比和比例教案(模板18篇)

格式:DOC 上传日期:2023-12-06 03:38:19
比和比例教案(模板18篇)
时间:2023-12-06 03:38:19     小编:梦幻泡

教案是教师在教学过程中所编写的一种有关教学活动、教学内容、教学方法、教学手段和教学评价等方面的记录材料。在编写教案时,教师应考虑到不同学生的差异化学习需求。以下是小编为大家收集的教案范文,仅供参考,希望对大家有所帮助。在教案的编写过程中,我们要充分考虑学生的实际情况和学习需求,注重培养学生的能力和兴趣,激发他们的学习动力。希望大家能够根据自己的教学实际情况,灵活运用教案,提高教学效果,做好学生的引路人和指导者。让我们一起来看看这些教案范文吧,相信它们会给我们带来一些启发和思考。

比和比例教案篇一

教学要求:

1、使学生进一步理解比例的意义和基本性质,能区分比和比例。

2、使学生能正确理解正、反比例的意义,能正确进行判断。

3、培养学生的思维能力。

教学过程:

1回顾本单元的学习内容,形成支识网络。

2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

复习概念。

什么叫比?比例?比和比例有什么区别?

什么叫解比例?怎样解比例,根据什么?

什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

什么叫比例尺?关系式是什么?

1填空。

六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。

小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的`周长比是()。

甲乙两数的比是5:3。乙数是60,甲数是()。

5/x=10/340/24=5/x。

3、完成26页2、3题。

1、a×1/6=b×1/5a:b=():()。

2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

3用5、2、15、6四个数组成两个比例():()、():()。

1、如果a=c/b那当()一定时,()和()成正比例。当()一定时,()和()成反比例。

比和比例教案篇二

结合“图片像不像”“调制蜂蜜水”等情境,找到相等的比,理解比例的意义,认识各部分名称,能通过化简比或求比值判断两个比能否组成比例,会用两种形式表示比例。

2.数学思考与问题解决。

经历自学和合作的过程,体验学习的快乐。

3.情感态度。

培养学生自主参与的意识,培养学生观察、分析、概括的能力。

通过情境理解比例的意义,通过求比值或化简比判断两个比是否能组成比例。

1.教学难点。

通过求比值或化简比判断两个比是否能组成比例,并正确的写出比例。

2.教法学法。

讲授与自学相结合、自主学习法、合作学习法。

多媒体课件、学生自学卡。

一、回顾旧知,复习铺垫。

1.复习学过的有关比的知识。

2.谈话引入新课。

二、引导探究,学习新知。

你们能说出每幅图的长与宽的各是多少吗?请在学习卡上写下来。

写出长与宽的比,并求出比值。完成学习卡的第一题。

(1)交流反馈。

师:像这样表示两个比相等的式子叫做比例。(板书:比例)。

3.组织看书,认识名称。

我们知道了比例的意义,那么,比例的各部分名称是什么呢?请大家自学16页的“认一认”,完成学习卡的第二题。

4.利用新知,学以致用。

师:在图上这五张图片的尺寸中,你还能找出哪些比来组成比例?

(小组讨论,交流汇报)。

生汇报。

【设计意图:通过教师系统的总结,传递给学生一个信号,考虑问题要多方位思考。】。

5.内化意义,提高认识。

(1)从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?

(2)要判断两个比能否组成比例,关键看什么?如果不能一眼看出两个比是不是相等,怎么办?”

6.引申应用。

学生自学数学书的16页的问题三。

7.比较“比”和“比例”两个概念。

(1)教学比例各部分的名称。

教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书p17,看看什么叫比例的项、外项、内项。

指名让学生指出板书中的`比例的外项、内项。

教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:

两个外项的积是80×5=400。

两个内项的积是2×200=400。

“你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让学生分组计算前面判断过的比例式。

通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来?

最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。

“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成:

“这个比例的外项是哪两个数呢?内项呢?”

学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。

三、巩固深化,拓展思维。

(题略)。

四、全课小结,提高认识。

通过这节课的学习,你们都有哪些收获?

比和比例教案篇三

教学内容:p50第3——8题,正反比例关系练习。

教学目的:进一步认识正、反比例关系的意义,能根据正、反比例关系的意义正确判断,培养学生分析推理和判断能力。

教学过程:

一、揭示课题。

二、基本知识练习。

2、练:950第4题。

先说出数量关系式,再判断成什么比例?

三、综合练习。

1、练习:p50第5题。

想一想:这三种数量之间有怎样的关系式,你能找出哪几种比例关系?

口答并说说怎样想的。

2、做练习十二第6题、第7题。

3、做第8题。

提问:从直线上看,支数扩大或缩小时,钱数分别怎样变化?

四、延伸练习。

下面题里的数量成什么关系?你能列出式子表示数量之间的相等关系吗?

1、一辆汽车从甲地到乙地要行千米,每小时行50千米,4小时到达;如果每小时行80千米,2.5小时到达。

2、某工厂3小时织布1800米,照这样计算,8小时织布x米。

五、课堂。

通过这节课的练习,你进一步认识和掌握了哪些知识?

六、作业。

《练习与测试》p25第五、六题。

比和比例教案篇四

1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.

2.使学生掌握三角形一边平行线的判定定理.

3.已知线的成已知比的作图问题.

4.通过应用,培养识图能力和推理论证能力.

5.通过定理的教学,进一步培养学生类比的数学思想.

观察、猜想、归纳、讲解。

l.教学重点:是平行线分线段成比例定理和推论及其应用.。

2.教学难点:是平行线分线段成比例定理的正确性的说明及推论应用.。

1课时。

投影仪、胶片、常用画图工具.。

【复习提问】。

叙述平行线分线段成比例定理(要求:结合图形,做出六个比例式).

【讲解新课】。

在黑板上画出图,观察其特点:与的交点a在直线上,根据平行线分线段成比例定理有:……(六个比例式)然后把图中有关线擦掉,剩下如图所示,这样即可得到:

平行于的边bc的直线de截ab、ac,所得对应线段成比例.。

在黑板上画出左图,观察其特点:与的交点a在直线上,同样可得出:(六个比例式),然后擦掉图中有关线,得到右图,这样即可证到:

平行于的边bc的直线de截边ba、ca的延长线,所以对应线段成比例.。

综上所述,可以得到:

如图,(六个比例式).。

此推论是判定三角形相似的基础.。

这个推论不包含下图的情况.。

后者,教学中如学生不提起,可不必向学生交待.(考虑改用投影仪或小黑板)。

例3已知:如图,,求:ae.。

教材上采用了先求ce再求ae的方法,建议在列比例式时,把ce写成比例第一项,即:.

让学生思考,是否可直接未出ae(找学生板演).。

【小结】。

1.知道推论的探索方法.。

2.重点是推论的正确运用。

(1)教材p215中2.。

(2)选作教材p222中b组1.。

数学教案-平行线分线段成比例定理(第二课时)。

比和比例教案篇五

教学过程。

谈话导入。

师:谁能用比的知识说一说我们班男女同学的人数情况?

(指名汇报)。

师:今天我们就一起来整理和复习比和比例的有关知识。

回顾与整理。

1.(1)举例说一说什么是比,什么是比例,什么是比例尺以及它们的应用。

预设。

生1:两个数相除又叫作两个数的比,如5÷2,可以写成5∶2。

生2:表示两个比相等的式子叫作比例,如8∶4=24∶12。

生3:图上距离和实际距离的比,叫作这幅图的比例尺,如一幅地图的比例尺是。比例尺可分为数值比例尺和线段比例尺。

生4:配制农药会应用到比的知识;地图上一般都有比例尺。

……。

(2)说一说比与比例有什么区别。

比例。

各部分名称。

0.9∶0.6=1.5。

前项后项比值。

基本性质。

比的前项和后项同时乘或除以相同的数(0除外),比值不变。

在比例里,两个内项的积等于两个外项的积。

(3)出示教材83页“回顾与交流”2题。

学生独立完成,思考比、分数、除法之间的关系,并全班交流。

预设。

生1:除法算式中的被除数相当于分数的分子,相当于比的前项;除法算式中的除数相当于分数的分母,相当于比的后项;除号相当于分数的分数线,相当于比的比号。

生2:除法算式的商相当于分数的分数值,相当于比的比值。

强调:因为0不能作除数,所以所有分数的分母及比的后项都不能为0。

比和比例教案篇六

p50第3——8题,正反比例关系练习。

进一步认识正、反比例关系的意义,能根据正、反比例关系的意义正确判断,培养学生分析推理和判断能力。

一、揭示课题。

二、基本知识练习。

2、练:950第4题。

先说出数量关系式,再判断成什么比例?

三、综合练习。

1、练习:p50第5题。

想一想:这三种数量之间有怎样的关系式,你能找出哪几种比例关系?

口答并说说怎样想的。

2、做练习十二第6题、第7题。

3、做第8题。

提问:从直线上看,支数扩大或缩小时,钱数分别怎样变化?

四、延伸练习。

下面题里的数量成什么关系?你能列出式子表示数量之间的相等关系吗?

1、一辆汽车从甲地到乙地要行千米,每小时行50千米,4小时到达;如果每小时行80千米,2.5小时到达。

2、某工厂3小时织布1800米,照这样计算,8小时织布x米。

五、课堂。

通过这节课的练习,你进一步认识和掌握了哪些知识?

六、作业。

《练习与测试》p25第五、六题。

比和比例教案篇七

该板块主要复习比和比例的意义、性质及应用,除了对基本概念的复习外,还注重沟通比和比例间的关系及与分数、除法的联系。

例题:关于比、比例的知识,你都知道哪些?对比和比例的相关知识的复习。

教学时,以问题“关于比和比例的知识,你都知道哪些?”引入,让学生自主地回顾知识。学生可能会想到很多,同时也会感到这些知识点比较零乱、无序、缺乏系统化,进而激发学生梳理这部分知识的需求,在此基础上以小组为单位展开学习。重点对比、比例、比例尺的意义及比和比例的性质、化简比、求比值、解比例、求图上(实际)距离、判断正(反)比例等内容进行与复习。

“讨论与交流”是从知识内在联系方面进行,重点弄清楚比、比例与相关知识的联系与区别。

教学第一个问题时,先让学生自主讨论比、分数、除法的联系与区别,借助于下图,揭示它们之间的关系。

从意义上区分:“比”是表示两个数的倍数关系;“除法”表示的是一种运算;“分数”则是一个数。

教学第二个问题时,结合第一个问题的讨论,让学生自主交流,能体会到比、除法、分数的基本性质在本质上是相同的。

教学第三个问题时,可在对比和比例意义进行对比的基础上进行讨论、交流,明确“比”表示两个数相除的关系,而“比例”表示两个比相等的式子。了解比是比例的基础,比例是比的扩展,没有两个相等的比是组不成比例的。还要弄清楚不是任意的两个比都能组成比例的,-定是比值相等的两个比才能组成比例。所以,要判断两个比能否组成比例,关键要看这两个比的比值是否相等。可借助下面的表格帮助学生理解:

通过上面的复习,让学生进一步地感受到“数学知识间,有着密切的联系”

第1题,是运用逼和比例尺解决问题的题目,练习时先让学生说一说每一个信息中比及比例尺所表示的实际意义,然后再结合实际意义感受比和比例在实际生活中应用非常广泛。

第2题是运用正比例知识解决实际问题的题目。练习时,可以用以下几种方法测量大树的高度:

(1)利用影子。人影与树影、人高与树高的比组成比例,根据人高、人影、树影的高度求出树高。

(2)利用标杆。方法同上。

最后,让学生谈谈感受,体会比例知识在生活中的实际应用。

第3题是用百分数和比解决问题的题目。练习时,可让学生在解决问题的基础上,交流百分数和比所表示的实际意义,理解比与百分数意义的区别,体会在通常情况下,表示各部分的关系时,用比表示更清楚;表示部分与总数之间的关系,用百分数更合适一些。

第4题是一道实际问题。练习时,可引导学生先分析用什么方法来解答,形成思路后,再解答。该题可以用分数的知识解答,先求出总数是5000顶,再计算5000×(1-),得出4000顶;也可以用比例的知识解决,设未加工的为x顶,1:4=1000:x,求出未加工4000顶;还可以用其他方法解决。通过解题让学生体会在实际解决问题时,可以选用不同的方法。

5.式与方程。

本板块是对小学阶段学习的代数初步知识进行,包括用字母表示数、简易方程及用方程解决实际问题。

例1:用字母表示数,可以简明地表达数量关系、运算律和计算公式。你能举出一些这样的例子吗?是对用字母表示数知识的系统。

教学时,让学生通过举例来回顾如何用字母表示数、数量关系、公式等,并以表格的形式来呈现,同时引导学生对用字母表示的内容进行观察,使之对小学阶段的公式、数量关系、运算律等又系统的`了解。对用字母表示数时容易出错的问题,教师要加以强调。如:字母和数相乘、字母和字母相乘时的写法等。

例2:你能把有关方程的知识一下吗?是对有关方程知识进行。

教学时,可以先让学生对有关的概念进行回顾,如:等式、方程、方程的解、解方程等进行回顾,并对易混概念:等式与方程、方程的解与解方程进行讨论区分。然后引导学生列表,交流完善。

复习解方程时,要使学生弄清解方程中每一步的根据是什么(等式的性质),以及怎样检验。教师可通过举例来引导学生复习。

“讨论与交流”是对用字母表示数的优越性及用方程解决问题的特点进行讨论。

教学时,对于用字母表示数的优越性,要使学生在交流的基础上感受到用字母表示数很简洁、概括、准确。对于第二个问题,可结合具体的题目,让学生分别用方程与算术方法解答,通过对比,分析用方程和算术方法解决问题的基本思路及特点,体会两种思路的区别,知道有些题目适合用方程思路解决,有些题目适合用算术方法解决。明确在用方程解决问题时,关键是要抓住题目中主要的等量关系,设未知数,列方程解答。

“应用与反思”

第1题是练习用字母表示数的题目。练习时,让学生独立完成,交流时注意说说每个题的数量关系。最后,体会用字母表示数量关系的简洁性。

第2题是一个找规律的题目。练习时,可以让学生边观察边填表,在填写的过程中发现规律,自觉地运用字母表示出规律。规律是:分成的三角形的个数比边数少2,用含有字母的式子就是n-2。体会用字母表示数的概括性。

第4题是用列方程的方法解决问题的题目。练习时,先找出题中的等量关系,通过交流引导学生自觉选择最基本的等式列方程。之后,可以让学生交流用方程解决问题的方法。练习完成后,教师可以把该题的已知条件和问题变化一下,变成用算术方法解决的问题,让学生体会到灵活选择解答方法的必要性。最后,引导学生用不同方法解决问题的特点。

比和比例教案篇八

1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。

2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

实物投影。

一、复习。

要求学生说出成正反比例量的关键,根据学生回答板书关系式。

2、判断下面各题中的两种量是不是成比例,成什么比例。

(1)圆锥的体积和底面积。

(2)用铜制成的零件的体积和质量。

(3)一个人的身高和体重。

(4)互为倒数的两个数。

(5)三角形的底一定,它的`面积和高。

(6)圆的周长和直径。

(7)被除数一定,商和除数。

二、练习。

完成练习十三9~13题。

1、第9题。

观察每个表中的数据,讨论表下的问题。要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。

2、第10题。

(1)看图填写表格。

(2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。

(3)启发学生运用有关比例尺的知识进行解答。

3、第11题。

填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。

4、第12题。

引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。

5、第13题。

让学生小组进行讨论,教师指导有困难的学生。

三、补充练习。

1、a与b成正比例,并且在a=1。。时,b的对应值是0。15。

(1)a与b的关系式是a/b=()。

(2)当a=2。5时,b的对应值是()。

(3)当b=9。2时,a的对应值是()。

2、甲、乙两人步行速度的比为5:6,从a地到b地,甲走12小时,乙要走几小时?

比和比例教案篇九

教科书第64~65页的例3和“试一试”,“练一练”和练习十三的第6~8题。

1.使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。

2.使学生在认识成反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3.使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

掌握成反比例量的.变化规律及其特征。

教学准备:多媒体。

一、复习铺垫。

1、怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?

2、判断下面两种量是否成正比例?为什么?

时间一定,行驶的路程和速度。

除数一定,被除数和商。

3、单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?

4、导入新课:

如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。

二、探究新知。

1、出示例3的表格。

学生填表。

2、小组讨论:

(1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?

(2)你能找出它们变化的规律吗?

(3)猜一猜,这两种量成什么关系?

3、全班交流。

学生初步概括反比例的意义(根据学生回答,板书)。

4、完成“试一试”

学生独立填表。

思考题中所提出的问题。

组织交流,再次感知成反比例的量。

根据学生的回答,板书:x×y=k(一定)揭示板书课题。

三、巩固应用。

1、练一练。

每袋糖果的粒数和装的袋数成反比例吗?为什么?

2、练习十三第6题。

先算一算、想一想,再组织讨论和交流。

要求学生完整地说出判断的思考过程。

3、练习十三第7题。

先独立思考作出判断,再有条理地说明判断的理由。

4、练习十三第8题。

先填表,根据表中数据进行判断,明确:长方形的面积一定,长和宽成反比例;长方形的周长一定,长和宽不成反比例。

5、思考:

100÷x=y,那么x和y成什么比例?为什么?

6、同桌学生相互出题,进行判断并说明理由。

四、反思。

学生交流。

五、作业。

完成《练习与测试》相关作业。

板书设计:

比和比例教案篇十

教材第106、107页例1,例2。

1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。

2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。

认识正、反比例应用题的特点。

掌握用比例知识解答应用题的解题思路。

1.判断下面的量各成什么比例。

(1)工作效率一定,工作总量和工作时间。

(2)路程一定,行驶的速度和时间。

让学生先分别说出数量关系式,再判断。

2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。

指名学生口答,老师板书。

3.引入新课。

从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)。

1.教学例1。

(1)出示例1,让学生读题。

(2)说明:这道题还可以用比例知识解答。

(3)小结:

提问:谁来说一说,用正比例知识解答这道应用题要怎样想?怎样做?指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次篮球个数与总价对应数值比的比值相等,列等式解答。

2.教学改编题。

出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。

3.教学例2。

(1)出示例2,学生读题。

(2)谁能仿照例l的解题过程,用比例知识来解答例2?请同学们自己来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。效率和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

(3)提问:按过去的方法是先求什么再解答的?先求总量的应用题现在用什么比例关系解答的?谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的?指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次修地下管道相对应数值的乘积相等,列等式解答。

4.小结解题思路。

请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)。

1.做练一练。

指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。

2.做练习十三第1题。

先自己判断,小组交流,再集体订正。

这节课学习了什么内容?正、反比例应用题要怎样解答?你还认识了些什么?

完成练习十三第2~6题的解答。

比和比例教案篇十一

教学目标:

一、知识与技能。

1、使学生理解比例的意义和基本性质,会解比例。

2、使学生理解正、反比例的意义,能够正确判断成正、反比例的量,会运用比例知识解决有关的实际问题。

3、使学生能够运用比例知识,求出平面图的比例尺以及根据比例尺求图上距离和实际距离。

4、能理解图形放大与缩小的原理,并能把简单的图形进行放大与缩小。

二、过程与方法。

1、经历探索两个量的变化情况的过程,理解并掌握正比例和反比例的意义。

2、能从比例知识的角度提出问题,理解问题,并能运用比例知识解决问题,发展学生的应用意识,发展学生的实践能力。

3、学会与人合作,并能与他人交流思维的过程和结果。

三、情感、态度与价值观。

1、使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

2、体验数学活动充满着探索与创造。

3、形成实事求是的态度以及进行质疑和独立思考的`习惯。

教学重点:比例的意义和正、反比例的意义。

教学难点:正确判断正、反比例。

教学关键:理解正、反比例意义,认真分析两个量的变化情况教学时数:18课时。

课时安排:

1、比例的意义和基本性质……………………….3课时。

2、正比例和反比例的意义……………………….5课时。

3、比例的应用…………………………………….5课时。

4、整理和复习…………………………………….4课时。

5、单元测试……………………………………….1课时。

例的知识还是进一步学习中学数学物理,化学等知识的基础。另外,通过对比例知识的学习还可以加深学生对数量关系的认识,使学生初步了解一种量是怎样随着另一种量的变化而变化。获得初步的函数观念,并利用这些知识解决一些简单的实际问题。因此学好比例这部分内容是很重要的。

教材是提供给学生学习内容的一个文本,教师要根据学生和自己的情况,对教材进行灵活的处理。教者对本节教材进行了再思考、再开发和再创造,真正实现了变“教教材”为“用教材”。这节课中,将例题和习题有机的穿插和调整,以学生已有的知识经验为基础,让学生在算一算、想一想、说一说中理解了比例的意义,知道了比例从生活中来,进而认识到了数学在生活中有着广泛的应用,激发了学生学好数学的信心和积极情感。此外,教者还大胆地组织学生开展探究比例的基本性质的活动,没有根据教材上所提供的现成问题“分别算一算比例的两个外项和两个内项的积,你发现了什么?”机械地执行,给学生暗示思维方向,设置思维通道,缩小探索的空间,使学生失去一次极好的锻炼思维的机会,而是大胆放手,用“四个数组成等式”这一开放练习产生新鲜有用的教学资源,再通过教师适当、精心的引导,帮助学生有效地进行探究,体验了探究的成功,增强了学生的数学素养。

通过本次的教学展示,总体感觉自己整节课的教学流程清晰,教师对本节课的两个重点突破较好,学生都理解了比例的意义,能正确地读写比例,并且能根据比例的意义正确地写出比例。也理解并掌握比例的意义和基本性质,学会了应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。练习设计新颖,能体现学生思维的递进性,练习有层次。为帮助学生理解、掌握本课的教学任务起到了很好的巩固作用。

但本节课也存在着一些不足之处:

(1)整节课一味担心自己的教学任务不能完成,对学生放手不够,有牵着学生走的嫌疑。

(2)教师讲解太过仔细,以至拓展练习无法完成。在今后的教学中将加大“放手”力度,多注意培养学生创新思维;语言力争言简意赅,把更过的时间还给学生探究问题,和独立解决问题。

比和比例教案篇十二

2.利用反比例函数的图象解决有关问题.

1.经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;。

2.探索反比例函数的图象的性质,体会用数形结合思想解数学问题.

一、创设情境。

上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k0)的图象,探究它有什么性质.

二、探究归纳。

1.画出函数的图象.

分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x0.

解1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等.

3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.

上述图象,通常称为双曲线(hyperbola).

提问这两条曲线会与x轴、y轴相交吗?为什么?

学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤).

学生讨论、交流以下问题,并将讨论、交流的结果回答问题.

1.这个函数的图象在哪两个象限?和函数的图象有什么不同?

2.反比例函数(k0)的图象在哪两个象限内?由什么确定?

(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

注1.双曲线的两个分支与x轴和y轴没有交点;。

2.双曲线的两个分支关于原点成中心对称.

以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少.

在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小.

三、实践应用。

例1若反比例函数的图象在第二、四象限,求m的值.

分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+10,由这两个条件可解出m的值.

解由题意,得解得.

例2已知反比例函数(k0),当x0时,y随x的.增大而增大,求一次函数y=kx-k的图象经过的象限.

分析由于反比例函数(k0),当x0时,y随x的增大而增大,因此k0,而一次函数y=kx-k中,k0,可知,图象过二、四象限,又-k0,所以直线与y轴的交点在x轴的上方.

解因为反比例函数(k0),当x0时,y随x的增大而增大,所以k0,所以一次函数y=kx-k的图象经过一、二、四象限.

例3已知反比例函数的图象过点(1,-2).

(1)求这个函数的解析式,并画出图象;。

(2)由点a在反比例函数的图象上,易求出m的值,再验证点a关于两坐标轴和原点的对称点是否在图象上.

解(1)设:反比例函数的解析式为:(k0).

而反比例函数的图象过点(1,-2),即当x=1时,y=-2.

所以,k=-2.

(2)点a(-5,m)在反比例函数图象上,所以,

点a的坐标为.

点a关于x轴的对称点不在这个图象上;。

点a关于y轴的对称点不在这个图象上;。

点a关于原点的对称点在这个图象上;。

(1)求m的值;。

(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

(3)当-3时,求此函数的最大值和最小值.

解(1)由反比例函数的定义可知:解得,m=-2.

(2)因为-20,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大.

(3)因为在第个象限内,y随x的增大而增大,

所以当x=时,y最大值=;。

当x=-3时,y最小值=.

所以当-3时,此函数的最大值为8,最小值为.

例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.

(1)写出用高表示长的函数关系式;。

(2)写出自变量x的取值范围;。

(3)画出函数的图象.

解(1)因为100=5xy,所以.

(2)x0.

(3)图象如下:

说明由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.

四、交流反思。

本节课学习了画反比例函数的图象和探讨了反比例函数的性质.

1.反比例函数的图象是双曲线(hyperbola).

(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

五、检测反馈。

1.在同一直角坐标系中画出下列函数的图象:

(1);(2).

2.已知y是x的反比例函数,且当x=3时,y=8,求:

(1)y和x的函数关系式;。

(2)当时,y的值;。

(3)当x取何值时,?

3.若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值.

4.已知反比例函数经过点a(2,-m)和b(n,2n),求:

(1)m和n的值;。

(2)若图象上有两点p1(x1,y1)和p2(x2,y2),且x1x2,试比较y1和y2的大小.

比和比例教案篇十三

谈话导入。

师:谁能用比的知识说一说我们班男女同学的人数情况?

(指名汇报)。

师:今天我们就一起来整理和复习比和比例的有关知识。

回顾与整理。

1.(1)举例说一说什么是比,什么是比例,什么是比例尺以及它们的应用。

预设。

生1:两个数相除又叫作两个数的比,如5÷2,可以写成5∶2。

生2:表示两个比相等的式子叫作比例,如8∶4=24∶12。

生3:图上距离和实际距离的比,叫作这幅图的比例尺,如一幅地图的比例尺是。比例尺可分为数值比例尺和线段比例尺。

生4:配制农药会应用到比的知识;地图上一般都有比例尺。

……。

(2)说一说比与比例有什么区别。

比例。

各部分名称。

0.9∶0.6=1.5。

前项后项比值。

基本性质。

比的前项和后项同时乘或除以相同的数(0除外),比值不变。

在比例里,两个内项的积等于两个外项的积。

(3)出示教材83页“回顾与交流”2题。

学生独立完成,思考比、分数、除法之间的关系,并全班交流。

预设。

生1:除法算式中的被除数相当于分数的分子,相当于比的前项;除法算式中的除数相当于分数的分母,相当于比的后项;除号相当于分数的分数线,相当于比的比号。

生2:除法算式的商相当于分数的分数值,相当于比的比值。

强调:因为0不能作除数,所以所有分数的分母及比的后项都不能为0。

比和比例教案篇十四

p53~54、第4~13题,思考题,正、反比例应用题的练习。

进一步掌握正、反比例的意义,能正确应用比例知识解答基本的正、反比例应用题,并沟通不同解法之间的联系,进一步提高学生判断,分析和推理等思维能力。

一、基本训练。

p53第4题,口答并说明理由。

二、基本题练习。

1、做练习十第5题。

2提问:按过去的算术解法,第(1)题要先求什么数量?第(2)题呢?

用比例的知识怎样解答呢,请大家自己做一做。

评讲:说一说是怎样想的`?

(板书:速度×时间=路程(一定)=反比例。

提问:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?为什么?

3、练习:(略)。

三、综合练习。

3、练习十第11题。

启发学生用几种方法解答。

4、做练习十第13题。

(1)提问:这是一道什么应用题?可以怎样列式解答?

(2)把树苗总数看做单位“1”,成活棵数是94%,你还能用比例知识解答吗?

四、讲解思考题。

引导:增加铅以后,铅与锡的比是5:3,有怎样的关系式?

五、课堂:

通过本课的练习,你进一步明确了哪些内容?

六、作业:

第8、9、10题。

七、课后作业:

第6、7、12题。

比和比例教案篇十五

1、让学生在现实情境中体会按比例分配的合理性,理解按比例分配的意义。

2.理解按比例分配的解题思路,能利用按比例分配解决实际问题。

3.创造民主和谐的学习氛围,在关注培养学生主动的探索意识、灵活思维过程中形成积极学习情感。

2、学生实际:

本节课的学习者特征分析主要是根据教师平时对学生的了解而做出的:

(1)本班学生活泼好动,思维灵活,有较强的自学能力和小组合作能力。

(3)学生对生活中隐含数学问题的事件兴趣浓厚;

设计理念:

1、联系生活,注重其应用性,真正体现“让学生学有价值的数学”。

2、张扬个性,鼓励解题方法的多样化。也就是鼓励学生独立思考,用自己的方法解决问题,同时注重引导学生讨论和辩论,使学生从不同角度,不同方式思考问题。

3、创设生活情境,让学生体验到数学来源于生活,又服务生活的宗旨。

(3)情境迁移策略:在完成课标要求的基础上,通过设置与生活实际紧密联系的问题情境,巩固提高学生运用方程解决生活问题的能力。

比和比例教案篇十六

教学目标:

知识与技能:

1.结合丰富的实例,认识反比例。

2.能根据反比例的意义,判断两个相关联的量是不是反比例。

过程与方法:

通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。

情感态度价值观:

培养学生自主、合作学习、探索新知的能力,激发学习数学的热情。感受反比例关系在生活中的广泛应用。初步渗透函数思想。

认识反比例,根据反比例意义判断两个相关联的量是否成反比例。

认识反比例,根据反比例意义判断两个相关联的量是否成反比例。

电脑课件。

一、复习引入。

1、计算。

2、判断下面各题中的两种量是否成正比例?为什么?

(1)文具盒的单价一定,买文具盒的个数和总价。

(2)一堆货物一定,运走的量和剩下的量。

(3)汽车行驶的速度一定,行驶的路程和时间。

3、说说什么是正比例。

师:大家对正比例知识理解掌握得非常好,接下来我们就该学习什么了?

二、出示学习目标。

1.能根据反比例的意义,判断两个相关联的量是不是反比例。

2.通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。

3.培养学生探索研究的能力,感受反比例关系在生活中的广泛应用。

三、指导自学。

师:给你们讲个小故事:

过了几天,财主到了裁缝店取帽子,结果一看,顿时傻了眼:10顶的帽子小得只能戴在手指头上了!

学习提示:独立思考?

1、“为什么同一匹布,裁缝说做1顶帽子,2顶帽子,10顶都可以呢?”

合作学习小组讨论上述的问题。看书合作学习。

1、把25页例。

2、例3的表格补充完整。

4、你知道什么是反比例吗?

四、学生自学。

五、检查自学效果。

让学生说说自学要求中的内容。

师归纳:两种相关联的量,一种量随着另一种量的变化而变化,在变化过程中两种量的积一定,那么这两种量成反比例。

六、引导更正,指导运用。

你们还找出类似这样关系的量来吗?”

学生:要走一段路,速度越慢(快),用的时间就越多(少)运一堆货物,每次运的越多(少),运的次数就越小(多)百米赛跑,路程100米不变,速度和时间是反比例;排队做操,总人数不变,排队的行数和每行的人数是反比例;长方体的体积一定,底面积和高是反比例。

七、当堂训练基础练习。

1、填空。

两种_____的量,一种量随着另一种量变化,如果这两种量中相对应的两个数的______,这两种量叫做成反比例的量,它们的关系叫做_______关系。

2、判断下面每题中的两种量是不是成反比例,并说明理由。

(1)煤的总量一定,每天的烧煤量和能够烧的天数。

(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。

(3)生产电视机的总台数一定,每天生产的台数和所用的天数。

(4)圆柱体的体积一定,底面积和高。

(5)小林做10道数学题,已做的题和没有做的题。

(6)长方形的长一定,面积和宽。

(7)平行四边形面积一定,底和高。提高练习。

四、小结。

通过这节课的学习,你有什么收获?

相关联,一个量变化,另一个量也随着变化积一定。

xy=k(一定)。

比和比例教案篇十七

一、铺垫孕伏:

1.正比例关。

系的意义是什么?怎样用字母表示这种关系?

判断两种相关联量成不成正比例的关键是什么?

2.下面哪两种量成正比例关系?为什么?

(1)时间一定,行驶的速度和路程。

(2)数量一定,单价和总价。

4.引入新课。

如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)。

二、自主探究:

1.教学例2。

出示例2某运输公司要运一批300吨的货物。让学生计算并完成填表任务。

每天运的数量(吨)1020304050。

所需的天数。

在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。

指名学生口答讨论的结果,得出:

(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)。

2.教学例1。

出示例1。

3.概括反比例的意义。

(1)综合例1、例2的共同点。

提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?

(2)概括反比例意义。

例1、例2里两种相关联的量,它们是什么关系的量呢?请同学们看第101页1~3自然段。说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。

4.具体认识。

(1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

例2里的两种量成反比例关系吗?为什么?

(2)提问:看两种相关联的量成不成反比例,关键要看什么?

(3)判断。

现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

5.教学例3。

三、巩固练习。

用刚才我们说的判断方法来做几道题。

1.做练一练。

指名学生口答,说明理由。(可以写出数量关系式看一看)。

2.下题两种相关联量成不成反比例?为什么?

一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

3.做练习十二第1题。

四、课堂小结。

五、课堂作业。

练习十二第2~4题。

比和比例教案篇十八

1、通过自主尝试学会解比例的方法,进一步理解和掌握比例的基本性质。2、能运用解比例的方法解决实际问题。教学重点掌握解比例的方法,学会解比例。教学难点引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

教学重点掌握解比例的方法,学会解比例。

教学难点引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

上节课我们学习了一些比例的意义,谁能说一说。

1、什么叫比例?

表示两个比相等的式子叫比例。

在比例里,两个外项的积等于两个内项的积。

3、应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

6︰10和9︰15()。

20︰5和4︰1()。

5︰1和6︰2()。

4、根据比例的基本性质,将下列各比例改写成其他等式。

3:8=15:403×40=8×15。

9/1.6=4.5/0.89×0.8=1.6×4.5。

5、这节课我们学习有关比例的应用的知识,即学习解比例。(板书课题,)。

1、自学:什么是解比例?请看书第35页。

比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

2、自主学习例2。

出示思考题:

思考:

(1)、埃菲尔铁搭模型的高与埃菲尔铁搭的高度的比是1:10。

也就是()的高度:()的高度=1:10。

还有几个项不知道?不知道的这个项我们把它叫做()项。

小组内讨论解决问题,汇报:。

(1)把未知项设为x。

(2)根据比例的意义列出比例:(x:320=1:10)。

(3)指出这个比例的外项、内项,弄清知道哪三项,求哪一项。

(4)根据比例的基本性质可以把它变成什么形式?

(5)这变成了原来学过的什么?(方程。)。

(6)让学生自己在练习本上计算完整。课件出示计算过程。

小结:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x,所以解比例也要写“解”字。

(1)、用比例的基本性质把比例改写成方程。

(2)、应用解方程的知识算出未知数。

3、教学例3。

出示例3:

思考:

(1)“这个比例与例2有什么不同?”(这个比例是分数形式。)。

(2)这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?

讨论:

(1)解这种分数形式的比例时,要注意什么呢?

(2)在这个比例里,哪些是外项?哪些是内项?

让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。课件出示计算过程。

课件出示:做一做,独立完成后订正。

4、总结解比例的过程。

刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)。

变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)。

从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)。

(一)、填空。

1、解比例x:12=2:24第一步24x=12×2是根据()。

2、把0、3:1、2=0、2:0、8可改写成。

()×()=()×()。

3、把4×5=10×2改写成比例是():()=():()。

4、若甲:乙=3:5,甲=30,则乙=()。

5、在比例中,如果两个内项的积上36,其中一个外项是9,

另一个外项是()。

(二)、判断下列的说法是否正确。

1、含有未知数的比例也是方程。()。

2、求比例中的未知项叫解比例。()。

3、解比例的理论依据是比例的基本性质。()。

4、比就是比例,比例也是比。()。

(三)、根据题意,先写出比例,再解比例。

1、8与x的比等于4与32的比。

2、14与最小的质数的比等于21与x的比。

今天你有什么收获?指生说收获。老师小结。

【本文地址:http://www.xuefen.com.cn/zuowen/17503287.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档