教案的步骤安排应合理、清晰,符合学生的学习规律和认知特点。教案应该具备启发性和引导性,促使学生主动思考和探索问题。以下是小编为大家整理的教案范例,供大家参考借鉴。
六年级小学数学教案案例篇一
教学过程:
课前三分钟交流。
讲故事《大胆的小猴》,并与大家交流,对学生进行自信、勇敢的培养。
设计意图:课前三分钟交流是孩子们展示的舞台,在这短短的三分钟时间里带给自己快乐、自由和成长。这个环节是师生的最爱。学生自信的主持,精彩的展示,内容的丰富,真可谓色、香、味俱全的大餐。学生展示的内容丰富,可以是数学古诗、数学家的故事、数学要闻、数学成语、数学符号的由来等等形式多样。真是万紫千红,各有千秋。
小组交流、探究、合作学习。
一、展示课前收集的生活中的百分数。
设计意图:小学生学习的数学应是生活中的数学,是学生"自己的数学"。数学来自于生活,又必须回归于生活。数学只有在生活中才能赋予活力与灵性。数学学习内容远离生活无疑是导致学生对数学没有兴趣的根本原因,它使本该生动活泼的数学学习活动变得死气沉沉。有鉴于此,数学的教与学应该联系生活,注重现实体验,变传统的"书本中学数学"为"生活中做数学",体现以解决问题为中心的生本教育理念。
二、小组交流百分数的意义。
百分数表示一个数是另一个数的百分之几。是一个量与另一个量的比较。两个量比较才能产生百分数,只有一个数量是不能产生百分数的。百分数表示的是两个数比较的结果,所以也叫百分率或百分比。
设计意图:尊重学生的主体足够自主的空间、足够活动的机会的教学,让学生自探明之,自求得之,倡导合作学习、探究学习的教学,才能有效地增进学生的发展,创建一种开放的、浸润的、积极互动的课堂文化。
三、小组交流百分数的读法和写法。
读百分数时注意要读成百分之几,不能读成一百分之几。写百分数时,通常先写分子,再写百分号,并注意%的两个小圆圈要均匀且不能过大,以免和分子混淆。
在半分钟内写十个百分数,看看写出的百分数占总数的百分之几,并用自己喜欢的一个百分数说一句话。
设计意图:通过小组交流并展示生活中找到的百分数的读法和写法,又加深理解了百分数的意义。
四、小组交流百分数与分数的区别。
(1)意义不同。
分数代表一个数值,也可以代表一个分率。而百分数只能代表一个分率。
(2)读法不同。
分数读作几分之几,百分数读成百分之几,不能读成一百分之几。
(3)写法不同,百分数在分子后面加上百分号就行了,而不是写成分数的形式。
(4)分母不同。
分数的分母可以是任何一个大于0的自然数。而百分数的分母规定是100.
(5)分子不同。
分数的分子必须是自然数。百分数的分子可以是小数,整数,可以大于100,可以小于100.
(6)百分数不可以约分,分数可以约分。
(7)分数单位不同,分数的单位是几分之一,而百分数的单位只能是百分之一。
设计意图:百分数源于分数,而又有别于分数。实践证明,学生认识这一点非常困难,这是长期学习的种属概念负迁移所致。学生会误认为分数与百分数是包含关系,分数有的属性,百分数也一定具有。为了跨越这一认识上的误区,我采用了小组探究交流的方式进行学习,使学生区分清楚百分数和分数是不一样的。
五、生活中的应用。
1、经典文化中的百分数。
百发百中——100%百里挑一——1%。
2、做游戏。
石头剪刀布。
规则:两人十次,想一想,你赢了对方几次?赢的次数占总次数的百分之几?
设计意图:学生通过找成语中的百分数和做游戏,已能找出生活中的百分数,并能将百分数应用到平时玩的游戏中。所以此环节承上启下,意在让学生意识到生活离不开数学,数学是有用的,既有利于培养学生的数学意识,又体现“学生活中的数学、学有用的数学”,符合生本教育的理念,在生活中找例子。
生本教育数学课堂练习是一堂数学课的重要组成部分,是进一步深入理解知识、掌握技能技巧、培养积极的情感和态度、促进学生深层次发展的有效途径;所以一节数学课,练习是否有效,将是一节课的点睛之笔。所以课堂练习要设计有挑战性习题,可以通过游戏、猜谜、闯关练习等形式,吸引学生的无意注意,当学生沉迷在问题的情境之中时,他们的无意注意就会转化为有意注意并趋于主导地位,从而达到主动探究的目的。
六、总结。
请告诉大家你这节课学习情绪的比率。
愉快占()%。
紧张占()%。
遗憾占()%。
六年级小学数学教案案例篇二
教学目标:
1、知识目标:使学生明确“折扣”的具体含义,能熟练地进行“折扣”数和百分数的互化,进一步解决求一个数的百分之几的应用题的解法。
2、能力目标:通过观察、思考、探索等教学活动,培养学生收集、分析和处理信息的能力及运用所学知识解决实际问题的能力。
3、情感目标:增强学生对数学价值的体验,感受数学的魅力,能够用数学的眼光来看待周围的事物。
教学内容:
本节课的教学内容《折扣》是在学生学习了百分数意义以及百分数应用题的基础上进行学习的。“折扣”是在商品经济中应用比较广泛的一个概念,由于几折是十分之几,也就是百分之几十,因此,折扣也是百分数的实际应用。所以本节课的重点是要求学生能够正确理解折扣的含义,知道折扣应用题的数量关系,能够解决求一个数的百分之几的问题。难点是“折扣”的有关计算。
对象分析:
《折扣》这个内容是现实生活商品买卖中经常遇见的“数学现象”,无论是聋人还是健听者对它并不陌生。虽然这样,但据了解、调查,我们的聋生对它只知其形而不解其意,虽然学生在此之前学过百分数应用题,但对聋生来说,其实际应用和现实意义却比不上折扣问题的应用。为此,本节课就是建立在学生已有知识(百分数的应用)的基础上,向学生传授的百分数应用的另一种既普遍又实在的生活形态——折扣。
教学策略:
认知心理学家奥苏贝尔有一句至理名言:“假如让我把全部教育心理学仅仅归结为一条原理的话,那么,我将一言以蔽之:影响学习的最重要的因素,就是学习者已经知道了什么,要探明这一点,并应据此进行教学。”把教学建立在学生已有的知识和生活经验之上,这是教学必须遵循的“金科玉律”。《折扣》其实是百分数的实际应用,我就是利用学生的已有知识和生活经验,通过提供丰富而带有折扣的生活图片创设情境,辅以多媒体教学手段,让学生从不同的场合去认识折扣,将实际生活融入教材,把知识与生活相结合,使学生在有效的教学活动中探索问题、发现问题、解决问题。
整个教学过程的活动都是围绕学生的生活经验而设计,使学生体验到数学与实际生活是紧密联系的,是源于生活又作用于生活,更重要的是让学生增强了数学的应用意识,提高参与社会生活的能力。
教学媒体:
主要是利用ppt课件向学生展示现实生活中的折扣现象,创设情景,从而让学生从不同的场合去认识折扣,将实际生活融入到教材,从而激发学生的学习兴趣,达到学与用的相对统一。
教学过程:
一、创设情景,引入新知。
ppt出示生活中打折的图片。
教师:我们经常在商场看到把商品按“几折”出售。如上图中的“5.8折”、“五折”、“3.8”折,这些都是我们生活中常见的打折销售,也就是我们今节课要学习的“折扣”。
二、分层探究,掌握新知。
(一)折扣的具体含义。
1、思考。
(1)商品为什么要打折出售?(工厂和商场,为了促销或处理积压商品等多种原因,有时将商品价格降低进行销售,这就是平常说的“打折”销售。)。
(2)“几折”表示什么意思?
几折表示十分之几,也就是百分之几十。
(3)商品打“八折”出售是什么意思?
(八折=80℅,表示现价按原价的80℅出售。)。
(4)原价、折扣与现价有怎样的数量关系?
(原价×折扣数=现价)。
2、把折扣数和百分数进行互化。
三八折=()%五折=()%70%=()折68%=()折。
二、“折扣”应用题的教学。
1、准备题。
商店出售一种录音机,原价330元。现在打九折出售,现价多少元?
(1)学生读题。
(2)师问:打九折出售是什么意思?(学生口答。)。
(3)把哪个量看做单位“1”?怎么计算?(原价×折扣数=现价)。
(4)学生列式计算,然后师生板书订正。
330×90℅。
=330×0.9。
=297(元)。
答:现价297元。
2、教学“例7”。
商店出售一种录音机,原价330元。现在打九折出售,比原价便宜多少元?(学生读题)。
(1)例7与准备题有何异同?(已知条件相同,所求问题不同。)。
(2)“要求便宜多少元?”怎样解答?(原价-现价=比原价便宜的钱数)。
(3)原价和现价题目中都给出了吗?没有给出的话怎样求?
(4)学生根据数量关系解答,然后集体订正。
=33(元)。
答:比原价便宜33元。
思考:商店出售一种录音机,打九折出售是297元,原价多少元?
(比较这题和准备题的异同,并让学生说说它的数量关系。)。
小结:分析折扣应用题和分析百分数应用题的方法一样,要先确定单位“1”是已知还是未知,然后确定算法。
六年级小学数学教案案例篇三
教学目标:
1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。
2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:推导算理,总结法则。
教具准备:多媒体课件。
教学过程:
一、复习引入。
1、计算下列各题并说出计算方法。
×××。
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。
二、新知探究。
1、课件出示教学目标。
理解一个数乘分数的意义。
掌握分数乘以分数的计算法则。
学会分数乘分数的简便计算。
2、教学例3。
(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的,第二步再涂出小时粉刷这面墙的面积,即的,由此得出×这个乘法算式表示“的是多少?”
(3)根据直观的操作结果,得出×=,根据刚才操作的过程和结果推导出计算方法:×==。
(4)提出问题:小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。
3、小结一个数乘分数的意义和计算方法。
(1)意义:一个数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。
4、教学例4。
(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式:×。
六年级小学数学教案案例篇四
本节课的主要内容是比例的意义和性质。在教学比例意义时,在课前的预设下,学生很容易就发现了:表示两个比相等的式子叫比例。比例的意义解决了,接下来比例的性质也应该没有什么问题。通过例题的学习学生又知道了比例的外项和内项,接下来就是引导学生看比例中的外项和内项,有什么发现?学生的回答出现了与课前预设不相符的一幕,课前我是这样设计的:
2.我是想学生讲:一3×40=120二5×20=100三8×6=48。
5×24=1204×25=1003×16=48。
3.然后教师板书:
外项积:3×40=1205×20=1008×6=48。
内项积:5×24=1204×25=1003×16=48。
4.师:刚才同学们的发现其实就是比例的基本性质,那什么是比例的基本性质呢?(然后师出示:在比例里,两个外项的积等于两个内项的积。)。
2.(过了一会儿)生说:我知道,比例的基本性质是:在比例里,两个外项的积等于两个内项的积。
3.我还带开玩笑的口气说:我没有教你,你怎么就会了?
生:我自己预习了。
师:预习是我们学习中一个很好的习惯。(心里想:他怎么没有按照我的设计来,就一下子就把性质讲出来了。怎么办?这时我灵机一动。)。
师:好,在比例里,两个外项的积是不是等于两个内项的积呢?我们来验证一下。(学生分别讲出三组比例的外项积和内项积)。
4.师板书:
外项积:3×40=1205×20=1008×6=48。
内项积:5×24=1204×25=1003×16=48。
这个时候水到渠成的学生就知道了什么叫比例的基本性质。
设计一,我是想学生按照之前的设计意图,一环套一环教学下去。而不愿意让学生有自主的,创造性的分析和思考,甚至害怕学生“思维出轨”。这是一种机械的模式化的教学,这种教学方法从掌握知识的角度进行分析,确实简单高效,但它的弊端也是显而易见的,那就是造成学生思维的僵化,学生不会独立分析、思考。
设计二,更多关注的是学生获取知识的过程,引导学生借助三个比例式来验证,设计二可以说是一种生动的充分发挥学生自主学习的过程。在这种教学过程中,学生有独立思考的时间,有自主探索的机会,有展示自己创造性思维成果的舞台。
通过两种教学片断的比较,我深深得体会到,向课堂要效率不仅仅要着眼于课堂上的教学用时和学生在课堂上是否学会了解题,而更注重学生思维能力的发展,让学生真正成为学习的主人。《数学课程标准》中指出:数学教学要“让学生亲身经历竟实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获取对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展”。
通过上述案例分析只有动态生成的课堂才能很好地培养学生的思维能力和解决实际问题能力,提高学生的数学素质。
六年级小学数学教案案例篇五
1.使学生从整体上把握平面图形的计算公式;能够比较熟练地运用公式计算有关平面图形的面积。
2.进一步培养空间观念和提高学生的推理能力,灵活运用公式的能力及计算能力。
3.进行辩证唯物主义教育。
面积公式及各种图形的内在联系。
(一)基本概念
1.我们都学习过哪些平面图形?
2.用字母公式表示出这些平面图形的面积公式。
3.填空。(复习平面图形公式推导过程)
因为s长=___________,而正方形是和相等的长方形,所以s正=________;平行四边形可以割补成长方形,它的底相当于,高相当于,所以s平=___________;两个形状、大小相同的三角形,可以拼成一个,所以s三=___________;两个形状、大小相同的梯形,可以拼成一个,所以s梯=____________;圆可以割补成一个近似的长方形,这个长方形的长相当于圆的,长方形的宽相当于圆的,所以s圆=___________,最后推出s圆=___________。
4.填表。
(二)动手操作
请在下面的方格图中再画一个三角形,使它的面积是已知三角形面积的2倍。
(三)综合练习
1.判断。(对的打,错的打。)
(1)把一个长方形的木框拉成平行四边形,面积一定比长方形小。
(2)一个三角形和一个平行四边形面积相等,底边也相等。那么平行四边形的高是三角形高的2倍。
(3)两个面积相等的梯形一定可以拼成一个平行四边形。
(4)两个等底等高的三角形,它们的形状不一定相同,但面积一定相等。
(5)一个正方形和一个长方形的周长相等,那么正方形的面积一定大于长方形的面积。
2.选择题。(将正确答案的字母填入括号)
(1)一个长方形的长和宽各增加4cm,它增加的面积________cm2。
a.等于16
b.小于16
c.大于16
(2)一个梯形的面积是32m2,上底与下底的和是8m,那么高是_______m。
a.2
b.4
c.8
(3)小学阶段学过的基本图形的面积公式都可以用______的面积公式来表示。
a.长方形
b.平行四边形
c.三角形
d.梯形
六年级小学数学教案案例篇六
教学内容:
教科书第68页例1和练习十一第1题。
教学目标:
1、综合运用统计知识,学会从统计图中准确提取统计信息,并作出正确的判断和简单的预测。
2、理解统计图中各个数据的具体含义,培养同学仔细观察的习惯。
教具准备:
多媒体电脑,投影仪。
教学过程:
一、情景引入。
同学们,你们喜欢看电视吗?你们知道家里的电视是什么品牌吗?
今天我们就去彩电市场看看各种彩电的市场占有率吧!(出示教科书第68页例1的扇形统计图)。
二、探究交流,总结规律。
1、小组研讨、交流。
根据这幅统计图,你们了解到哪些信息呢?a牌彩电是市场上最畅销的彩电吗?
根据提出的问题,让同学在小组内交流、讨论。同学可能会发生两种不同的看法:一局部会认为a品牌最畅销,而另一局部则认为a品牌不是最畅销的,从而引起认知抵触。
2、引导释疑。
可让同学分别说说“其他”的具体含义,从而明确“其他”里面可能含有比a牌更畅销的彩电品牌。
3、小结。
这幅统计图提供的数据比较模糊,不够完整,我们无法得到有关彩电市场占有率的完整信息,所以从本统计图中不能得出a牌彩电最畅销这样的结论。
引导同学认识到:在利用统计图作判断和决策时,一定要仔细观察,注意从统计图提供的数据信息动身,不要单凭直观感受轻易下结论。
六年级小学数学教案案例篇七
1、使学生理解按比例分配的意义。
2、掌握按比例分配应用题的特征及解题方法。
3、培养学生应用所学知识解决实际问题的能力。
教学重点。
掌握按比例分配应用题的特征及解题方法。
教学难点。
按比例分配应用题的实际应用。
教学过程。
一、复习引入。
(一)填空。
已知六年级1班男生人数和女生人数的比是3∶2。
1、男生人数是女生人数的()。
2、女生人数是男生人数的(),女生人数和男生人数的比是()。
3、男生人数占全班人数的(),男生人数和全班人数的比是()。
4、全班人数是男生人数的(),全班人数和男生人数的比是()。
5、女生人数占全班人数的(),女生人数和全班人数的比是()。
6、全班人数是女生人数的(),全班人数和女生人数的比是()。
(二)口答应用题。
1、学生口答:1002=50(平方米)。
2、教师提问。
这是一道分配问题,分谁?(100平方米)怎么分?(平均分)。
六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?
这样分还是平均分吗?
3、谈话引入。
在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题。(板书:分配)。
二、讲授新课。
(一)把复习题2增加条件如果按3∶2分配,两个班的保洁区各是多少平方米?
(二)教师提问。
1、分谁?(100平方米)。
2、怎么分?(按3∶2分)。
3、求的是什么?(两个班的保洁区各是多少平方米?)。
六年级小学数学教案案例篇八
1、给合生活实际,经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点,观察角度的变化而改变。
2、能利用所学的知识解释生活中的一些现象。
3、通过有趣的观察、操作、想象等活动,发展空间观念。
给合生活实际,经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围所观察点而改变。
一、创设情境,生成问题
师:在上课之前,我们先来欣赏一段麦当劳的广告。
师:刚在看广告的时候,很多人都笑了,你们为什么笑?
生:坐在摇椅上摇,一会儿能看到麦当劳的标志,一会儿又看不到。
师:那他什么时候能看到,什么时候又看不到呢
生:当摇椅摇在高处的时候,他看得到,当摇椅摇在低处的时候,他就看不到,因为他的视线被墙壁挡住了。
师:恩,这位同学讲得真好。是的,在刚才广告中,摇椅摇在低处时,宝宝的视线受到了墙壁的阻挡,所以他就看不见麦当劳的标志,而当摇椅摇到高处的时候,视线没有受到阻挡,宝宝就能看见麦当劳的标志了。看来我们观察的范围会受到一些因素的影响,这节课我们就来研究《观察的范围》。(板书课题)
二、探索交流,解决问题
师:一天,住在一楼的淘气来到窗前,他想看看外面的停车场,他能看到吗?
生:不能。他的视线被墙挡住了。
师:那墙就是一个障碍物,对吧?
师:可是淘气真的很想看见外面的停车场,他应该怎么办?
生:爬楼
师:聪明的淘气也想到了,他赶紧爬上去,他总算能看见外面了,那他到底都能看见墙外的哪些地方呢?谁愿意到前面来指一指。
(鼓励学生到图上指一指)
师指墙角边的那辆车:这个位置三楼的淘气能看见吗?为什么?
生:不能看见,因为他的视线受到了墙壁的遮挡。
师:那他到底能够看到多大的范围呢?我们在图上该如何表示呢?自己在练习纸上试一试,同桌之间也可以交流一下。
这其实就是淘气的一条视线,眼睛就是观察点,围墙上的一点就是障碍点,是虚线。
学生充分发言后(边说便在图上标注出来并指出可观察的范围)
师:回忆一下我们刚才是怎样找到淘气的观察范围的?
生:
师:我们把淘气的眼睛作为观察点,围墙的右上端作为障碍点,把两点用虚线连接起来并延长,这条视线的右边就是淘气的观察范围。
师:可是淘气还想看到剩下的这几辆车,他应该怎么办?请同学们自己画一画,找找四楼五楼淘气的观察范围。
指名画,并说出画法(发现三条视线的观察点不同,障碍点不变),找出可以看到的范围。
师:观察三条淘气的视线及淘气的观察范围,你发现了什么?
生:淘气站得越高,他看到的车子越多,他的观察范围越大。
师:也就是说,你们认为淘气的观察范围和什么有关?有什么样的关系?谁能试着总结一下。
生:观察点越高,观察的范围越大;观察点越低,观察的范围越小。
课件出示,全班齐读。
师:原来观察的范围会随着观察点的高低变化而变化,也难怪唐代诗人王之涣留下了这样的名句:欲穷千里目,更上一层楼。
师:解决了淘气的难题之后,我们一起到科技馆看看。
科技馆就在左边的大楼上,你们看见了吗?
我们坐车来到来到一这个地方,能看见科技馆。
生:能。
师:大家都说能,怎么证明呢?
生:画淘气的视线。
师:好,请一位同学说,老师来画。
我们的车缓缓向科技馆驶进,来到位置二的地方,我们还能看见科技馆吗?谁能来说一说。
师:好,谁能来描述一下,车从一开到二,我们看到的科技馆大楼是如何变化的?
师:那你能看出来,在这道题中,我们的观察范围又和什么有关呢?有怎样的关系?
生:观察的范围与观察点的远近有关,观察点越近,观察的范围越小,观察点越远,观察的范围越大。
课件出示,全班齐读。
生:
师:是不是一下长一下短的呢?
师:为什么会发生这样的现象呢,研究了下面这道题,你就会明白了。
独立完成
师:指名画,说说你是怎样画的?
生:灯泡是观察点,……
师:那影子在什么地方?
师:为什么影子在这里?而不在那里
生:影子应该是光线到不了的地方,是盲区。
师:恩,真棒。
师:
那同样高的杆子,离路灯的距离与所形成的影子有什么关系,你们得到结论没有,把结论读出来。
生:同样高的杆子离路灯越近,影子就越短
师;反之,离路灯越远,影子就越长。
师:今天我们所学的知识不仅能解决路灯下影子变化的现象,还能解决发生在太空的现象,下面就让我们来看看很有名的日蚀现象。
(课件演示)大家都知道猫和老鼠是一对天敌,有只小老鼠躲在一堵墙的后面,有只猫在墙的前面吃食,小老鼠在哪个位置是安全的呢?(生试着指一指)那么小老鼠的安全活动区域是哪些范围呢?你们能帮助老鼠画出它的安全活动范围吗?动手画在答题纸上。
展示汇报。
那小猫稍微移动了自己的位置,这范围还是安全的吗?看来猫鼠大战又将掀开精彩的一页了。
三、回顾整理,反思提升
通过今天的学习,你有哪些收获呢?本节课的知识在日常生活中用处很大,看在太空中我们也能利用今天所学的知识去解释一些现象呢。(课件出示月食日食现象)有兴趣的同学可以课下继续研究,里面的奥秘会让你喜欢上的。
六年级小学数学教案案例篇九
课本第57——58页“扇形统计图“。
1、通过实例,认识扇形统计图,了解扇形统计图的特点与作用。
2、能读懂扇形统计图,从中获取有效信息,体会统计图在现实生活中的作用。
3、提高学生的实际应用能力。
认识扇形统计图,了解扇形统计图的特点与作用。
学生的实际应用能力的提高。
课件。
一、复习旧知,引入新知。
1、电脑课件呈现下表。
种类摄入量/克占总摄入量的百分比。
油脂类50。
奶类和豆类450。
鱼、禽、肉、蛋等类600。
蔬菜和水果类900。
谷类1800。
2、电脑课件呈现统计图(或以学生的作品亦可)。
3、引入新知。
二、探索交流,获取新知。
1、什么样的统计图是扇形统计图呢?
2、了解扇形统计图特点。
3、即时练习。
完成课后的“说一说”。
(1)学生观察课文中的扇形统计图,读一凑统计图中的各类信息。
(2)说一说,你有什么体会。
学生说信息,并计算各种成分的百分比。
汇报计算结果,订正。
学生发言、交流。
学生汇报:条形统计图可以清楚地看到每一种食物的摄入量。
观察,说出获得的信息。
根据教师引导说出发现。
从扇形统计图中能够清楚地看到各类食物的摄入量占总摄入量的百分之几。
观察数据,发现,说出不同,说出自己的看法。
进行计算,订正。
三、小结本课学习内容。
揭题,板书课题:扇形统计图。
出示课件一边呈现扇形统计图,一边进行简要讲解,使学生了解扇形统计图是用扇形面积的大小(占圆面积的百分之几)来表示各类数量的多少。
四、巩固升华。
完成课后“试一试”。
1、比较各项活动时间,说一说有什么不同。提出数学问题。
2、总时间是多少?各项活动时间可以怎么计算?
3、参照题目,画一个扇形统计图表示自己一天的作息时间,并和同学进行交流。
五、全课小结:你今天有什么收获?还有什么不懂的地方?
扇形统计图。
能清楚地反映整体与部分的关系。
六年级小学数学教案案例篇十
理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。
2、过程与方法。
通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。
3、情感态度与价值观。
渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。
掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。
理解圆锥体积公式的推导过程。
不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。
一、创设情境,提出问题。
生:我选择底面的;。
生:我选择高是的;。
生:我选择介于二者之间的。
师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?
生:只要求出冰淇淋的体积就可以了。
师:冰淇淋是个什么形状?(圆锥体)。
生:你会求吗?
师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。
二、设疑激趣,探求新知。
师:那么你能想办法求出圆锥的体积吗?
(学生猜想求圆锥体积的'方法。)。
生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。
师:如果这样,你觉得行吗?
教师根据学生的回答做出最后的评价;。
生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?
师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?
小组中大家商量。
生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。
师:此种方法是否可行?
学生进行评价。
师:哪个小组还有更好的办法?
生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)。
师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。
1、各小组进行观察讨论。
2、各小组进行交流,教师做适当的板书。
通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。
3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)。
4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。
师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?
生:大约是圆柱的一半。
生:……。
师:到底谁的意见正确呢?
师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!
要求:
实验材料,任选沙、米、水中的一种。
实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。
(生进行实验操作、小组交流)。
师:
谁来汇报一下,你们组是怎样做实验的?
通过做实验,你们发现它们有什么关系?
生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。
生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)。
师:同学们得出这个结论非常重要,其他组也是这样的吗?生略。
师:请看大屏幕,看数学小博士是怎样做的?(课件演示)。
齐读结论:。
师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?
师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?
(噢!三种冰淇淋的体积原来一样大)。
联系生活,拓展运用:
本练习共有三个层次:
1、基本练习。
(1)判断对错,并说明理由。
圆柱的体积相当于圆锥体积的3倍。()。
一个圆柱木料,把它加工成的圆锥,削去的部分的体积和圆锥的体积比是()。
一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。()。
(2)计算下面圆锥的体积。(单位:厘米)。
s=25.12h=2.5。
r=4,h=6。
2、变形练习。
出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,
(1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?
(2)、找一找这些计算方法有什么共同的特点?v锥=1/3sh。
(3)、准备把这堆沙填在一个长3米,宽1、5米的沙坑里,请同学们算一算能填多深?
3、拓展练习。
整理归纳,回顾体验。
(通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)。
六年级小学数学教案案例篇十一
比的应用的练习课。(教材第55~56页练习十二第3~7题)。
1、复习巩固按比分配问题的解题方法。
2、进一步培养学生应用知识解决实际问题的能力。
重难点:会灵活运用按比分配问题的解题方法解决实际问题。
教学过程。
一、基础练习。
1、师:比的意义和基本性质是什么?(点名学生回答)。
2、教材第55页练习十二第5、6题。
(学生独立完成,集体订正)。
3、师:按比分配问题有几种解题方法?是什么?(同桌之间说一说)。
引导学生回顾按比分配的两种解题方法。
二、指导练习。
1、教学教材第55页练习十二第3题。
(1)组织学生观察图画,理解题意,了解信息。
(2)组织学生小组讨论,如何解决问题。
教师巡视,并引导学生理解每个橡皮艇上有1名救生员和7名游客,也就是救生员和游客的人数比是1∶7。
(3)交流后,学生独立完成,集体订正。
六年级小学数学教案案例篇十二
教学目标:
1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。
2.会正确地读、写正、负数,知道0既不是正数,也不是负数。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。
教学重点:
负数的意义和负数的读法与写法。
教学难点:
理解0既不是正数,也不是负数。
教具准备:
多媒体课件。
教学方法:
教师讲授、合作交流。
教学过程:
一、复习导入。
提出问题:举例说明我们学过了哪些数?
教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。
提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?
二、创设情境、学习新知。
1.教学例1。
(1)出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……”
为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?
这里有零下6℃、零上6℃,都记作6℃行吗?
你有什么简洁的方法来表示他们的不同呢?
教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。
(2)巩固练习。
同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。
学生独立完成第87页下图的练习。
教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。
2.自主学习例2。(进一步认识正数和负数)。
教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
引导学生交流:珠穆朗玛峰比海平面高8844.43米。
引导学生交流:吐鲁番盆地比海平面低155米。
学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)。
教师追问:你是怎么想到用这种方法来记录的呢?
最后教师将数字改动成:海拔+8844.43米或8844.43米;海拔-155米。
教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。
(2)巩固练习:教科书第88页试一试。
3.小组讨论,归纳正数和负数。
提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。
小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)。
通常正号可以省略不写。负号可以省略不写吗?为什么?
最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)。
三、运用新知,课堂作业。
1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。
2.课堂活动第2题。同桌先讨论,然后反馈。
四、小结。
同学们,今天我们认识了负数。你有什么收获?
五、课堂作业。
练习二十二第1、4题。
家庭作业:练习二十二第2、3题。
板书设计:
负数的初步认识。
正数:20、22、14、+8844.43…。
0:既不是正数也不是负数。
负数:-2、-30、-10、-15、-155…。
教学内容:
学会购物。
教学目标:
1、结合具体事例,经历综合运用所学知识解决合理购物问题的过程。
2、了解合理购物的意义,能自己做出购物方案,并对方案的合理性做出充分的解释。
教学重点:
运用百分数相关的知识解决问题。
教学过程:
一、创设生活情境,引入新课。
让学生说说生活中商家为了吸引顾客或扩大销量,常常搞一些什么样的促销活动?那如何学会合理购物呢,从而引入本节新课。
二、探究体验,经历过程。
1、出示第12页的例5。
2、让学生仔细读题,说说想到了什么?
着重理解满100元减50元的意思。
3、分别计算出在a商场和b商场所花的实际费用,进行比较。
a商场:230×50%=115(元)。
4、从而得出在a商场购物更省钱,所以在购物时我们要根据促销方法的不同,选择不同的商店,充分利用商家的优惠政策,就能够少花钱多购物,这就是“合理购物”。
三、课堂练习。
第12页做一做。
四、作业。
第15页第13、14题。
教材分析:
本课知识强调百分数在现实生活中的应用价值,沟通数学知识和现实生活中数学问题间的联系,使学生自主建构数学关系,发展应用意识。
学情分析:
这部分内容是在学生学习了百分数的认识和解决简单问题的基础上安排的,学生可利用已有的知识和经验,通过知识间的联系,在逐步解决新问题的过程中形成理财方案和方法。
设计理念:
教学目标:
知识与能力:学会理财,能对自己设计的理财方案作出合理的解释。
过程与方法:结合具体事例,经历综合运用所学知识解决理财问题的过程。
情感态度价值观:感受理财的重要性,培养科学、合理理财的观念。
教学重点:
学会理财,能对自己设计的理财方案作出合理的解释。
教学难点:
能对自己设计的理财方案作出合理的解释。
教学准备:
课件。
教学过程:
一、创设情境,引入课题。
师:那今天我们就来帮助聪聪理财吧!让我们也学会理财,回家也能帮助爸爸妈妈。
出示课题:学会理财。
二、新授。
(一)存钱计划。
1.出示情境图,让学生读图和文字,了解有关的信息和要解决的问题。
2.提出帮聪聪计算每月收入是多少元的要求,让学生自己计算交流计算的结果。
3.让学生读支出项目表,了解聪聪家每月支出的项目和大约钱数,提出帮聪聪家做存钱计划的要求,启发学生从实际出发,合理提出存钱建议,并算一算到期能回收多少钱。
4.交流学生做的计划,一方面要求学生说明怎样做计划的理由,另一方面,关注计算是否正确。
(二)存钱方案。
1.教师口述聪聪爸爸获得奖金并计划存钱的事情,提出小组合作做三个存钱方案的要求,鼓励学生小组内大胆发表自己的意见。
2.交流各小组做的方案,重点说一说是怎样考虑的,这样存钱有什么好处等。
3.提出计算每种存钱方案获得的利息的要求,学生计算后交流计算的结果。
(三)议一议。
教师提出:哪种存钱方式好,为什么?
重点关注学生是如何阐述理由的。能否对方案的合理性作出说服力的说明。
三、总结。
相信同学们通过今天这节课,都具备了一定的理财能力,回家后把你做的理财计划给爸爸妈妈看,请他们做出评价。
教学内容:
教科书第83页例2及“练一练”,练习十六第1-4题。
教学目标:
1.学会用分数乘法和减法解决一些稍复杂的实际问题,进一步积累解决问题的策略,增强数学应用意识。
2.在运用已有知识和经验解决一些稍复杂的实际问题的过程中,发展思维,提高分析问题、解决问题的能力,进一步体会数学知识之间的内在联系,体会数学知识和方法在解决实际问题中的价值,从而提高数学学习的兴趣和学好数学的信心。
教学重点:
学会用分数乘法和减法解决一些稍复杂的实际问题,进一步积累解决问题的策略,增强数学应用意识。
教学对策:
借助画线段图和分析数量关系来寻找解决问题的方法,鼓励学生要积极交流自己的思考过程,真正理解数量关系后再列式解答。
教学准备:
教学光盘及补充练习。
教学过程:
一、复习铺垫。
1.口算下列各题。
4/15+7/151/2-1/35/9×3/52÷1/21/4÷4。
18÷1/218×1/20÷2/51-3/41÷4/7。
21×3/710/7÷1521÷3/71/2×1/35/6×36。
进行口算,学生将得数写本子上,时间到后统计完成的题目数量及正确率。
2.口答。
(1)五(1)班中男生人数占全班人数的2/5,那么女生人数占全班的()。
(2)一本故事书已看了2/7,还剩全书的()。
(3)一根绳子长12米,剪去了1/4,剪去了()米。
(4)一盒牛奶900毫升,喝去了1/3,喝去了()毫升。
指名学生口答得数并分析每一题的数量关系。
二、学习新知。
1.教学例2。
(1)学生读题,提问:从题中你知道了什么?要我们解决什么问题?指名学生回答题中的已知条件和所求问题。
(3)教师在黑板上画出完整的线段图。
(4)提问:要求女运动员有多少人,可以先算什么?用你想到的方法列式算一算。(学生独立思考后列式计算)。
(5)探讨方法。
指名学生交流自己的解题方法:
方法二:根据男运动员占5/9可以知道女运动员占总人数的4/9,最后求女运动员人数。列式为:45×(1-5/9)。
追问:45×5/9表示什么?1-5/9又表示什么?
小结:刚才两种不同的解题思路中,都把哪个数量看做单位“1”,第一种方法先求出男运动员人数,再用总人数减去男运动员人数求出女运动员人数;而第二种方法先求出女运动员占总人数的几分之几,再用乘法求出女运动员的人数。不管哪种方法都要两步计算才能解决这个问题,题目比以前复杂一些,所以今天我们研究的是稍复杂的分数乘法的实际问题。(板书课题)。
2.“练一练”。
(1)学生读题后可以先找出关键句分析数量关系,然后列式解答。
(2)先同桌之间说说解题思路,再请几位学生全班交流,教师及时评价。
三、巩固练习。
用你喜欢的方法解决下列各题。
1.某粮库原来有大米1500袋,运走3/5,还剩多少袋?
学生认真读题后独立列式解答,讲评时重点让学生说说解题思路。
4.(1)一桶油10千克,用去4/5,用去多少千克/。
(2)一桶油10千克,用去4/5,还剩多少千克?
(3)一桶油10千克,用去4/5千克,还剩多少千克?
学生独立思考后解答,讲评时将这三小题进行比较,比较已知条件和所求问题以及解题思路。
四、全课总结。
通过这节课的学习,你有什么收获?在解题时要注意什么?
五、布置作业。
课内作业:完成练习十六第1-4题。
【本文地址:http://www.xuefen.com.cn/zuowen/17323463.html】