人工神经网络论文(优秀16篇)

格式:DOC 上传日期:2023-12-06 03:19:48
人工神经网络论文(优秀16篇)
时间:2023-12-06 03:19:48     小编:琉璃

作文是一种表达个人思想和情感的方式,可以培养写作能力和思维能力。在写一篇较为完美的总结时,我们需要注意一些关键的要点。请参考下方的一些实用写作技巧

人工神经网络论文篇一

摘要:软件需求分析不仅仅是为了让开发者满足用户要求,而且还可以帮助用户了解软件的性能和功能,具有一举两得的效果,但是如果软件需求不符合实际需求,就会出现风险,导致返工。在bp神经网络的基础上,我们建立了软件需求分析风险评估模型,以减少软件开发的失败率,规避因软件需求分析失误而带来的实际存在的或潜在的风险。

关键词:风险;软件需求;bp神经网络;研究;分析。

软件开发过程中,需求分析是一个关键性的阶段。导致它失败的原因有很多,例如开发者和用户之间的沟通障碍、软件本身的隐含性、需求信息的不对称等等。这些问题导致的返工,增加了开发的成本,也损坏了企业形象,更可能流失掉部分用户。因此,我们必须对软件需求分析进行风险评估管理,把负面影响降到最低。现代商业发展中,各企业和企业之间的竞争日趋激烈,掌握最新的技术,对技术进行创新,才是企业在行业内立足脚跟,获得更加长远发展的方法,因此要想牢牢地把握企业的运命就需要我们保持对技术创新的热情,并在这条道路上乐此不疲。21世纪,只有掌握了最新和最具有创造性的技术,才能赢的最后的胜利,本文把bp网络与软件需求分析风险评估模型相结合,具有十分重要的意义。

bp神经网络是开发者使用最多的神经网络之一,它具有算法简单、极强的鲁棒性、收敛速度极快等优点。最重要的一点是能够最大限度的接近其真实系统,非常适合于线性的、不确定的、模糊的软件风险数据。bp算法是一种用于前向多层神经网络的的反传学习算法。采用bp算法的数层感知器神经网络模型,它的基本思想是,学习过程由信号的正向传播和误差的反向传播两个过程组成。模糊理论采用模糊数学的方法,通过抽象思维,对处于多种因素作用下的事物做出总体评价。它的两大主要特征是:第一,结果清晰;第二,系统性强,这非常适合于各种非确定性问题的解决。

2软件需求分析风险评估模型。

开发过程中,了解软件需求是很重要的。软件开发主要是依据需求的不同而设计出的产品。它包括了业务需求(组织和客户高层次的目标)、用户需求(用户要求必须具备的需求)、功能需求(用户可以通过完成任务满足业务需求的产品中必须体现的软件功能)。各种不同的需求都以不同的角度来呈现,需要进行多方位的分析方可得出准确的结论。软件需求分析就是对用户所需软件应具备的属性进行分析,满足用户的真正需求。在完成软件需求分析后,我们要能得出用户所需的软件系统要能够做到哪些功能,对此还要有详细准确的说明书,也就是用户的使用说明书,让他们更快的了解产品。优秀的需求具有以下特点:完整性、准确性、可行性、必要性、无歧义性和可行性。软件需求分析风险是指由于多方面的影响,如用户参与度、用户需求的拓展变化、多角度的考虑、设计的精准度和用户与开发者的充分沟通等等,而造成需求分析的不准确使得用户的软件需求得不到满足。该风险评估模型主要是为了降低软件需求分析中存在的风险,从而使得评估需求分析更具加有效和更易操作。

3一种基于bp神经网络的软件需求分析风险评估模型。

本文把bp神经网络和模糊理论加入到软件需求分析风险评估模型中,利用bp神经网络的非线性映射属性和模糊理论的超强表达能力与被理解力,帮助提高风险评估的有效性和预测性。软件需求分析风险的评估模型包括风险识别、风险分析、风险评估三个模块。风险识别的主要目的是考察研究软件需求分析阶段具体的情况,识别并记录该阶段存在的或潜在的风险,输入来源是专家的经验分析和历史风险数据库。

一般步骤包括:

a:找出软件需求分析风险指标;

b:搜索历史数据库,列出存在的数据库中的历史案例;

c:通过专家分析,列出具有风险等级的列表;

d:将确定了的风险列表提交数据库并更新。风险分析是细化第一阶段的风险,分析其产生的影响和等级,找出各指标与风险级别之间的线性关系亦或非线性关系。本文引入bp神经网络和模糊理论,利用bp神经网络实现风险评估指标和风险级别之间的非线性映射关系,还利用模糊理论的超强表达能力和容易理解的属性,提高整个风险评估模型的学习能力和表达能力,得出更符合实际的评估报告。

主要的方法包括:

a:揭示原因和结果之间的联系,追根溯源;

b:建立模型进行认识和理解;

c:通过尝试各种组合找出导致失败的因素。风险评估需最后明确所有存在的风险和它们的等级,给予开发者一个详细的报告。本阶段只要利用bp神经网络的`输入层、输出层、隐含层数、隐含层节点数。输入层节点是经过模糊预处理的17个需求分析风险评估指标;输出层节点是需求分析风险等级;隐含层数越多性能越高误差越低;隐含节点越多,网络功能越强大,但是过多则会使网络功能减弱。

在bp神经网络基础上,建立的软件需求分析风险评估模型,它操作的流程大致是三个方向。首先,识别软件需求分析阶段存在的、潜在的风险;然后,利用bp神经网络和模糊理论的特有属性、众多优点进行分析,通过历史数据库,专家知识、专家讨论,列出风险表格;最后,对风险进行最后的评估,从而有效预测软件开发过程中所遇到的风险,并且进行规避。

4结束语。

随着经济的高速发展,网络软件也成为人们工作生活中一个非常重要的工具。软件需求的增多带来了很多的问题,软件开发的过程充满了阻碍,软件需求的满意度也在日渐降低。因此,提高软件开发的速度、保证开发软件的质量,降低风险、减少开发成本、满足用户真正的需求等等,对软件需求分析风险进行评估,建立软件需求分析风险评估模型,是一件非常值得研究和实施的事情。本文研究的内容不仅仅达到了需求分析的目的,提出了新的思维方式和参考方向,而且还能更有效的预测软件需求分析风险,真正满足用户的软件需求。基金项目:吉林省教育厅“十二五”科学技术研究项目“基于ahp和群决策向量分析高校干部综合测评方法和系统实现”(吉教科合字第402号);吉林省教育科学“十二五”规划课题“构建以学习者为主体的远程教育支持服务体系的研究”。

参考文献:

人工神经网络论文篇二

在20世纪40年代,生物学家mcculloch与数学家pitts共同发表文章,第一次提出了关于神经元的模型m-p模型,这一理论的提出为神经网络模型的研究和开发奠定了基础,在此基础上人工神经网络研究逐渐展开。1951年,心理学家hebb提出了关于连接权数值强化的法则,为神经网络的学习功能开发进行了铺垫。之后生物学家eccles通过实验证实了突触的真实分流,为神经网络研究突触的模拟功能提供了真实的模型基础以及生物学的依据[2]。随后,出现了能够模拟行为以及条件反射的处理机和自适应线性网络模型,提高了人工神经网络的速度和精准度。这一系列研究成果的出现为人工神经网络的形成和发展提供了可能。

2.2低谷时期。

在人工神经网络形成的初期,人们只是热衷于对它的研究,却对其自身的局限进行了忽视。minskyh和papert通过多年对神经网络的研究,在1969年对之前所取得的研究成果提出了质疑,认为当前研究出的神经网络只合适处理比较简单的线性问题,对于非线性问题以及多层网络问题却无法解决。由于他们的质疑,使神经网络的发展进入了低谷时期,但是在这一时期,专家和学者也并没有停止对神经网络的研究,针对他们的质疑也得出一些相应的研究成果。

2.3复兴时期。

美国的物理学家hopfield在1982年提出了新的神经网络模型,并通过实验证明在满足一定的条件时,神经网络是能够达到稳定的状态的。通过他的研究和带动,众多专家学者又重新开始了对人工神经网络方面的研究,推动了神经网络的再一次发展[3]。经过专家学者的不断努力,提出了各种不同的人工神经网络的模型,神经网络理论研究不断深化,新的理论和方法层出不穷,使神经网络的研究和应用进入了一个崭新的时期。

2.4稳步发展时期。

随着人工神经网络研究在世界范围内的再次兴起,我国也迎来了相关理论研究的热潮,在人工神经网络和计算机技术方面取得了突破性的进展。到20世纪90年代时,国内对于神经网络领域的研究得到了进一步的完善和发展,而且能够利用神经网络对非线性的系统控制问题进行解决,研究成果显著。随着各类人工神经网络的相关刊物的创建和相关学术会议的召开,我国人工神经网络的研究和应用条件逐步改善,得到了国际的.关注。

随着人工神经网络的稳步发展,逐渐建立了光学神经网络系统,利用光学的强大功能,提高了人工神经网络的学习能力和自适应能力。对非线性动态系统的控制问题,采取有效措施,提高超平面的光滑性,对其精度进行改进。之后有专家提出了关于人工神经网络的抽取算法,虽然保证了精度,但也加大了消耗,在一定程度上降低了神经网络的效率,因此在此基础上又提出了改进算法fernn。混沌神经网络的发展也得到了相应的进步,提高了神经网络的泛化能力。

人工神经网络论文篇三

摘要:软件需求分析不仅仅是为了让开发者满足用户要求,而且还可以帮助用户了解软件的性能和功能,具有一举两得的效果,但是如果软件需求不符合实际需求,就会出现风险,导致返工。在bp神经网络的基础上,我们建立了软件需求分析风险评估模型,以减少软件开发的失败率,规避因软件需求分析失误而带来的实际存在的或潜在的风险。

关键词:风险;软件需求;bp神经网络;研究;分析。

软件开发过程中,需求分析是一个关键性的阶段。导致它失败的原因有很多,例如开发者和用户之间的沟通障碍、软件本身的隐含性、需求信息的不对称等等。这些问题导致的返工,增加了开发的成本,也损坏了企业形象,更可能流失掉部分用户。因此,我们必须对软件需求分析进行风险评估管理,把负面影响降到最低。现代商业发展中,各企业和企业之间的竞争日趋激烈,掌握最新的技术,对技术进行创新,才是企业在行业内立足脚跟,获得更加长远发展的方法,因此要想牢牢地把握企业的运命就需要我们保持对技术创新的热情,并在这条道路上乐此不疲。21世纪,只有掌握了最新和最具有创造性的技术,才能赢的最后的胜利,本文把bp网络与软件需求分析风险评估模型相结合,具有十分重要的意义。

bp神经网络是开发者使用最多的神经网络之一,它具有算法简单、极强的鲁棒性、收敛速度极快等优点。最重要的一点是能够最大限度的接近其真实系统,非常适合于线性的、不确定的、模糊的软件风险数据。bp算法是一种用于前向多层神经网络的的反传学习算法。采用bp算法的数层感知器神经网络模型,它的基本思想是,学习过程由信号的正向传播和误差的反向传播两个过程组成。模糊理论采用模糊数学的方法,通过抽象思维,对处于多种因素作用下的事物做出总体评价。它的两大主要特征是:第一,结果清晰;第二,系统性强,这非常适合于各种非确定性问题的解决。

2软件需求分析风险评估模型。

开发过程中,了解软件需求是很重要的。软件开发主要是依据需求的不同而设计出的产品。它包括了业务需求(组织和客户高层次的目标)、用户需求(用户要求必须具备的需求)、功能需求(用户可以通过完成任务满足业务需求的产品中必须体现的软件功能)。各种不同的需求都以不同的角度来呈现,需要进行多方位的分析方可得出准确的结论。软件需求分析就是对用户所需软件应具备的属性进行分析,满足用户的真正需求。在完成软件需求分析后,我们要能得出用户所需的软件系统要能够做到哪些功能,对此还要有详细准确的说明书,也就是用户的使用说明书,让他们更快的了解产品。优秀的需求具有以下特点:完整性、准确性、可行性、必要性、无歧义性和可行性。软件需求分析风险是指由于多方面的影响,如用户参与度、用户需求的拓展变化、多角度的考虑、设计的精准度和用户与开发者的充分沟通等等,而造成需求分析的不准确使得用户的软件需求得不到满足。该风险评估模型主要是为了降低软件需求分析中存在的风险,从而使得评估需求分析更具加有效和更易操作。

3一种基于bp神经网络的软件需求分析风险评估模型。

本文把bp神经网络和模糊理论加入到软件需求分析风险评估模型中,利用bp神经网络的非线性映射属性和模糊理论的超强表达能力与被理解力,帮助提高风险评估的有效性和预测性。软件需求分析风险的评估模型包括风险识别、风险分析、风险评估三个模块。风险识别的主要目的是考察研究软件需求分析阶段具体的情况,识别并记录该阶段存在的或潜在的风险,输入来源是专家的经验分析和历史风险数据库。

一般步骤包括:

a:找出软件需求分析风险指标;

b:搜索历史数据库,列出存在的数据库中的历史案例;

c:通过专家分析,列出具有风险等级的列表;

d:将确定了的风险列表提交数据库并更新。风险分析是细化第一阶段的风险,分析其产生的影响和等级,找出各指标与风险级别之间的线性关系亦或非线性关系。本文引入bp神经网络和模糊理论,利用bp神经网络实现风险评估指标和风险级别之间的非线性映射关系,还利用模糊理论的超强表达能力和容易理解的属性,提高整个风险评估模型的学习能力和表达能力,得出更符合实际的评估报告。

主要的方法包括:

a:揭示原因和结果之间的联系,追根溯源;

b:建立模型进行认识和理解;

c:通过尝试各种组合找出导致失败的因素。风险评估需最后明确所有存在的风险和它们的等级,给予开发者一个详细的报告。本阶段只要利用bp神经网络的`输入层、输出层、隐含层数、隐含层节点数。输入层节点是经过模糊预处理的17个需求分析风险评估指标;输出层节点是需求分析风险等级;隐含层数越多性能越高误差越低;隐含节点越多,网络功能越强大,但是过多则会使网络功能减弱。

在bp神经网络基础上,建立的软件需求分析风险评估模型,它操作的流程大致是三个方向。首先,识别软件需求分析阶段存在的、潜在的风险;然后,利用bp神经网络和模糊理论的特有属性、众多优点进行分析,通过历史数据库,专家知识、专家讨论,列出风险表格;最后,对风险进行最后的评估,从而有效预测软件开发过程中所遇到的风险,并且进行规避。

4结束语。

随着经济的高速发展,网络软件也成为人们工作生活中一个非常重要的工具。软件需求的增多带来了很多的问题,软件开发的过程充满了阻碍,软件需求的满意度也在日渐降低。因此,提高软件开发的速度、保证开发软件的质量,降低风险、减少开发成本、满足用户真正的需求等等,对软件需求分析风险进行评估,建立软件需求分析风险评估模型,是一件非常值得研究和实施的事情。本文研究的内容不仅仅达到了需求分析的目的,提出了新的思维方式和参考方向,而且还能更有效的预测软件需求分析风险,真正满足用户的软件需求。基金项目:吉林省教育厅“十二五”科学技术研究项目“基于ahp和群决策向量分析高校干部综合测评方法和系统实现”(吉教科合字第2013402号);吉林省教育科学“十二五”规划课题“构建以学习者为主体的远程教育支持服务体系的研究”。

参考文献:

人工神经网络论文篇四

神经网络作为新型的计算机网络安全评价技术,具有提高评价结果准确性、可靠性的特点。计算机网络安全评价中神经网络的应用也具有提高评价体系科学合理化的作用,具体内容如下:神经网络适应性强。计算机网络环境相对复杂,这就要求安全评价系统具有较强的适应能力,可以根据网络变化采取最具针对性的应对措施。基于神经网络学习能力强的优势,用户在计算机输入信息时,神经网络系统可以将误差降至最低,并且根据网络系统的情况总结出规律,在计算机网络安全评价中发挥出高效的应用作用;神经网络容错性高,针对计算机网络系统中不完整的信息,神经网络利用容错性强的特性,可以根据相对应节点的特征分析,降低结果产生的误差。即使节点信息不匹配时,对计算机网络安全评价也不会造成过大的不良影响;神经网络实现可在线应用。在信息化时代下,对网络运行效率提出了一定要求,神经网络在计算机网络安全评价中通过不断的训练,对于输入数据迅速产生结果,便于用户的直接使用,满足了信息化时代的应用要求。

人工神经网络论文篇五

关于人工神经网络,到目前为止还没有一个得到广泛认可的统一定义,综合各专家学者的观点可以将人工神经网络简单的概括为是模仿人脑的结构和功能的计算机信息处理系统[1]。人工神经网络具有自身的发展特性,其具有很强的并行结构以及并行处理的能力,在实时和动态控制时能够起到很好的作用;人工神经网络具有非线性映射的特性,对处理非线性控制的问题时能给予一定的帮助;人工神经网络可以通过训练掌握数据归纳和处理的能力,因此在数学模型等难以处理时对问题进行解决;人工神经网络的适应性和集成性很强,能够适应不同规模的信息处理和大规模集成数据的处理与控制;人工神经网络不但在软件技术上比较成熟,而且近年来在硬件方面也得到了较大发展,提高了人工神经网络系统的信息处理能力。

人工神经网络论文篇六

[6].白云朴;环境规制背景下资源型产业发展问题研究[d].西北大学.2013。

[10].李辉;广东省社会经济与资源环境协调发展研究[d].吉林大学.2014。

[16].包红梅;生态社会主义环境危机理论研究[d].内蒙古大学.2005。

[17].王雪;环境科学视角的绿党发展史研究[d].东北大学.2013。

[20].周雷;我国生态环境税收政策初探[d].吉林大学.2006。

[21].高晓红;海南生态省建设的环境政策研究[d].中国海洋大学.2012。

[22].张军驰;西部地区生态环境治理政策研究[d].西北农林科技大学.2012。

[23].吕闯;建国初期我国生态环境相关政策研究[d].海南师范大学.2014。

[24].王芳芳;论生态女性主义的环境正义思想[d].山西大学.2012。

[26].赵伟;社会主义新农村生态环境建设研究[d].山东轻工业学院.2011。

[28].刘溪;马克思主义生态观与当前生态环境问题研究[d].安徽大学.2011。

[29].邵琛霞;小城镇生态环境保护若干政策问题研究[d].武汉大学.2004。

人工神经网络论文篇七

摘要随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。人工神经网络的发展经历了不同的阶段,是人工智能的重要组成部分,并且在发展过程中形成了自身独特的特点。文章对人工神经网络的发展历程进行回顾,并对其在各个领域的应用情况进行探讨。

随着科学技术的发展,各个行业和领域都在进行人工智能化的研究工作,已经成为专家学者研究的热点。人工神经网络就是在人工智能基础上发展而来的重要分支,对人工智能的发展具有重要的促进作用。人工神经网络从形成之初发展至今,经历了不同的发展阶段,并且在经济、生物、医学等领域得到了广泛的应用,解决了许多技术上的难题。

人工神经网络论文篇八

神经网络是在对人脑思维方式研究的基础上,将其抽象模拟反映人脑基本功能的一种并行处理连接网络。神经元是神经网络的基本处理单元。

在神经网络的发展过程中,从不同角度对神经网络进行了不同层次的描述和模拟,提出了各种各样的神经网络模型,其中最具有代表性的神经网络模型有:感知器、线性神经网络、bp网络、自组织网络、径向基函数网络、反馈神经网络等等。

神经元矩阵是神经网络模型的一种新构想,是专门为神经网络打造的一个矩阵,它符合神经元的一切特征。

(1)容器可产生一种无形的约束力,使系统得以形成,容器不是全封闭的,从而保证系统与外界的沟通和交互;各向量间可用相互作用的力来联系,而各个信使粒则受控于容器、中空向量以及其它的信使粒。各神经元之间自主交互,神经元矩阵是一种多层次的管理,即一层管理一层。系统具有明显的层级制和分块制,每层每块均独立且协同工作,即每层每块均含组织和自组织因素。

(2)向量触头是中空的,信使粒可以通过向量或存储于向量中,所以又称为中空向量。向量存储了信使粒后,可以吸引更多的信使粒在附近,或使邻近向量转向、伸长,进而形成相对稳定的信息通路。

(3)当两条或更多的信息通路汇集时,可能伴随着通路的增强、合并,以及信使粒的聚集、交换,这是神经元矩阵运算的一种主要形式。通路的形成过程,也就是是神经元矩阵分块、分层、形成联接的过程,也为矩阵系统宏观管理、层级控制的实现奠定了基础。

神经元矩阵亦是一种具有生物网络特征的数学模型,综合了数学上矩阵和向量等重要概念,是一种立体的矩阵结构。尤其是将矩阵的分块特性和向量的指向特征结合起来,更好的体现了神经网络的整体性和单元独立性,系统的组织和自组织特征也更为凸显。信使粒以“点”的数学概念,增强了系统的信息特征,尤其是增强了矩阵的存储和运算功能。

人工神经网络论文篇九

人工神经网络是边缘性交叉科学,它涉及计算机、人工智能、自动化、生理学等多个学科领域,研究它的发展具有非常重要意义。针对神经网络的社会需求以及存在的问题,今后神经网络的研究趋势主要侧重以下几个方面。

4.1增强对智能和机器关系问题的认识。

人脑是一个结构异常复杂的信息系统,我们所知道的唯一智能系统,随着信息论、控制论、计算机科学、生命科学的发展,人们越来越惊异于大脑的奇妙。对人脑智能化实现的研究,是神经网络研究今后的需要增强的地发展方向。

4.2发展神经计算和进化计算的理论及应用。

利用神经科学理论的研究成果,用数理方法探索智能水平更高的人工神经网络模型,深入研究网络的算法和性能,使离散符号计算、神经计算和进化计算相互促进,开发新的网络数理理论。

4.3扩大神经元芯片和神经网络结构的作用。

神经网络结构体现了结构和算法的统一,是硬件和软件的混合体,神经元矩阵即是如此。人工神经网络既可以用传统计算机来模拟,也可以用集成电路芯片组成神经计算机,甚至还可以生物芯片方式实现,因此研制电子神经网络计算机潜力巨大。如何让传统的计算机、人工智能技术和神经网络计算机相融合也是前沿课题,具有十分诱人的前景。

4.4促进信息科学和生命科学的相互融合。

信息科学与生命科学的相互交叉、相互促进、相互渗透是现代科学的一个显著特点。神经网络与各种智能处理方法有机结合具有很大的发展前景,如与专家系统、模糊逻辑、遗传算法、小波分析等相结合,取长补短,可以获得更好的应用效果。

参考文献。

[1]钟珞.饶文碧.邹承明著.人工神经网络及其融合应用技术.科学出版社.

人工神经网络论文篇十

摘要:电气工程及其自动化的实现,从根本上促进我国电气产业迅速发展,满足人们的日常生活需求。但在实际的自动化发展过程中,还存在一些不足之处影响电气工程的生产效率,难以满足当前时代的需求,基于此,作者结合自身经验,对电气工程及其自动化发展的现状,及其中存在的问题及解决措施进行有效的分析,以供相关人员参考,为其提供借鉴。

关键词:电气工程;自动化;问题。

引言。

随着时代不断发展,信息技术、电气工程自动化技术逐渐被广泛应用。受生产力水平提升的影响,人们对于电气工程及其自动化的要求也不断提升,以满足时代发展,但实际上,现阶段电气工程及其自动化中存在诸多问题,其技术水平与社会生产力发展需求未能有效的相适应,难以满足当前社会的需求。

1我国电气工程及其自动化现状分析。

电气工程及其自动化属于新型的技术,具有较强的综合性,直接影响我国工业的生产水平,并与人们的日常生活息息相关。现阶段,我国电气工程技术不断创新发展,从根本上带动电气工程及其自动化领域发展,并促使其逐渐向高新技术转化,扩大技术的应用范围,从整体上促进国民经济提升。实际上,电气工程及其自动化属于现代电气信息领域,其涵盖内容非常广泛,包括与电气工程相关的所有工程,并在多个领域中进行应用,例如,工业领域、军事领域、农业领域等,对我国的工业与社会发展起到积极的促进作用,同时,电气工程及其自动化技术的创新与发展对于人们的日常生活方式与生产方式也产生影响,以推动国民经济稳定发展[1]。

2我国电气工程及其自动化中存在的问题。

2.1电气工程能源损耗问题。

在电气工程及其自动化的实际应用过程中,受自身的工作性质与设备影响,存在能源损耗问题,直接造成能源浪费,加剧现阶段我国能源紧缺的压力,与当前的节能减排理念相悖,不符合可持续发展战略的实施,同时提升了工业生产的成本支出,降低了经济效益。

2.2电气系统的集成化不高。

现阶段,受时代发展与实际需求的影响,促使电气工程自动化系统逐渐向集成化方向发展,以满足当前时代的要求,但由于我国电气集成化起步较晚,当前的集成化水平较低,处于独立自动化阶段,影响信息与资源的共享。

2.3电气工程自动化系统难以统一。

为了满足当前的发展需求,电气工程要利用先进的技术,构建完善合理的自动化系统,以此提升工作效率,但受多种因素影响,系统难以进行合理的统一,缺乏兼容性,降低了系统的工作效率。

2.4电气工程质量达不到要求。

电气工程的质量直接影响其使用寿命,但受实际的工程质量管理工作影响,以及工作人员自身的管理水平偏低、管理意识落后等因素的影响,导致电气工程质量经常达不到实际的要求,质量管理效率不高。

3现阶段我国电气工程及其自动化中存在问题的解决措施。

3.1合理对电气工程进行节能设计。

在当前的时代背景下,工作人员应重视电气工程的能源损耗问题,利用先进的技术手段,降低能源消耗,以满足当前可持续发展战略,缓解我国能源与资源紧缺问题。例如,利用合理的技术手段,优化电气工程的节能设计,从根本上降低能源的不必要浪费,降低成本的支出。在实际的节能设计优化过程中,工作人员应结合实际情况,以工作最基本要求为基础,对非重点环节进行有效的改良,如,对现阶段的变压器进行改良,选择绕组阻值较小的供电系统变压器,以此来降低变压器的能源损耗,从而减少不必要的损失浪费,达到节能的目的,促使我国电气工程实现可持续发展。

3.2从整体上提升电气工程自动化系统的集成化水平。

提升工作人员自身的专业水平与能力,利用工作人员的专业技术,建立完善的系统平台,并充分发挥其创新意识与主观意识,从根本上满足实际的集成化需求,具体来说,主要从以下两方面入手:一方面,完善电气工程系统的兼容性,保证系统软硬件在交换过程中具有统一的接口,从而实现信息数据的共享;另一方面,提升各功能与系统之间的链接效率,从整体上降低电气工程自动化系统的运行成本,从而促使减少设计成本的支出,以满足当前时代的需求。

3.3构建科学合理、统一的电气自动化系统。

构建科学合理、统一的电气自动化系统是电气工程未来发展的主要方向与趋势,以此来提升电气工程的整体质量。具体来说,主要包含以下几方面:首先,积极引进先进的技术,以先进的电气自动化技术为基础,构建完善的系统,从而提升整体的管理水平;其次,引进先进的设计理念,完善现阶段电气自动化系统,改善其中的不合理之处,并针对现阶段的企业不同需求进行个性化开发;最后,实现信息资源的有效共享,促进我国电气工程领域稳定发展,跟上时代发展的步伐[2]。

3.4重视对电气工程的质量管理。

重视对电气工程的质量管理,可以从根本上提升电气工程质量与使用寿命,并保证工程使用安全。具体来说,可以从以下几方面入手:首先,加强工作管理人员对电气工程质量管理的重视力度,认识到管理的重要性,以此来保证工程质量;其次,加强现阶段工作人员自身的专业水平与能力,通过定期的培训,强化工作人员的专业水平与技术理念,利用其良好的综合素养,提升质量管理效率;然后,加强对电气工程施工材料的管理,保证材料的质量,从而提升电气工程的质量;最后,重视对各个施工环节的质量管理,通过合理的监督与管理,保证施工的规范性,并以其整体质量为基础,适当对施工进度进行合理的调整,以此来保证施工的整体进度。

4结论。

综上所述,电气工程及其自动化中存在的问题,直接影响电气工程的整体质量与效率,因此,工作人员应积极引进先进的技术与设备,通过不断的革新与发展,合理的进行资源节约,降低成本的支出,以此来获取可观的经济效益。同时,加强对电气工程的研究力度,不断提升其技术水平,从而推动我国电气工程及其自动化领域稳定发展。

参考文献:

[1]宋海南.电气工程及其自动化中存在的问题及解决措施[j].南方农机,20xx,47(11):134+148.

[2]闫海东,程世伟.浅析电气工程及其自动化中存在的问题及解决措施[j].科技创新与应用,20xx(06):69.

人工神经网络论文篇十一

摘要:社会在发展、时代在进步,信息技术水平也在不断的提高,在此时代背景下,越来越多的技术手段开始在各个领域渗透和融入,而科技的进步,使得各类的先进技术衍生出来,其中的人工智能技术可谓是典型代表,许多的技术人员意识到人工智能技在计算机中的发展和应用,所以对人工智能技术在计算机中的应用和发展这一课题进行分析具有一定的必然性,以下内容是个人的见解。

关键词:人工智能技术;计算机;发展;应用;

受科学技术手段的推动性影响,人类文明的发展步伐日渐加快,现阶段,已经基本步入到了信息化的时代背景下,计算机在当下已经是各行各业中常见的辅助工具,甚至许多行业的发展已经视计算机技术为基本的动力支撑,同时增加了技术应用的要求,在此社会不断发展的趋势下,只有使得计算机技术逐步朝向着个性化以及智能化的方向发展,方可体现人工智能技术手段的作用,并为计算机技术手段的长远化发展提供相应的保障。

人工智能一般指的是借助计算机技术手段,将其作为有效的基础,对人类的行为以及思想进行模拟的综合学科,它所涉及的行业较多,比如,心理学以及哲学等等均为典型,而后实现对人体触觉或是感知方面的模拟,通常会将其安装到机械设备之上,并使得机器更具智能化特色,借助智能化处理方式或是智能化编程等方法,逐步实现自动化操作、智能化运行,对人类难以完成的、高难度的、威胁较大的工作进行有效处理,极大的提高工作效率,进而保证人们的人身财产安全。

现阶段,人工智能技术已经初步取得了一定的成就,相关的专家学者在研究和探讨以后,也发现了人工神经网络体系构建的发展方向,希望借此完成工程项目设计工作,实现软件系统和智能化模块的有机结合,对软件的性能进行改良,进而符合用户的实际需求,在基本达到了人工智能的目标以后,还需要对用户界面进行优化和改良,最终为人工智能技术的发展和更新提供更多的保障。

(一)网络安全方面的应用。

最近几年来,人工智能技术的运用已经成为未来几年来许多领域的发展趋向,它的利用将计算机网络的优势全方位的体现,值得一提的是,它在计算机网络安全方面所占据的地位在日渐提高,同时其应用价值也不断凸显。

而后,入侵检测也是计算网络安全工作落实的主要工作,这一过程中,防火墙可发挥自身的作用,这一过程中它的运行效果,将会给整体的系统运作安全性带来极大的影响,可通过数据整合、搜集的方式,将有价值的参数呈现给用户,通过邮件的形式发送给用户,随着时间的推移,邮件数量也会不断的增加。经过笔者的分析和探讨,建议将智能型垃圾邮件系统安装到用户的系统之中,而后再实施风险检测,及时告知用户相关的风险信息,并给予一定的提示,引导用户妥善处理垃圾信息。

(二)企业管理方面的应用。

现阶段,人工智能技术手段已经被越来越多的企业管理者所认知,比如,自动报警系统和监控系统的应用就为典型代表,它们的运用,利于企业实现智能化的管理目标,为企业的内部运作营造安全的氛围和环境,此外,还可以一定程度的减少企业的运作成本,逐步达到资源配置和优化的效果,将企业的运营和发展目标落实到实处,体现出企业管理的智能化和现代化特色。

(三)教学领域的应用。

随着新课程改革的推进,使得标准化教学体制也在日趋深化,逐步实现了计算机技术和教学工作的有机融合,人工智能计算机辅助教学系统的运用体现了极大的应用优势,为传统教学模式的优化和改革注入了新的活力,可借此方法,完成教学方法和教学内容的表达,进而相应的的提高教学效率,确保教学质量。

此外,引入人工智能技术的过程中,也需要重视知识库的运用,将其作为教学中有效的辅助工具,而后把教学中的要点以及相关定义等融入到知识库职之中,教师的在落实教学工作之时,可对知识库之内的理论知识加进行准确推理,为学生呈现更加直观的推理过程和运算过程,得出推理后的结果。从教学领域日后的发展角度来讲,人工智能技术理念的引入,可谓是以此教学模式的革新,也是突破传统教学模式桎梏的有效途径。

(四)家居行业的应用。

当前,人们的生活质量和生活水平日渐提高,从而自然而然的增加了对于住房家居的应用需要,在此社会发展形势之下,可将人工智能技术手段应用到家居生活中,尽可能满人们的日常生活需要,比如,运用人工智能技术,对门窗的闭合进行有效控制,或是对家居环境进行调整,营造良好的生活氛围。

三、结语。

综上所述,在此信息技术发展如此迅猛的时代背景下,人工智能技术手段的运用被许多行业所认识和关注,此项技术是一项典型的新型技术手段,它的应用体现了极大的优势,与域外发达国家相比较,我国的人工智能技术水平仍旧不足,但是,其发展速度却相对较快,在我国的诸多行业中得到了广泛运用,它的未来发展前景相对较佳,值得大力推广。

参考文献。

[2]黄鑫。分析计算机人工智能识别技术的应用瓶颈[j].数字技术与应用,20xx,26(7):244.

人工神经网络论文篇十二

摘要:随着工业领域的迅猛发展,自动化、智能化被当做是电气控制领域的重点发展趋势。为了让电气自动化控制中人工智能技术发挥更大的作用,本文概括了人工智能技术,阐述了人工智能技术在电气自动化领域的使用实例,以此期望对有关工作人员能有帮助。

关键词:电气控制;自动化控制;人工智能。

近年来随着国内外人工智能研究的兴起与发展,越来越多的传统领域开始思考能否在自己的产品生产线上使用人工智能技术,所以它的实际使用领域广泛。现代社会的发展离不开人工智能技术的使用,特别是在现代工业的领域,在方法上需要依靠最新的人工智能技术为支持,但要做到让人工智能技术在电气自动化控制中更好的发挥作用,我们先要知道人工智能技术到底是什么样的技术[1]。

国内的创新热潮近几年正在蓬勃的发展,各种新技术竞相展现,人工智能技术也逐渐成熟了,而且它在当今社会中的使用也更加宽泛。人工智能技术的建立,不仅要有计算机技术知识进行有效支持,还与其他学科知识息息相关,人工智能技术通俗上讲就是生产出可以替代人类来工作的智能化机器人,将来许多岗位都可以由机器来替代人类工作[2]。随着科技的日新月异,科学家们已经成功地生产出了类似于人脑一样思考的人工大脑芯片,并将这种新技术命名为人工智能技术。在人们平常的生产活动中,已有非常多的范围都使用了人工智能技术,而且它们的现实使用效率非常高。

2人工智能技术在电气自动化中的应用广阔前景。

电气自动化中应用人工智能技术,不仅在极大程度上让工人更好的操控电气自动化设备,还极大地减少了电气自动化的使用成本,这说明发展人工智能技术的前景是非常有利的。

2.1电气自动化控制中加入人工智能技术的重要性。

人工智能技术同人类的工作方式相比有许多人类不能替代的优势,例如人工智能对于数字和程式非常敏感,可以长时间的集中于处理同一个问题,这些优势可以帮助人类解决一些繁复的工作,所以电气自动化控制中应用人工智能技术后,它一定可以为人类创造更大的价值[3]。

2.2人工智能技术在电气自动化控制中的应用优势。

因为电气设备的复杂性和连贯性的要求,所以对电气设备的设计人员就提出了非常高的专业要求,除了具备非常扎实的专业知识以外,还要求他们的设计最好可以结合最新的科学技术。在电气自动化控制中使用人工智能技术之后,会带来很多便利性,具体表现为下面这4点:(1)数据的收集与运算都能利用人工智能技术来实现,因为拥有了这一作用,以此一来就能对电气设备的每样数值开展收集,还可立即对数据进行运算,因此能让电气自动化的现实管控效果得以大范围提高。(2)人工智能技术可实现连续的监管并实现必要的报警。人工智能技术能同步监控电气系统中主要设备的模拟数据值。(3)人工智能管控的操纵监控系统较高效。能够通过鼠标、键盘来对电气设备实行自动化管控,因为使用管控流程就能够实现同步并网带负荷操纵,以此以来不仅能够大范围减少工作人员的劳动时间,还能让控制效率得以提升,这同目前工业发展的`现实需要非常符合[4]。(4)差错记载功能也是人工智能技术拥有的独特特点,人类可以更好的运用这个技术来监测每一个运行环节中出现的点滴差池,以此来调试设备使其达到最佳的状态,这从根本上提高了电气设备的运行效率和使用安全度,使其更好的为人类服务。

3人工智能技术在电气自动化中的应用分析。

因为目前从根本上升级了人工智能技术,加上它技术的逐渐完备,越来越多的电气设备开始同人工智能技术挂钩,为了更加直观的介绍人工智能设备的特点与技术属性,笔者主要对电气自动化设备中人工智能技术的使用和电气管控流程中人工智能技术的使用开展了辨析。

3.1人工智能技术在电气自动化设备中的应用。

电气自动化系统有极大的繁杂性,它主要牵扯到许多范围与科目,这就对操控电气自动化设备的员工提出了很高的要求,他们应该拥有很高的职业素养,而且还要有充足的知识储备。因为电气自动化体系相当繁杂,所以在现实操控中的效率性要加强,这样才能极大程度地降低因为不合理使用,导致出现非常规错误,有时更可能导致安全事故等。这些问题的解决都可凭借人工智能技术来达成,就人工智能技术自身来看,其系统中心主要是计算机系统,经由编辑每种操控系统,能够使计算机控制中的智能管控得以更好的施行[5]。

3.2人工智能技术在电气控制过程中的应用。

就电气自动化的管控流程来看,人工智能可以帮助人类更好的控制电气设备。在电气设备的控制系统中,引入人工智能的现金技术后,能让实际工作操作效果在很大范围上得以提升,还能使得整个操作过程实现无人化监管,这样一来达到了企业节约成本的目的,尤其是不用再去花费大笔的人工费用。除此之外就从整个控制过程来看,人工智能技术可以实现同多台设备的同时控制,专家体系、模拟操控和神经网络操控是其首要应用的人工智能系统[6]。

4总结。

科技的发展让人类的生活更加便利与美好,人工智能技术的发挥在那越来越推进了现代工业的更好发展。因为人工智能技术具备相当多的优点,它是这些年来发展起来的一门新兴高科技技术,它在实际应用中有巨大的使用效率,不仅在电气自动化控制中,加入人工智能技术后,极大程度上提高了电气设备的控制度,让它能更好的的服务人类生产活动;同时电气设备上结合了人工智能技术,让电气自动化设备的操控系统变得更加简洁,提高了员工操控效率;降低了企业的人力物力成本,使得生产流程更加科学、连贯,所以大力发展人工智能技术与电气自动化的结合是非常有必要的研究。

参考文献:

[5]黄开平.高级项目中自动化系统的应用[j].电气时代,20xx(02).。

人工神经网络论文篇十三

摘要:。

利用补偿模糊神经网络构建高职院校教师的教学评价模型,借鉴《机械制图》教学过程中总结出的零件制作6个步骤,形成“六步法则”,将其应用于模型构建的整个过程。数据验证结果表明,该模型评价精度较高,有利于合理地对教师教学能力的评价,并将有效地促进学校推行绩效考核机制,促进人才培养质量的提升。

高等职业教育在我国高等教育规模中占半壁江山,在人才培养方面起着举足轻重的作用。如何更快更好地发展高职教育,提高人才培养的质量显得越来越重要。高水平的培养质量归根结底是要建立一支过硬的教师队伍。因此,各高职院校目前十分注重利用绩效考核来促进教师队伍整体水平的提高。所谓绩效考核,就是依据教师岗位职责,对教师是否胜任本岗位工作所规定的政治思想、职业道德、工作实绩等进行全面系统的评价。那么如何通过绩效考核对每位教师进行一个客观、全面的评价呢?这主要依赖于教学评价模型的正确性与合理性。笔者依据多年来的教务管理经验,以及通过教授《机械制图》这门课程得到的启发,采用六步法则与补偿模糊神经网络相结合,实现了教学评价模型的构建,旨在提高评价的合理性与客观性。

1六步法则及其由来。

六步法则的由来,是笔者受《机械制图》课程教学的启发而得出的:对于一个零件制作而言,大体经过以下六个步骤:。

(1)通过“看”来对市场上所出现的类似零件进行比对,比如说用途、特点等;。

(2)分析其利弊;。

(4)根据绘制的图形,对该零件进行加工;。

(5)加工样品检验零件的合理性;。

(6)通过使用不断地对零件进行修改完善。

综上所述,零件的加工制作可以归结为:“看、想、画、作、查、改”。其中“画”尤其重要,因为最终图的正确与否将直接关系到产品的质量,影响整个公司的经济效益因此在设计过程中强调的是在正确的前提下注意细而精。对于教学评价也是如此。如果教学评价模型建立的不合理,将直接导致对教师能力评价的不客观、不全面,那么对教师绩效工资的分配将不合理,激励导向效果就不会理想。为此,按照全面质量管理的“三全一多样”的特征,借鉴机械制图的6大步骤,总结得出“六步法则”,运用此法则,对教学评价模型进行构建。

所谓六步法则,是指一看、二分析、三建模、四检验、五实施、六改善。

“五实施”是指通过验证的模型对目前的教师教学能力进行评价;。

“六改善”是指在实施过程中对一些细枝末节进行调整、改善,以促进教师教学水平的提高,不断完善绩效考核机制。

(1)看。高职院校的教师能力除了需要具备一定的专业知识与技能外,还须具备操作技术及实践经验。最好是“双师型”的教师。在北京召开的第四届高等学校教学名师奖表彰大会上有位名师指出:作为高职院校的教师,既要有扎实的理论知识,更要注重实践经验的积累;既要把握专业领域学术发展前沿,又要与行业及企业保持密切联系,时刻关注行业发展动态。他说:“一名优秀教师需要不断与时俱进,创新课程体系,调整教学内容,既要注重学生基本理论知识的传授、专业技能的培养,还要注重学生的个性发展和综合素质的培养;只有这样,才能获得良好的教学效果,因此,目前评判教师水平主要关注于知识、素质、能力这三方面。

知识结构包括围绕职业岗位的知识、技术,及本专业领域的最新发展动态和职业岗位上的新知识、新技术、新工艺等;素质结构包括良好的道德素质和职业素质,道德素质是树立正确的世界观、人生观和价值观,职业素质是指角色意识、敬业精神、时效意识、团队精神等;能力结构包括教育教学能力、岗位实践能力、现代教育技术使用能力和科研能力等川。

根据确定的评价内容,目前采用的评价体系具有一定的多维性和动态性,评价的方式大多采用“定性”与“定量”相结合的方法,主要有:。

1)专家评价法,如专家打分综合法。

2)运筹学与其他数学方法,如层次分析法、数据包络法、模糊综合评价法、绝对评价法。

3)新型评价方法,如人工神经网络评价法、灰色综合评价法、综合评分法。4)组合评价法,这是几种方法混合使用的情况。

(2)分析。教学质量的高低是由多种因素交互作用决定的,但其最主要的因素体现在知识、素质、能力这三方面,因此为了能够较为全面的进行评判,这里采用多主体多角度的评价方式。“多主体”是指教师、学生、专家(含同行)评价和教学主管部门评价以及外聘工程师等。“多角度”是指每个评价主体对应的评价指标不同,即设计的调查问卷不同。其中表1为学生对教师课堂教学的总体评价表。

(3)模型构建。人们在教育评价中所用的方法,可以简单地归结为两大类:定性评价方法和定量评价方法。其中定量评价方法需要用刻一些数学模型对评价对象进行处理。到目前为止,教学评价所用的数学模型主要有确定(性)数学模型、随机(性)数学模型和模糊数学模型三类。具体来讲,确定(性)数学模型有线性规划、动态规划、数据包络分析、层次分析方法等;随机(性)数学模型有回归分析、因素分析、聚类分析、齐次马尔科夫链等;模糊数学模型有模糊综合评判模型、模糊积分模型、灰色数学模型等。在教育评价中,上述方法均有各自比较适宜的评价对象.

在融合模糊理论和神经网络技术的基础上,通过补偿神经元来执行补偿模糊推理,动态地调整模糊规则,从而形成了一种新的网络—补偿模糊神经网络,由此进行教学评价模型的构建。

采用补偿模糊神经网络对某=系统进行辨识时,不需要事先知道索统的`精确的数学模型,它能借助于人类的模糊推理知识以及神经网络的逼近性能来实现对过程的建模。它拥有许多优点,如鲁棒性、无需模型、全局逼近。

2)模型的建构:。

提据高职院校对教师工作素质的要求,结合高职院校的培养目标,采用多z多角摩多丰体的评价机制,对教师教学质量模型进行合理建构。但是如何制定一个合理的评价指标,是一个七啦复杂而且困难的课题,本文在教育部已有评拈体系的基础上,根据前人研究成果,利用学生对教师的网上评教、教师个人的_自我评价、同行评价以及家评价得分作为模型的输入、(艺‘1一4),每个评价因子得分范围是,分为三个等级:较差、良好,一优秀。但是如何确定这三个等级的标准,这里采用高斯函数才)”作为模糊隶属度函数从而对其等级进行划分。其中“,·““(隶属度中‘。·宽度’均属于可调参数。具体建构的教学评价模型如图1所示。

整个模型分为5层,第一层作为评价指标输人层,第二层对评价指标进行分类(较差、良好、优秀),然后根据模糊推理的规则来推理得出教师教学质量的好坏。

3)模型的训练。

运用多年来积累的数据报表,通过聚类分析的方式对数据进行有效性验证,在现有数据的基础上挑选了2000多个样本进行评价模型的训练,采用梯度下降法对模糊隶属度函数中的参数进行训练,其训练过程的误差mse变化曲线如图2所示。

最后从样本中选取200个样本对其进行验证,结果误差达到了i.5%,精确度较高。

3.结论。

借鉴《机械制图》教学过程中总结出的零件制作6个步骤,形成“六步法则”,将其应用于模型构建的整个过程,利用补偿模糊神经网络构建高职院校教师的教学评价模型,结果表明模型的预测评价准确性较高。由于模型正处于试验阶段,应用于以后的教学评价过程后,还应不断对其进行检验,不断完善。

同时,还需要根据企业对人才需求的变化不断地更新评价指标,完善教学评价模型,科学地对教师教学质量进行评价,有效地促进绩效管理方式的推行,促进高职院校人才培养水平的提高。

人工神经网络论文篇十四

:随着社会信息技术和计算机网络技术的发展,人们对网络应用的需求也原来越多,这就需要不断研究计算机网络技术,由于人工智能在一定程度上成为科学技术前言领域,所以世界上各个国家对人工智能的发展越来越重视。本文首先分析其所具有的重要意义,然后研究其在应用过程中的作用,提出以下内容。

目前由于人工智能的不断成熟,人们在生活方面以及工作的过程中,智能化产品随处可见。这不仅对人们在工作中的效率进行提高,同时还对其生活质量进行加强。所以人工智能的发展在一定程度上离不开计算机网络技术,只有对计算机网络技术进行相应的依靠,才能够让人工智能研究出更多的成果。

由于计算机技术的快速发展,网络信息安全问题在一定程度上是人们目前比较关注的一个重要问题。在网络管理系统应用中,其网络监控以及网络控制是其比较重要的功能,信息能够及时有效的获取以及正确的处理对其起着决定性作用。所以,对计算机技术智能化进行实现是比较必要的。由于计算机得到了不断的深入以及管广泛的运用,在一定程度上导致用户对网络安全在管理方面的需求比较高,对自身的信息安全进行有效的保证。目前网络犯罪现象比较多,计算机只有在具备较快的反应力和灵敏观察力的状况下,才能够对用户信息进行侵犯的违法活动进行及时遏制。充分的利用人工智能技术,建立起相对较系统化的管理,让其不仅对信息进行自动的收集,同时还能够对网络出现的故障进行及时诊断,对网络故障及时遏制,运用有效的措施对计算机网络系统进行及时的恢复,保证用户信息的安全。计算机技术在发展的过程中对人工智能应用起着决定性作用,人工智能技术也在一定程度上对计算机技术的发展起着促进作用。不断的跟踪动态化信息,为用户提供准确的信息资源。总的来说,计算机网络在管理的过程中有效的运用人工智能,对网络管理水平进行不断的提高。

2.1安全管理应用。

网络安全所具有的漏洞相对比较多,用户在网络中自身的资料信息安全是现阶段人们比较关注以及重视的主要问题。在对网络安全进行管理时,可以对人工智能技术进行充分的运用,在一定程度上能够对用户自身的隐身进行有效的保护。主要表现为:一是,智能防火墙的应用;二是,智能反应垃圾邮件方面;三是,入侵检测方面等。智能防护墙主要应用的就是智能化识别技术,通过概率以及统计方式、决策方法和计算等对信息数据不仅进行有效的识别,同时还能对其相应的处理,对匹配检查过程中需要的计算进行消除,充分认识网络行为特征值,访问可以直接进行控制,把存在的网络及时发现,拦截以及阻止有害信息的弹出。智能防火墙能够在一定程度上避免网络站点受到黑客的攻击,遏制病毒传播,对相关局域网进行相应的管理和控制,反之就会导致病毒以及木马的传播。在智能防火墙中,比较重要的就是入侵检测,它属于防护墙后的.第二安全闸门,在对网络安全保证方面起着重要的作用。针对入侵检测技术而言,主要能够在一定程度上对网络中的数据进行有效的分析,并且对其进行及时的处理,把部分数据过滤出去,数据检测后的报告分析报告给用户。入侵检测在对网络性能不产生影响的前提下监测网络,为操作上的失误以及内外部攻击提供一定的保护。针对智能型反垃圾而言,其自身的邮件系统能够对用户邮箱进行有效的监测,对邮箱进行相应识别,把邮箱中存在的垃圾充分的筛选出来。如果邮件进入邮箱后,就会进行扫描邮箱,在一定程度上把垃圾邮箱的分类信息发给用户,提醒用户要对其进行及时的处理,避免给邮箱安全带来影响。

针对人工智能agent技术而言,它属于人工智能代理的一种技术,属于不同部分所组成的软件实体,包括:一是,知识域库;二是数据库;三是解释推理器;四是各个agent之间的通讯部分等。人工智能agent技术通过任何一个agent域库对新数据的相关信息进行处理,并且沟通以至完成任务。人工智能agent技术能够在一定程度上通过用户自定义对信息获得自动搜索,然后将其发送到指定位置。人们通过agent技术得到人性化服务。例如:用户在用电脑查相关信息时,该技术不仅能对信息进行处理,同时还能够进行有效的分析,最后把有用的信息出题给用户,充分节省用户的时间。agent技术为用户在日常生活中提供相应的服务,例如:在网上进行购物以及会议等方面的安排。它不仅自主性以及学习性,让计算机对用户所分配的任务自动完成,进一步推动机计算机网络技术的发展。

2.3在网络系统管理以及评价过程中的应用分析。

针对网络管理系统来说,其智能化在一定程度上需要人工技能的不断发展。在对网络综合管理系统进行建立的过程中,不仅可以对人工智能中的专家知识库进行充分的利用,同时还能够对存在的技术问题进行有效的解决和处理。网络存在着动态以及变化性,所以,网络在管理的过程中会面临着困难,这就需要对网络管理技术人工智能化进行实现。在人工智能技术中,其专家知识库主要指的就是把各个相关领域专家的知识以及经验进行相应的结语出来,录入系统中,只有这样才能形成比较完善的知识库系统,促进智能计算机程序的发展和提高。如果遇到某个领域问题的过程中,要充分利用专家经验程序对其进行及时的处理。专家知识经验系统促进计算机网络管理得到顺利开展的同时,对系统评价相关进行工作不断的提高和加强。

科学技术在发展的同时,也促进人工智能技术的提高,计算机在网络技术中得到了比较多的需求,在一定程度上提高其应用范围和领域,因此可以看出,人工智能其应用发展前景是比较广泛的,人类对人工智能技术的进一步研究,会在未来开创出更多的应用领域。

人工神经网络论文篇十五

人工神经网络是一种模拟生物神经网络的计算机系统,它能够模拟人脑的工作方式,包括学习、识别和输入输出等功能。在我所学习的计算机科学课程中,我深入了解了人工神经网络的理论和应用,从而得出了一些心得体会。

人工神经网络是一种非常强大的工具,在机器学习、图像识别、自然语言处理等领域中取得了巨大的成功。它的核心思想是模拟人脑的构造,通过输入、输出和中间层神经元之间的连接来学习和识别复杂的数据模式。人工神经网络的学习过程依赖于大量的数据和算法优化,在训练过程中逐步优化权重和偏置值,使得人工神经网络的输出结果逐渐接近真实值。

人工神经网络可以应用于各种机器学习应用场景,例如分类和回归任务,深度学习等。在分析和学习大量的数据时,人工神经网络可以快速识别出那些对输出结果影响最大的因素,并将这些因素与输出结果进行函数映射。这种机器学习方法被广泛用于金融、医疗保健、营销、安全等领域,可以帮助人们更好地处理和利用海量数据,从而更加精确地预测未来趋势。

另一方面,人工神经网络还被广泛应用于图像识别和识别场景理解领域。它可以通过大量的训练样本,识别图像中的目标物体,并将其与其他物体区分开来。图像识别可以应用于各种场景,例如自动驾驶汽车、机器人、视频监控等,可以帮助人们更好地处理和分析复杂的场景情况,从而实现更准确、更快速和更可靠的决策。

在应用人工神经网络的过程中,我们需要注意一些相关的问题。例如,我们需要明确人工神经网络的输入和输出,构建相应的模型和算法,以实现有效的学习和匹配。此外,我们还需要关注数据的质量和数量,以确保容易获得准确的数据和可靠的学习结果。最后,我们需要不断优化和调整人工神经网络算法,以满足不断变化的需求和环境。

第五段:总结。

通过对人工神经网络的理解和应用,我们可以看到它的强大和潜在的优势。它可以帮助我们更好地处理和分析各种数据,加速我们的工作和决策,实现更高效和准确的输出。在未来,人工神经网络将继续发挥其潜力,在各种领域中获得更大的进展和成功。

人工神经网络论文篇十六

分析了模拟电路故障诊断的重要性和目前存在的困难,对基于小渡分析理论和神经网络理论的模拟电路故障诊断方法进行了综述.指出了小波神经网络应用于模拟电路故障诊断存在的问题和未来的应用前景。

模拟电路故障诊断在理论上可概括为:在已知网络拓扑结构、输人激励和故障响应或可能已知部分元件参数的情况下,求故障元件的参数和位置。

尽管目前模拟电路故障诊断理论和方法都取得了不少成就,提出了很多故障诊断方法,如故障字典法、故障参数识别法、故障验证法等。但是由于模拟电路测试和诊断有其自身困难,进展比较缓慢。其主要困难有:模拟电路中的故障模型比较复杂,难以作简单的量化;模拟电路中元件参数具有容差,增加了故障诊断的难度;在模拟电路中广泛存在着非线性问题,为故障的定位诊断增加了难度;在一个实用的模拟电路中,几乎无一例外地存在着反馈回路,仿真时需要大量的复杂计算;实际的模拟电路中可测电压的节点数非常有限.导致可用于作故障诊断的信息量不够充分,造成故障定位的不确定性和模糊性。

因此,以往对模拟电路故障诊断的研究主要停留在中小规模线性无容差或小容差的情况,有些方法也已成功地应用于工程实际。但如何有效地解决模拟电路的容差和非线性问题,如何解决故障诊断的模糊性和不确定性等是今后迫切需要解决的问题。小波神经网络则因其利于模拟人类处理问题的过程、容易顾及人的经验且具有一定的学习能力等特点,所以在这一领域得到了广泛应用。

简单地讲,小波就是一个有始有终的小的“波浪”小波分析源于信号分析,源于函数的伸缩和平移,是fourier分析、gabor分析和短时fourier分析发展的直接结果。小波分析的基木原理是通过小波母函数在尺度上的伸缩和时域上的平移来分析信号,适当选择母函数.可以使扩张函数具有较好的局部性,小波分析是对信号在低频段进行有效的逐层分解,而小波包分析是对小波分析的一种改进,它为信号提供了一种更加精细的分析方法,对信号在全频段进行逐层有效的分解,更有利于提取信号的特征。因此,它是一种时频分析方法。在时频域具有良好的局部化性能并具有多分辨分析的特性,非常适合非平稳信号的奇异性分析。如:利用连续小波变换可以检测信号的奇异性,区分信号突变和噪声,利用离散小波变换可以检测随机信号频率结构的突变。

小波变换故障诊断机理包括:利用观测器信号的奇异性进行故障诊断以及利用观测器信号频率结构的变化进行故障诊断。小波变换具有不需要系统的数学模型、故障检测灵敏准确、运算量小、对噪声的抑制能力强和对输入信号要求低的优点。但在大尺度下由于滤波器的时域宽度较大,检测时会产生时间延迟,且不同小波基的选取对诊断结果也有影响。在模拟电路故障诊断中,小波变换被有效地用来提取故障特征信息即小波预处理器之后,再将这些故障特征信息送人故障分类处理器进行故障诊断。小波分析理论的应用一般被限制在小规模的范围内,其主要原因是大规模的应用对小波基的构造和存储需要的花费较大。

人工神经网络(ann)是在现代神经科学研究成果的.基础上提出来的,是一种抽象的数学模型,是对人脑功能的模拟。经过十几年的发展,人工神经网络已形成了数十种网络,包括多层感知器kohomen自组织特征映射、hopfield网络、自适应共振理论、art网络、rbf网络、概率神经网络等。这些网络由于结构不同,应用范围也各不相同。由于人工神经网络本身不仅具有非线性、自适应性、并行性、容错性等优点以及分辨故障原因、故障类型的能力外,而且训练过的神经网络能储存有关过程的知识,能直接从定量的、历史故障信息中学习。所以在20世纪80年代末期,它已开始应用于模拟电路故障诊断。随着人工神经网络的不断成熟及大量应用,将神经网络广泛用于模拟电路的故障诊断已是发展趋势。by神经网络由于具有良好的模式分类能力,尤其适用于模拟电路故障诊断领域,因而在模拟电路故障诊断系统中具有广泛的应用前景,也是目前模拟电路故障诊断中用得较多而且较为有效的一种神经网络。

在神经网络理论应用于模拟电路故障诊断的过程中,神经网路对于隐层神经元节点数的确定、各种参数的初始化和神经网络结构的构造等缺乏更有效的理论性指导方法,而这些都将直接影响神经网络的实际应用效果。小波分析在时域和频域同时具有良好的局部化特性,而神经网络则具有自学习、并行处理、自适应、容错性和推广能力二因此把小波分析和神经网络两者的优点结合起来应用于故障诊断是客观实际的需要。

目前小波分析与神经网络的结合有两种形式,一种是先利用小波变换对信号进行预处理,提取信号的特征向量作为神经网络的输人,另一种则是采用小波函数和尺度函数形成神经元,达到小波分析和神经网络的直接融合第一种结合方式是小波神经网络的松散型结合,第二种结合方式是小波神经网络的紧致型结合。

小波与神经网络的松散型结合,即:用小波分析或小波包分析作为神经网络的前置处理手段,为神经网络提供输人特征向鱼具体来说就是利用小波分析或小波包分析,把信号分解到相互独立的频带之内,各频带内的能童值形成一个向觉,该向童对不同的故障对应不同的值,从而可作为神经网络的输入特征向量一旦确定神经网络的输入特征向童,再根据经验确定采用哪种神经网络及隐层数和隐层单元数等,就可以利用试验样本对神经网络进行训练,调整权值,从而建立起所需的小波神经网络模型。

小波与神经网络的紧致型结合,即:用小波函数和尺度函数形成神经元,达到小波分析和神经网络的直接融合,称为狭义上的小波神经网络,这也是常说的小波神经网络。它是以小波函数或尺度函数作为激励函数,其作用机理和采用sigmoid函数的多层感知器基本相同。故障诊断的实质是要实现症状空间到故障空间的映射,这种映射也可以用函数逼近来表示。小波神经网络的形成也可以从函数逼近的角度加以说明。常见的小波神经网络有:利用尺度函数作为神经网络中神经元激励函数的正交基小波网络、自适应小波神经网络、多分辨率小波网络、区间小波网络等。

小波神经网络具有以下优点:一是可以避免m ly等神经网络结构设计的育目性;二是具有逼近能力强、网络学习收敛速度快、参数的选取有理论指导、有效避免局部最小值问题等优点。

在模拟电路故障诊断领域,小波神经网络还是一个崭新的、很有前途的应用研究方向。随着小波分析理论和神经网络理论的不断发展,小波神经网络应用于模拟电路故障诊断领域将日益成熟。

小波分析理论和神经网络理论在模拟电路故障诊断领域具有广阔的应用前景。小波神经理论的应用将进一步推动模拟电路故障诊断理论和方法的发展,使其更趋完善和更具广泛适用性,为实现复杂的大规模电路的故障诊断提供更为有效、更具实用价值的方法,是今后模拟电路故障诊断的发展方向。

【本文地址:http://www.xuefen.com.cn/zuowen/17500453.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档