椭圆的教案(实用19篇)

格式:DOC 上传日期:2023-12-03 06:38:18
椭圆的教案(实用19篇)
时间:2023-12-03 06:38:18     小编:梦幻泡

教案的评价标准应该明确,能够评估学生的学习效果和教师的教学水平。教案需要进行反复修改和完善,以提高教学效果和质量。以下是小编为大家收集的教案范例,仅供参考,大家一起来学习吧。

椭圆的教案篇一

1.掌握圆周率的近似值,理解和掌握圆周长公式,并能正确计算圆的周长和解答简单的实际问题。

2.让学生在知识的主动建构过程中掌握一些数学的思想方法,发挥学生学习的主动性、独立性、合作性,对学生进行辨证唯物主义教育和爱国主义教育。

椭圆的教案篇二

(教学目标的确定应注意按照新课程的三维目标体系进行分析)。

1、让学生知道圆的周长和圆周率的含义,掌握圆周率的近似值。理解掌握圆周长的计算公式,并能应用公式解决简单的实际问题。

2、通过对圆周长的测量和计算公式的探讨,培养学生观察、分析、比较、综合和主动研究、探索解决问题的方法的能力。

3、通过探索对学生进行辩证唯物主义的教育,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。

椭圆的教案篇三

备注:

活动一:创设情境,引起猜想:认识圆的周长。

(一)激发兴趣。

(二)认识圆的周长。

1.回忆正方形周长:

小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

2.认识圆的周长:

那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体。

中找出一个圆形来,互相指一指这些圆的周长。

(三)讨论正方形周长与其边长的关系。

1.我们要想对这两个路程的长度进行比较,实际上需要知道什么?

2.怎样才能知道这个正方形的周长?说说你是怎么想的?

3.那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总。

是边长的几倍?

(四)讨论圆周长的测量方法。

1.讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?

2.反馈:(基本情况)。

(1)滚动--把实物圆沿直尺滚动一周;

(2)缠绕--用绸带缠绕实物圆一周并打开;

(3)折叠--把圆形纸片对折几次,再进行测量和计算;

(4)初步明确运用各种方法进行测量时应该注意的问题。

3.小结各种测量方法:(板书)转化。

曲直。

4.创设冲突,体会测量的局限性。

5.明确课题:

今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)。

(五)合理猜想,强化主体:

1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反馈。

2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?

向大家说一说你是怎么想的。

3.正方形的周长总是边长的4倍,再看这幅图,

猜猜看,圆的周长应该是直径的.倍?

(正方形的边长和圆的直径相等,直接观察可发现,圆周长。

小于直径的四倍,因为圆形套在正方形里;而且由于两点间。

线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)。

4.小结并继续设疑:

活动二:动手操作,探索圆的周长与直径的关系。

椭圆的教案篇四

知识与技能:知道圆的周长和圆周率的含义,掌握圆周率的近似值。理解掌握圆周长的计算公式,并能应用公式解决简单的实际问题。

过程与方法:通过对圆周长的测量和计算公式的探讨,培养学生的观察、猜测、比较、分析、综合和主动研究、探索解决问题方法的能力。

情感态度与价值观:初步学会透过现象看本质的辩证思想方法,渗透“化曲为直”的数学思想,培养爱国主义情感,激发民族自豪感。

椭圆的教案篇五

学生指出并回答。(略)。

2.观察。

课件演示右图:

问题:这两个圆周长有什么关系?你是怎么知道的?

小结:直径相等,圆的周长就相等。

3.课件演示右图:

问题:这两个圆的周长哪一个长一些?为什么?学生回答后,课件演示由曲变直,对学生的推断进行检验。

4.小结。

问题:通过刚才的观察,你有什么发现?

学生:圆的周长和直径有关系。

椭圆的教案篇六

上完《椭圆的简单性质》这节课后,我认真地进行了反思,具体内容如下:

一、教学设计。

本着“学生是课堂的主体,教师是引导者,结合教材的特点和学情,让学生在课堂上真正动起来,充分发挥学生的主观能动性,切实激发学生的学习兴趣,通过学案让学生独立思考、小组合作探究”的原则,我进行了如下教学设计:

1、复习回顾:

(3)椭圆中a、b、c的关系。

从学生作业中不规范的作图而导入本节课的题目。

2、展示学习目标。

(1)能根据椭圆的图形及标准方程推断出椭圆的对称性、范围、顶点、离心率等简单性质.

(2)通过观察能清晰描述离心率的变化对椭圆形状的影响.

3、探索新知:

(4)学生通过类比得到焦点在y轴上的椭圆的性质;

(5)通过例题巩固所学。

4、小结。

二、成功之处。

1、教学方法上:结合本节课的具体内容,和1班学生的具体情况确立小组合作探究式教学,体现了合学教育的基本理念.

2.学习的主体上:设计问题引领各小组积极参与,给各小组的主动参与提供时间和空间,让组内不同层次的学生勇于发表自己观点,基本做到:凡是学生能够自己观察的、讲的、思考探究的、动手操作的,都尽量让学生自己去做,这样可以调动学生学习积极性,拉近师生距离,提高知识的可接受度,让学生体会到他们是学习的主体.进而完成知识的转化,变书本的知识为自己的知识.

3.学生参与度上:课堂教学真正面向全体学生,让每个学生都享受到发展的权利.在我的启发鼓励下,让学生充分参与进来,进行交流讨论,共同进步.

4、“三维”课程目标的实现上:既关注掌握知识技能的过程与方法,又关注在这过程中学生情感态度价值观形成的情况.

5、学法指导上:采用激发兴趣、主动参与、积极体验、自主探究的讲解讨论相结合,促进学生说、想、做,注重“引、思、探、练”的结合,鼓励学生发现问题,大胆分析问题和解决问题,进行主动探究学习,形成师生互动的教学氛围.

6、信息技术的运用上:利用几何画板动态演示椭圆的圆扁程度,给学生以直观感受;充分利用几何画板的度量功能,让学生能够轻松的发现椭圆a不变时c的变化影响椭圆的圆扁程度,降低了教学难度,学生易于接受.

三、不足之处。

1.本节课课堂容量虽不大,但给学生独立思考和合作探究的时间稍长,导致课堂后段时间比较紧张。因此今后要合理地安排每一节课的课堂讨论时间,以提高课堂的效率。

2.过高估计学生的能力,小组合作讨论完成椭圆的性质时没能达到预期效果,计划是简单的自主独立完成,方程证明(代数法)小组合作完成。互教互学,共同进步,并从中体会解决问题的成就感,从而增进学生的合作意识和团队精神,但是因为班上只有一小部分同学基础比较扎实,大部分同学的计算能力不过关,只有一个小组完成较好,其他均都有不同程度的问题。

3.可以听取白老师和崔老师的建议:将学案作为检验学生对椭圆简单性质掌握的测试题,这样既节约时间,又能检测学生的掌握情况。或者能将小组合作问题提前让学生预习,学生在课下就进行研究,并找到自己解决不了的地方,课上小组解决,教师指导,应该会有好的效果。

总之,在本次教学中我认为:问题引领学生自主探究,带着问题进入课堂,教师在课上点拨学生主要问题,强调重点问题,并可以进行拔高。这样既可以使学生动起来,由被迫获取变为主动学习,通过课前自主学习,课上小组相互学习,教师点拨,足以将知识很好的掌握,这样也可以使教师从总是不放心中解脱出来,不用总是面面俱到的讲,学生会的不讲,学生可以突破的不讲,只讲学生疑惑的难以解决的问题,从而使课堂高效,并且学生也不用一直听一直听,听觉疲劳,然后昏昏欲睡。但是要进行这样的课堂,学生课前学习的时间必须保证,学生的主动性要充分调动,并且应有合理的奖惩办法让学生全员参加,避免一些学生滥竽充数.作为教师课前预设的问题一定要有梯度,有层次,适合学生思维发展规律。以上是我的一些小小想法,我会努力去尝试,不断地学习,使学生爱上数学,爱上学数学。

椭圆的教案篇七

近期,我开设了一节公开课《椭圆的几何性质1》。在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,是一个很重要的课题。要教好高中数学,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化,注意知识前后的联系,形成知识框架;其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教;再次要处理好课堂教学中教师的教和学生的学的关系。课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德教育和素质教育的主渠道。课堂教学不但要加强双基而且要提高智力,发展学生的智力,而且要发展学生的创造力;不但要让学生学会,而且要让学生会学,特别是自学。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂45分钟的学习效率,在有限的时间里,出色地完成教学任务。

一、要有明确的教学目标。

教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。

二、要能突出重点、化解难点。

每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。尤其是在选择例题时,例题最好是呈阶梯式展现,我在准备例2时,就设置了三个小题,从易到难,便于学生理解接受。

三、要善于应用现代化教学手段。

在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显著特点:

一是能有效地增大每一堂课的课容量;

二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;

三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;

四是有利于对整堂课所学内容进行回顾和小结。

在课堂教学结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如解析几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。

四、根据具体内容,选择恰当的教学方法。

每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。这节课是高三的复习课,我采取了让学生自己回忆讲述椭圆的几何性质,教师补充的方法,改变了传统的教师讲,学生听的模式,调动了学生的积极性。在例题的解决过程中,我也尽量让学生多动手,多动脑,激发学生的思维。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。在一堂课上,有时要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的.掌握和运用,都是好的教学方法。

五、关爱学生,及时鼓励。

高中新课程的宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。

六、切实重视基础知识、基本技能和基本方法。

众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。

其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。

不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。

七、渗透教学思想方法,培养综合运用能力。

常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的,只有这样。学生才能灵活运用和综合运用所学的知识。

总之,在新课程背景下的数学课堂教学中,要提高学生在课堂45分钟的学习效率,要提高教学质量,我们就应该多思考、多准备,充分做到用教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。

椭圆的教案篇八

“椭圆的简单几何性质”是人教a版《普通高中课程标准实验教科书·数学》(选修2—1)中的第二章第二节第一课时的内容。解析几何是高中数学重要的分支,是在直角坐标系的基础上,利用代数方法解决几何问题的一门学科。

本课是在学生学习了曲线与方程、椭圆的定义和标准方程的基础上,根据方程研究椭圆的几何性质。椭圆是生活中常见的曲线,研究它的几何性质,对于后续学习圆锥曲线有重要的指导作用,也为研究双曲线和抛物线奠定了基础。解析几何的意义主要表现在数形结合的思想上。研究椭圆几何性质的过程中,几何直观观察与代数严格推导互相结合,处处是形与数之间的对照//翻译和互相转换,这也正是辩证法的反映。

方程研究曲线性质,即用代数方法解决几何问题,将对复杂的几何关系的研究转化为对曲线方程特点的分析,代数方法可以程序化地进行运算,代数法研究曲线的性质有较强的规律性,这也正是创立解析几何的最直接目的。

教学目标设置。

(3)通过解析法研究对椭圆性质的运用,使学生感受用代数方法研究几何问题的思想,能初步运用方程研究相应曲线的简单几何性质。

学生学情分析。

学生已有认知基础:学生学习了曲线与方程,已熟悉和掌握椭圆定义及其标准方程,学生有动手体验和探究的兴趣,有一定的观察分析和逻辑推理的能力;学生用函数图像研究过相应函数的性质,有用方程求直线和圆的特殊点的经历。

达成目标所需认知基础:解析法的数形结合思想和解析法的步骤;利用方程形式特点,推导相应曲线的性质。

教学难点及突破策略。

1.本节课的教学难点。

(1)用方程研究椭圆的范围和对称性;

(2)离心率的引入。

2.突破策略。

(2)研究对称性时,教师引导学生注意观察方程形式特点,并回归图形对称的定义;

(3)离心率引入时,设置明确而开放的问题,引发学生思考,结合几何画板动态演示。

教学策略分析。

3.在研究范围和离心率时,学生自主探究与合作讨论相结合突破重、难点。

教学过程。

1.回顾引入。

(1)知识回顾。

【设计意图】。

(1)让学生在作曲线的时候,通过动手能发现椭圆上点的坐标取值有范围限制,即椭圆的范围;发现椭圆具有对称性,从而为引出对称性作铺垫;发现特殊点(与对称轴的交点),即椭圆的顶点。

(2)学生联系到函数描点法作图时,认识到函数和方程的区别与联系,有利于学生更好地理解数学知识间的关系,但此处不作为教学重点。

以上问题均有学生作答。最终总结出椭圆的对称中心叫做椭圆的中心。

【设计意图】用代数法判断对称性具有一定难度,教师适当引导,突出“任意取一点”。学以致用能让学生体会到利用方程判断曲线对称性的好处。研究该椭圆对称性时,指出一般椭圆的对称性,体现特殊与一般的区别。

探究3。

师:研究曲线上某些特殊点,可以确定曲线的位置。要确定曲线在坐标系中的。

位置,这常常需要求出其与x轴和y轴的交点坐标。

问题1:该椭圆与x轴和y轴的交点坐标分别是什么?

指出长轴长,短轴长和长半轴长,短半轴长;x轴和y轴为该椭圆的对称轴,椭圆与坐标轴的4个交点为椭圆的顶点。

问题2:椭圆的顶点如何定义?

预案:学生可能会回答椭圆与x轴和y轴的交点称为椭圆的顶点。

【设计意图】让学生理解研究特殊点的意义;明确特殊与一般的区别。

收集有关笛卡儿与解析几何,费马与解析几何的资料,结合本节课学习,

写一篇小论文。

【设计意图】理清知识结构,关注探究过程中的活动体验;加强课堂中数学思想和数学文化的渗透。

5.分层作业。

必做:教材第48页练习2,3,4,5。

选做:教材第49页习题2.2,a组:9。

【设计意图】必做题为椭圆几何性质的应用;选做题需用方程研究椭圆性质。

教学反思。

本课是在学生学习了曲线与方程、椭圆的定义和标准方程的基础上,根据方程研究椭圆的几何性质。椭圆是生活中常见的曲线,研究它的几何性质,对于后续学习圆锥曲线有重要的指导作用,也为研究双曲线和抛物线奠定了基础。

1.创设合理问题情境。

指出长轴长,短轴长和长半轴长,短半轴长;x轴和y轴为该椭圆的对称轴,椭圆与坐标轴的4个交点为椭圆的顶点。

问题2:椭圆的顶点如何定义?

预案:学生可能会回答椭圆与x轴和y轴的交点称为椭圆的顶点。

在离心率的引入中,笔者之前的问题是椭圆的扁平程度不一,用什么量可以刻作椭圆的扁平程度?现在问题是用a,b,c中的哪两个量的比值可以刻作椭圆的扁平程度?问题更加明确和开放,同时也更有价值。

在以问题串引领的四次探究中,学生独立思考与小组合作相结合,通过多种方法探求椭圆的范围,使学生既经历了用方程研究曲线性质的过程,又理解了数学知识间的密切联系;通过方程判断曲线对称性使学生体会到解析法的好处;离心率的引入既开放又明确,使学生理解得更加自然透彻。

3.及时反馈增进知识理解。

例题教学是数学课堂中重要的环节,是把知识,技能和思想方法联系起来的一条纽带。笔者注重学生对习题的规范解答,鼓励学生从多个角度发现和解决问题,同时也注意引导学生关注不同方法的区别与联系;在课堂总结环节中,不但要引导学生理清知识结构,关注探究过程中的活动体验,更要加强在课堂中对数学思想和文化的渗透。

4.多媒体合理应用。

在探究过程中,笔者用幻灯片及时地展示出图形和问题;学生的探究结果用投影仪清晰直接地展示,提高了课堂效率;离心率引入时,用几何画板软件动态演示,学生理解得更形象生动。

椭圆的教案篇九

(可以从以下几个方面进行阐述,但不需要格式化,不必面面俱到)。

教师主观分析、师生访谈、学生作业或试题分析反馈、问卷调查等是比较有效的学习者分析的测量手段。

l学生认知发展分析:主要分析学生现在的认知基础(包括知识基础和能力基础),要形成本节内容应该要走的认知发展线,即从学生现有的认知基础,经过哪几个环节,最终形成本节课要达到的知识。

l学生认知障碍点:学生形成本节课知识时最主要的障碍点,可能是知识基础不足、旧的概念或者能力方法不够、思维方式变化等。

在三年级上册学习了周长的一般概念以及长方形、正方形周长计算的基础上进一步学习圆的周长计算。

椭圆的教案篇十

(可以从以下几个方面进行阐述,不必面面俱到)。

l课标中对本节内容的要求;本节内容的知识体系;本节内容在教材中的地位,前后教材内容的逻辑关系。

l本节核心内容的功能和价值(为什么学本节内容),不仅要思考其他内容对本节内容学习的帮助,本节内容的学习对学科体系的建立、其他学科内容学习的帮助;还应该思考通过本节内容的学习,对学生学科能力甚至综合素质的帮助,以及思维方式的变化影响等。

教材从生活情境入手,通过让学生思考自行车绕圆形花坛骑一圈大约有多少米,引出圆的周长的概念。接着让学生思考:如何求一个圆的周长,引导学生用不同的方法进行测量。在此基础上,让学生通过测量几组圆的直径和周长,自主发现周长和直径的比值是一个固定值,从而引出圆周率的概念,并总结出圆的周长计算公式。

在本节内容中,教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。

在本教学设计中,对教材内容呈现形式上做了略微的改动。本设计从周长引入本课教学,这样可以加深圆的周长和其他以学图形周长在计算的联系和区别。用直的线围成的图形的周长求周长是几条直的线段长之和,而圆这个曲线围成的图形的计算方法是化曲为直。

椭圆的教案篇十一

掌握圆的周长计算公式,知道周长与直径的关系,并能够利用圆的周长公式解决实际问题。

过程与方法】。

通过探究圆的周长公式的过程,培养学生观察、比较的能力,提高逻辑推理能力。

情感态度与价值观】。

积极参与数学活动,培养学习数学的兴趣。

椭圆的教案篇十二

我们这节课就来研究圆的周长。(板书:圆的周长)。

我想问问同学,你们都带了哪些圆形实物?

两人互相指指圆的周长在哪儿?

谁愿意到前面来指一指老师手里这个圆的周长。

谁跟他指得不一佯?为什么这样指不行?

哪个小组愿意帮助解决这个问题?我们每个组都带了一些圆形实物,我们要通过小组合作测出圆的周长,并填写实验报告。

请你在实验报告上填出你测量的实物名称,周长是多少,直径是多少。

(学生分小组测量手中圆形实物,并填写在实验报告上。能测量多少数据就测量多少数据。)。

请小组代表汇报本组的实验过程和实验结果。

同学们想了那么多种方法,看来你们真了不起。我们归纳起来,同学们都是用缠绕、滚动的方法把曲线变直的。(板书:绕、滚)。

(师出示黑板上画的圆)谁能用这两种方法来测量这个圆的周长。

看来光靠绕、滚这种实践的方法来测量圆的周长是不行的,我们必须研究一种求圆周长的方法。

想一想,以前我们学过哪些几何图形的周长?

长方形的周长和谁有关系?有什么关系?

正方形的周长和谁有关系?有什么关系?

圆的周长和谁有关系呢?举个例子说明,是不是这样呢?请看屏幕。

(用电脑演示三个滚动的圆,看出圆越大滚动的轨迹越长,圆越小滚动的轨迹越短。)。

我们得出了圆的周长和直径有关系。

(板书:圆的周长直径)。

(学生分小组讨论。)。

通过同学们实验研究,我们得出圆的周长总是直径的3倍多一些。(板书:3倍多一些)。

是不是这样呢?我们来验证一下。

(电脑演示:圆的周长是直径的3倍多一些。)。

这是一个固定的倍数关系,我们叫它圆周率。(板书:圆周率)。

谁能说说圆周率是怎么得来的?

请同学们看书上是怎么说的?

早在20xx年前,我国古代数学经典《周髀算经》就指出:圆经一而周三,(用投影打出这句话。)当时,是很了不起的成就,至今人们常用它来估算圆的周长。刚才,老师就是用这种方法来估算同学们算得是否准确的。谁知道世界上最早将圆周率准确到7位小数的是谁?(学生口答)他是我国伟大的数学家和天文学家祖冲之。

(出现祖冲之的画像,同时放配乐录音,介绍祖冲之。)。

约1500年前,我国伟大的数学家和天文学家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲的数学家要早1000年左右。现在世界上最大的环形山,就是以祖冲之的名字命名的。

我们确实应该为前人的聪明、智慧感到自豪和骄傲。后来瑞士的数学家欧拉用希腊字母代表圆周率。(板书:)。

圆周率是一个无限不循环小数。在计算时,如果用这个无限不循环小数参加计算是不方便的,故通常将取两位小数。(板书:3.14)。

既然是个固定的值了,只要知道什么就能求圆的周长?(直径。)。

现在我们能不能计算黑板上这个圆的周长?

什么条件不知道?(直径。)。

谁来测直径,用分米作单位。(板书:分米)。

如果直径是2分米,半径就是几分米?

用半径能不能求圆周长?

现在我们试着用直径或半径来求黑板上圆的周长。

谁用直径求出圆的周长?

(板书:3.142=6.28(分米))。

为什么这样列式?

(板书:圆的周长=直径圆周率)。

如果用c表示圆的周长,d表示直径,表示圆周率,字母公式怎么表示?

(板书:c=d)。

谁能用半径求圆的周长?为什么这样做?

如果用字母r表示半径,字母公式怎么表示?

(板书:c=2r)。

椭圆的教案篇十三

一、教学目标:。

知识与技能目标:准确理解椭圆的定义,掌握椭圆的标准方程及其推导。

过程与方法目标:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力。

情感、态度与价值观目标:通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美,通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。

二、教学重点、难点:

重点是椭圆的定义及标准方程,难点是推导椭圆的标准方程。

三、教学过程:

教学环节。

教学内容和形式。

设计意图。

复习。

提问:

(1)圆的定义是什么?圆的标准方程的形式怎样?

(2)如何推导圆的标准方程呢?

激活学生已有的认知结构,为本课推导椭圆标准方程提供了方法与策略。

讲授新课。

一、授新。

1.椭圆的定义:(略)。

活动过程:。

操作-----交流-----归纳-----多媒体演示-----联系生活。

形成概念:。

操作:

固定一条细绳的两端,用笔尖将细绳拉紧并运动,在纸上你得到了怎样的图形?

在动手过程中,培养学生观察、辨析、归纳问题的能力。

在变化的过程中发现圆与椭圆的联系;建立起用联系与发展的观点看问题;为下一节深入研究方程系数的几何意义埋下伏笔。

教学环节。

深化概念:

注:1、平面内。

2、若,则点p的'轨迹为椭圆。

若,则点p的轨迹为线段。

若,则点p的轨迹不存在。

联系生活:

情境1.生活中,你见过哪些类似椭圆的图形或物体?

情境2.让学生观察倾斜的圆柱形水杯的水面边界线,并从中抽象出数学模型.(教师用多媒体演示)。

情境3.观看天体运行的轨道图片。

教学内容和形式:

准确理解椭圆的定义。

渗透数学源于生活,圆锥曲线在生产和技术中有着广泛的应用。

设计意图:

2.椭圆的标准方程:

例:已知点、为椭圆的两个焦点,p为椭圆上的任意一点,且,其中,求椭圆的方程。

活动过程:点拨-----板演-----点评。

一般步骤:

(1)建系设点。

(2)写出点的集合。

(3)写出代数方程。

(4)化简方程:

请一位基础较好,书写规范的同学板演。

(5)证明:讨论推导的等价性。

掌握椭圆标准方程及推导方法。

培养学生战胜困难的意志品质并感受数学的简洁美、对称美。

养成学生扎实严谨的科学态度。

应用。

举例。

教学环节。

二、应用。

例1.(1)椭圆的焦点坐标为:

(2)椭圆的焦距为4,则m的值为:

活动过程:思考-----解答-----点评。

活动过程:思考-----解答-----点评。

变式已知椭圆焦点的坐标分别是(-4,0)(4,0),且经过点,求椭圆的标准方程。

求椭圆的标准方程。

活动过程:思考-----解答-----点评。

认清椭圆两种标准方程形式上的特征。

课堂小结:

提问:本节课学习的主要知识是什么?你学会了哪些数学思想与方法?

活动过程:教师提问-----学生小结-----师生补充完善。

让学生回顾本节所学知识与方法,以逐步提高学生自我获取知识的能力。

作业布置:

作业:教材第95页,练习2、4,第96页习题8-1,1、2、3、

分层次布置作业,帮助学生巩固所学知识;为学有余力的学生留有进一步探索、发展的空间。

椭圆的教案篇十四

1、认识椭圆形、了解其特点能正确说出图形名称和相似物体。

2、通过图形的拼拆活动、培养幼儿的观察力和分析力。

3、培养幼儿正确使用操作材料、并遵守操作活动规则。

橡皮泥、各种图形若干、彩笔、绳子、小棒、小组操作图、椭圆形和圆形纸每人一份。

一、参观“图形游乐园”的形式复习已认识的图形,初步感知椭圆形的外形特征。

1、引导幼儿观察“图形游乐园”里有什么图形?

2、找一找“图形游乐园”里来了什么样的新朋友?

3、猜一猜新朋友叫什么?跟读“椭圆形”

二、比较椭圆形和圆形,区别其不同点。

1、幼儿自由选择操作材料、进行比较椭圆形与圆形的不同。

a、将橡皮泥捏成椭圆形和圆形进行对比。

b、取椭圆形和圆形用重叠的方法比较两种图形的不同。

c、折叠椭圆形和圆形探索其变化。

2、请幼儿将椭圆形纸上下左右对折,引导幼儿发现上下对折和左右对折出来的折印不一样长。

2、重点指导能力较弱的幼儿活动。

3、让幼儿讲一讲椭圆形和圆形有什么不同?

三、采用“听、取、摸、变、折”的游戏法,认识椭圆形。

1、请找出椭圆形,并说:我拿的是椭圆形。

2、通过摸一摸、感受椭圆形的边没有角、不扎手。

3、请用绳子变出椭圆形。

四、启发幼儿讲一讲周围生活中有那些物体是椭圆形的。

五、小组活动

第一组:以当个“小小魔术师”的形式激发幼儿将椭圆形添画成各种物体。

第二组:给椭圆形涂色:将椭圆形找出来、涂上同一种颜色。

第三组:用椭圆形和圆形拼图案。

第四组:看图、数一数每种图形各有多少个、然后把横线上相应的数字圈起来。

六、请幼儿介绍自己的作品,表扬富有创造性的幼儿作品。

椭圆的教案篇十五

20xx年xx月,我在江苏连云港新海高中上了一节《椭圆的几何性质》公开课。这节课从准备,到与组内老师探讨、交流,并修改、上课,直至最后聆听各位老师和专家的指导,都让我受益匪浅。

物线的性质做好了铺垫。本节课是围绕着探究椭圆的简单几何性质进行的。因此,依教材的地位与作用及教学目标,将之确定为本节课的重点;又因为学生第一次系统地按照椭圆方程来研究椭圆的简单几何性质,学生感到困难,且如何定义离心率,学生感到棘手,所以我将之确定为本节课的难点。

然而,课后的反思过程中我发现了几个问题:第一,在讲解"顶点"定义时,单纯定义为椭圆与坐标轴的交点,没把握住顶点的重要特征,即"顶点是椭圆与其对称轴的交点",如果把握住这一点,在讲解时就应先讲"对称性",再讲"顶点";二是本节课对几何性质的导入,是由学生回顾上节所讲特征三角形的三边与的大小关系开始的,而多数人对特征三角形的记忆是很模糊的,上节课在这个知识点上学生吸收的并不好,如果把它放在本节课"顶点"之后再讲解,会显得更自然一些;三是"对称性"的讲解过于单薄,学生既然很快就观察出了这个性质,何不趁热打铁,再从代数的角度证明一下呢?过于避重就轻的做法不利于对学生数学思维能力的培养。以上的`几点不足都提醒我今后要在研究教材上下更多的功夫。

学生自主探究(预设:可以创造错误认识,a越大越扁?b越大越圆?联想椭圆定义当2a定时,焦点逐渐靠近顶点,椭圆会怎么样?焦点逐渐靠近中心,又会怎么样?)。

过程。e越大,椭圆越扁,越小越圆。讲清楚e是一个比值圆扁度用什么刻画?为什么不b用。a此外,在以下几个方面我还需要进一步改进:一是课堂的节奏还要稍微慢一点,比如对焦点在轴时椭圆的几个性质的给出,都是师提问生齐答,在这个过程中不少反应慢一点的同学没有足够的时间去思考,被忽略掉了,而如果把这个环节换成小组合作学习、讨论交流的方式来进行,放手把主动权交给学生,效果可能会更好,也更符合新课改的理念。二是教学语言还需要不断锤炼,因为数学老师的语言是否准确、精炼,会对学生的逻辑思维产生潜移默化的影响,要力图用清晰优美的语言艺术去感染学生。

比较过去自己曾经历过的刻板、严肃的灌输式教学,现在更提倡多给学生一点爱,让学生积极地参与到课堂活动中来;同时老师要做有效课堂的引导者,不断优化教学策略,教学中要关注学生是否积极地参与到发现问题、分析问题、解决问题的探索过程中去,是否能够达到掌握知识,提高能力的目的是否收到了理想的教学效果。教学过程中要尊重学生的自我发现,多角度的给学生以鼓励和肯定。

我会以此为契机,在平日的教学实践中不断思考和创新,不断成长和进步!

椭圆的教案篇十六

任何概念的学习,如有可能,我们当然希望学生在问题情境中,在解决问题的过程中,成为催生新知的主力军。限于椭圆概念的特殊性,我对问题情境的创设,通过两个角度:从形的角度和数的`角度来加以引入,实现了由学生催生新知的初衷。

椭圆的定义教学中,画出椭圆轨迹,完全是意外的惊喜,采用根据定义“先画后展”的处理方式,突显了知识主题,符合学生认知规律,推动了课堂发展,进而通过类比圆的标准方程的推导,给出椭圆的标准方程的推导步骤。椭圆方程的'化简,对于学生而言是困难的,但不管怎么困难,教师也不可越俎代庖。为了突破这个难点,我们在曲线与方程的教学过程中,引导学生小组合作进行化简,并进行了实际操作。在课堂上,督促学生运用既有策略进行独立的推导化简,通过巡视,指导仍有困难者,训练学生的代数运算能力。此处的训练对于增强学生的自信和毅力有着重要的意义。

类比学习方法是本节课的主线,而数形结合又是本节课的主调,解析法则是本节课的主要原理方法。

另外,以后的教学中,应该更多的加强学生合作探究的能力,减少教师的讲解,从而能为学生提供更多的合作机会。

椭圆的教案篇十七

3、幼儿每人圆形和椭圆形卡片各一套

4、画册

5、熊猫手偶一个

一、 喂饼干游戏:

小朋友们好!我是熊猫贝贝,今天我有件事想请小朋友帮忙,有几个图形娃娃它们饿了,想让小朋友喂它图形饼干吃,好吗?但是它们有个要求,只吃和自己嘴巴形状一样的图形饼干,如果放错饼干他们就会哭得,你们可要记清呀!

二、 认识椭圆形

谢谢小朋友帮了我这个忙,我给你们带来了一件礼物,你们看(出示椭圆形卡片)

1、 提问:

(1)、你们认识这个图形吗?

(2)、它和你们认识的图形中哪个图形形状相似?

2、 圆形和椭圆形进行比较

(每位幼儿两张圆形和椭圆形的卡片)让幼儿比较圆形和椭圆形的相同点和不同点:

相同点:他们的便都是圆滑的,没有棱角。

不同点:圆形从圆心到边上转一圈都一样长。

椭圆形从圆心到边上转一圈不一样长。

3、 寻找椭圆形

教师出示不同形状,让幼儿找出哪个是椭圆形,(让幼儿说出椭圆形的颜色)。

4、 寻找生活中见过的哪些东西是椭圆形的(看图片)

三、涂椭圆形作品

四、 巡回指导幼儿作品

椭圆的教案篇十八

本学期学习选修1—1《椭圆及其标准方程》,上完这节课后我认真地进行了反思,具体内容如下:

1、引入:(师生共同做实验)。

手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的两点,当绳长大于两点间的距离时,用铅笔把绳子拉近,使笔尖在图板上慢慢移动,就可以画出一个椭圆。

分析:(1)轨迹上的点是怎么来的?

(2)在这个运动过程中,什么是不变的?

2、新课:

(1)归纳总结出椭圆的定义。(教师启发引导,学生回答)。

(2)推导椭圆标准方程。(推导之前先回顾求轨迹方程的方法)。

(3)椭圆标准方程。(教师板演方程,学生记忆方程)。

(4)讲解例题。(教师启发引导,板演过程,学生分析,思考)。

(5)学生做练习。(学生板演,师生共同纠错)。

(6)小结。

(7)布置作业。

1、教学方法上:结合本节课的具体内容,确立启发探究式教学、互动式教学法进行教学,体现了认知心理学的基本理论。

2、学习的主体上:课堂不再成为“一言堂”,学生也不再是教师注入知识的“容器”,课堂上为学生的主动参与提供时间和空间,让不同程度的学生勇于发表自己的各种观点(无论对错),真正做到了:凡是学生能够自己观察的、讲的(口头表达)、思考探究的、动手操作的,都尽量让学生自己去做,这样可以调动学生学习积极性,拉近师生距离,提高知识的可接受度,让学生体会到他们是学习的主体。进而完成知识的转化,变书本的知识为自己的知识。

3、学生参与度上:课堂教学真正面向全体学生,让每个学生都享受到发展的权利。在我的启发鼓励下,让学生充分参与进来,进行交流讨论,共同进步。

4、“三维”课程目标的实现上:既关注掌握知识技能的过程与方法,又关注在这过程中学生情感态度价值观形成的情况。

5、学法指导上:采用激发兴趣、主动参与、积极体验、自主探究的讲解讨论相结合,促进学生说、想、做,注重“引、思、探、练”的结合,鼓励学生发现问题,大胆分析问题和解决问题,进行主动探究学习,形成师生互动的教学氛围。

1.本节课课堂容量偏大,从而导致学生在课堂上的思考的时间不够,课堂时间比较紧张。因此今后要合理地安排每一节课的课堂容量,给学生更多的思考时间和空间,提高课堂的效果。同时还要重视探究题的作用,因为班上有一部分同学基础比较扎实,而且对数学也比较感兴趣,出一些比较难的思考题,能够让这部分学有余力的同学能有所提高。

2.学生练习时间不够充分,耽误了小结时间。

3.一部分学生的计算能力还不够熟练,缺乏简化计算的能力,今后还要继续加强对学生这方面能力的培养。

总之,在课堂教学中我“以知识为载体,以思维为主线,以能力为目标,以发展为方向”,展现知识的发生形成过程。采取以学生发展为本,明确本节课的学习目标,以学习任务驱动为方式,以椭圆标准方程的求法为中心。穿插研究性教学尝试,体现了“学生是学习主体,教师是引导者、参与者、组织者、合作者”的新课程理念。有利于改变学生的学习方式,有利于学生自主探究,有利于学生的实践能力和创新意识的培养。达到了教学目标,优化了整个教学过程。但是,在教学中还是存在很多不足的,在以后的教学中还要继续努力,不断总结经验教训,提高自身的教学水平。

椭圆的教案篇十九

椭圆作为一个数学概念,是几何学中的一个重要的图形。在我们的日常生活中,我们经常会遇到椭圆,例如椭圆形的湖泊、椭圆形的镜子等。在学习和了解椭圆的过程中,我深深地感受到了椭圆的独特之处,并从中获得了一些启示和感悟。

第一段:椭圆的定义和特性。

椭圆是一个平面上的封闭曲线,它的定义是到两个焦点的距离之和等于常数的点的集合。椭圆有许多独特的性质,其中最重要的是它的对称性。无论从任何一点出发绕椭圆移动,最后都能依然回到原点,这是椭圆独特的特点之一。另外,椭圆还有着积分形式的方程,这使得我们能够通过数学方法研究和描述椭圆的特性。

第二段:椭圆在建筑中的应用。

椭圆在建筑中有着广泛的应用,尤其是在建筑的设计和构造中。椭圆形的穹顶是建筑中常见的形式,例如著名的梵蒂冈大教堂。椭圆形的穹顶不仅具有美观的外形,还能够提供强大的结构支持。椭圆的对称性使得它能够承受更大的压力,并且在建筑中能够分散力量,使整个结构更加稳定。因此,在建筑设计中运用椭圆形元素能够提升建筑的美感和结构的稳定性。

第三段:椭圆在科学中的应用。

椭圆在科学中也有着广泛的应用,尤其是在天文学和物理学中。行星和卫星的轨道往往可以用椭圆来描述和计算,椭圆的数学模型为研究天体运动提供了便利。此外,在物理学中,椭圆也可以用来描述电子的轨道和能级。通过研究椭圆轨道和椭圆能级,人们对于电子的运动和行为有了更深入的理解。

通过学习和了解椭圆的性质和应用,我从中获得了一些启示。首先,椭圆的对称性告诉我们在生活中我们需要保持平衡,无论是在工作、学习还是生活的其他方面,平衡是追求进步和发展的重要因素。另外,椭圆在结构和科学中的应用告诉我们要有远见和创新,用不同的角度和方法去解决问题,这样才能够真正做出卓越的成就。

学习和了解椭圆的过程中,我深深地感受到了数学的魅力和美妙之处。数学是一门抽象的学科,但是它却能够揭示出现实世界中的规律和秩序。通过学习椭圆,我学会了如何用数学的方法去描述和解释周围的世界,并且还培养了我的逻辑思维和解决问题的能力。椭圆的应用启示也让我明确了人生的一些原则和追求的目标。因此,我在学习椭圆的过程中不仅仅是学到一些知识和技能,更重要的是获得了一种思维方式和生活态度。

总结:通过学习和了解椭圆,我深深感受到了椭圆的独特之处,并且从中学到了许多启示和感悟。椭圆在建筑和科学中的应用让我明白了平衡和创新的重要性,而我的心得体会则让我认识到数学的美妙和人生的意义。在未来的学习和生活中,我将会继续学习和探索更多的数学知识,同时也将会运用数学的思维方式去面对和解决人生中的各种问题。

【本文地址:http://www.xuefen.com.cn/zuowen/17042928.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档