。

情景1:复习提问:勾股定理的语言表述以及几何语言表达?

设计意图:温习旧知识,规范语言及数学表达,体现。

设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。

第二环节:合作探究(圆柱体表面路程最短问题)。

情景3:课本引例(蚂蚁怎样走最近)。

第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题)。

设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。

第四环节:议一议。

内容:李叔叔想要检测雕塑底座正面的ad边和bc边是否分别垂直于底边ab,但他随身只带了卷尺:

(1)你能替他想办法完成任务吗?

设计意图:

第五环节:方程与勾股定理。

在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少尺?《意图:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;学会运用方程的思想借助勾股定理解决实际问题。

第六环节:交流小结内容:师生相互交流总结:

1、解决实际问题的方法是建立数学模型求解、

2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题、

3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。

第七环作业设计:

第一道题难度较小,大部分学生可以独立完成,第二道题有较大难度,可以交流讨论完成。

勾股树教案篇二

1、勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2)。

2、勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

3、勾股定理的证明常见方法如下:

方法一:,,化简可证.

方法二:

四个直角三角形的面积与小正方形面积的和等于大正方形的面积.

四个直角三角形的面积与小正方形面积的和为。

大正方形面积为所以。

方法三:,,化简得证。

勾股树教案篇三

本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:

(1)让学生主动提出问题。

(2)让学生自己解决问题。

(3)通过实际问题的解决,培养学生的数学意识.。

勾股树教案篇四

应用勾股定理及勾股定理的逆定理解决实际问题。

2。内容解析。

运用勾股定理的逆定理可以从三角形边的数量关系来识别三角形的形状,它是用代数方法来研究几何图形,也是向学生渗透“数形结合”这一数学思想方法的很好素材。综合运用勾股定理及其逆定理能帮助我们解决实际问题。

基于以上分析,可以确定本课的教学重点是灵活运用勾股定理的逆定理解决实际问题。

勾股树教案篇五

(1)灵活应用勾股定理及逆定理解决实际问题。

(2)进一步加深性质定理与判定定理之间关系的认识。

2。目标解析。

目标(2)能先用勾股定理的逆定理判断一个三角形是直角三角形,再用勾股定理及直角三角形的性质进行有关的计算和证明。

勾股树教案篇六

教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

勾股树教案篇七

即直角三角形两直角的平方和等于斜边的平方.。

因此,在运用勾股定理计算三角形的边长时,要注意如下三点:

(2)注意分清斜边和直角边,避免盲目代入公式致错;

如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形.。

请读者证明.。

请同学们自己证明图(2)、(3).。

3.在数轴上表示无理数。

二、典例精析。

132-52=144,所以另一条直角边的长为12.。

所以这个直角三角形的面积是×12×5=30(cm2).。

例2如图3(1),一只蚂蚁沿棱长为a的正方体表面从顶点a爬到。

顶点b,则它走过的最短路程为。

a.b.c.3ad.分析:本题显然与例2属同种类型,思路相同.但正方体的。

各棱长相等,因此只有一种展开图.。

解:将正方体侧面展开。

勾股树教案篇八

1、通过拼图,用面积的方法说明勾股定理的正确性.

2、通过实例应用勾股定理,培养学生的知识应用技能.

一、学前准备:

1、阅读课本第46页到第47页,完成下列问题:。

2、剪四个完全相同的直角三角形,然后将它们拼成如图所示的'图形。大正方形的面积可以表示为_________________________,又可以表示为__________________________.对比两种表示方法,看看能不能得到勾股定理的结论。用上面得到的完全相同的四个直角三角形,还可以拼成如下图所示的图形,与上面的方法类似,也能说明勾股定理是正确的方法(请逐一说明)。

二、合作探究:

(一)自学、相信自己:

(二)思索、交流:

(三)应用、探究:

(四)巩固练习:

1、如图,64、400分别为所在正方形的面积,则图中字。

母a所代表的正方形面积是_________。

三.学习体会:

本节课我们进一步认识了勾股定理,并用两种方法证明了这个定理,在应用此定理解决问题时,应注意只有直角三角形的三边才有这样的关系,如果不是直角三角形应该构造直角三角形来解决。

2②图。

四.自我测试:

五.自我提高:

勾股树教案篇九

二.新课学习。

探究点一:蚂蚁沿圆柱侧面爬行的最短路径问题。

思考:

1.利用学具,尝试从a点到b点沿圆柱侧面画出几条线路,你认为。

这样的线路有几条?可分为几类?

2.将右图的圆柱侧面剪开展开成一个长方形,b点在什么位置?从。

a点到b点的最短路线是什么?你是如何画的?

1.33.蚂蚁从a点出发,想吃到b点上的食物,它沿圆柱侧面爬行的最短路程是多少?你是如何解答这个问题的?画出图形,写出解答过程。

4.你是如何将这个实际问题转化为数学问题的?

小结:

你是如何解决圆柱体侧面上两点之间的最短距离问题的?

探究点二:利用勾股定理逆定理如何判断两线垂直?

但他随身只带了卷尺。(参看p13页雕塑图1-13)。

(1)你能替他想办法完成任务吗?

1.31.3(2)李叔叔量得ad的长是30cm,ab的长是40cm,

边垂直于ab边吗?你是如何解决这个问题的?

小结:通过本道例题的探索,判断两线垂直,你学会了什么方法?

探究点三:利用勾股定理的方程思想在实际问题中的应用。

例图1-14是一个滑梯示意图,若将滑道ac水平放置,则刚好与ab一样长.已知滑梯的高度ce=3m,cd=1m,试求滑道ac的长.

1.3。

思考:

1.求滑道ac的长的问题可以转化为什么数学问题?

2.你是如何解决这个问题的?写出解答过程。

小结:

四.课堂小结:本节课你学到了什么?

三.新知应用。

1.如图,台阶a处的蚂蚁要爬到b处搬运食物,它怎么走最近?并求出最近距离.。

1.3。

2.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()。

1.3。

五.作业布置:习题1.41,3,4题。

勾股树教案篇十

教学目标:

1、知识目标:

(2)学会利用勾股定理进行计算、证明与作图;

(3)了解有关勾股定理的历史。

2、能力目标:

(1)在定理的证明中培养学生的拼图能力;

(2)通过问题的解决,提高学生的运算能力。

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过有关勾股定理的历史讲解,对学生进行德育教育。

教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育。

教学用具:直尺,微机。

教学方法:以学生为主体的讨论探索法。

教学过程:

1、新课背景知识复习。

(1)三角形的三边关系。

(2)问题:(投影显示)。

直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

2、定理的获得。

让学生用文字语言将上述问题表述出来。

勾股定理:直角三角形两直角边的平方和等于斜边的平方。

强调说明:

(1)勾――最短的边、股――较长的直角边、弦――斜边。

(2)学生根据上述学习,提出自己的问题(待定)。

3、定理的证明方法。

方法一:将四个全等的直角三角形拼成如图1所示的正方形。

方法二:将四个全等的直角三角形拼成如图2所示的正方形。

方法三:“总统”法、如图所示将两个直角三角形拼成直角梯形。

以上证明方法都由学生先分组讨论获得,教师只做指导、最后总结说明。

4、定理与逆定理的应用。

5、课堂小结:

已知直角三角形的两边求第三边。

已知直角三角形的一边,求另两边的关系。

6、布置作业:

a、书面作业p130#1、2、3。

b、上交作业p132#1、3。

勾股树教案篇十一

本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。

勾股树教案篇十二

11.如图,一个高、宽的大门,需要在对角线的顶点间加固一个木条,求木条的长.

12.一个三角形三条边的长分别为,,,这个三角形最长边上的高是多少?

13.如图,小李准备建一个蔬菜大棚,棚宽4m,高3m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.

勾股树教案篇十三

1.通过观察图形,探索图形间的关系,发展学生的空间观念.

2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.

3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点.

【本文地址:http://www.xuefen.com.cn/zuowen/16915243.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档