解方程教案教案(优质16篇)

格式:DOC 上传日期:2023-12-06 07:17:15
解方程教案教案(优质16篇)
时间:2023-12-06 07:17:15     小编:薇儿

教案是教师在备课中对教学活动进行逻辑化、系统化设计的产物。那么我们该如何编写一份优秀的教案呢?首先,教案的内容要与教学目标密切相关,要确保教学过程符合学生的思维规律和学习规律。其次,教案的编写要注意教学方法的选择和使用,要根据不同的教学内容和学生的实际情况合理运用多种教学方法,使学生能够积极参与、主动思考和自主学习。此外,教案的语言要简洁明了,逻辑严谨,要注重语言表达的准确性和思想的完整性。最后,教案的设计要灵活多样,要根据学生的特长和兴趣进行差异化教学,提供多样化的学习活动和评价方式,激发学生的学习热情和创造力。以下是小编为大家收集的教案范文,供大家参考。希望通过学习这些优秀的教案,可以为您的备课工作提供一些启示和帮助。当然,根据不同的教学内容和教学目标,教案的编写方式和内容也会有所不同。因此,在使用这些教案范文时,一定要根据实际情况进行合理的调整和变化。祝愿大家在备课工作中取得好成果!

解方程教案教案篇一

3、某项工程在工程招标时,接到甲、乙两个工程队投标书,施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元,工程领导小组根据甲乙两的投标书预算,有如下方案:。

(1)甲队单独完成这项工程刚好如期成完成;。

(2)乙队单独完成这项工程要比规定的日期多用6天;

(3)若甲乙两合做3天,余下的的工程由乙队单独做也正好如期完成.

那么在不耽误工期的前提下,你觉得那一种施工方案最节省工程款?请说明理由.

4、据林业专家分析,树叶在光合作用下产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用,已知一片银杏树叶一年的平均滞尘量比一片国槐叶一年的平均滞尘量的2倍少4毫克,若每年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年平均滞尘量。

5、八(1)班同学周末乘汽车到游览区游览,游览区距学校120千米,一部分学生乘慢车先行,出发后1小时后,另一部分学生乘快车前往,结果他们同时到达游览区,已知快车的速度是快车的速度的1.5倍,求快车的速度.

6、小明7:20分离家上学去,走到距离家500米的商店时,买学习用品用了5分钟从商店出来,小明发现按原来的速度还要30分钟才能到学校,为了8:00之前赶到学校,小明加快了速度每分钟比原来多走25米,求小明从商店到学校的速度。

7、甲、乙两车从a、b两地相向而行,甲车比乙车早开出15分钟,甲、乙两车的速度之比为2:3,相遇时,甲比乙少走6千米,已知乙走这条路要1.5小时,求甲乙两车的速度及a、b的距离。

(1)求第一批购进书包的单价是多少元?

(1)今年三月份甲种电脑每台售价为多少元?

解方程教案教案篇二

1、结合具体情境初步理解方程的意义,会用方程表示简单的等量关系。

2、在具体的活动中,体验和理解等式的性质,会用等式的性质解简单的方程。

3、能有方程解决一些简单的现实问题。在解决问题的过程中,感受方程与现实生活的紧密联系,形成应用意识。

解简单方程和用方程解决问题既是本单元的重点也是难点。

过渡语:今天我们来学习新的内容,简易方程。

(一)讲述:怎样实现这个目标呢?靠大家自学,怎样自学呢?请齐读自学指导。

(二)出示自学指导:认真看课本p5557的内容,

重点看图与文字,认真思考红点部分的问题。

5分钟后,比谁做的题正确率高。

师:自学竞赛开始,比谁看书认真,自学效果好!

(一)过渡:下面自学开始,比谁自学后,能做对检测题。

(二)看一看。

生认真看书,师巡视并督促每个学生认真自学。(要保证学生看够5分钟,学生可以看看、想想,如果学生看完,可以复看。)。

(三)做一做。

1、过渡:同学们看完了吗?看完的`同学请举手?好,下面就来考考大家。要比谁做得又对又快,比谁字体端正,数位对齐,数字要写的大些,数字间要有一定的间距(要划出学生板演的位置)。

2、板演练习,请两名(最差的同学)来上讲台板演,其余同学做在练习本上。教师巡视,要找出学生中的错误,并板书。

1、学生更正。

教师指导:发现错了的请举手!点名让学生上台更正。提示用红色粉笔改,哪个数字错了,先划一下,再在旁边改,不要擦去原来的。

2、讨论。(议一议)。

(1)第一题哪几个错了,错在哪里,说出原因。

(2)第二题看图列方程,看做得对不对,不对,说出错因。

3、评议板书和正确率。

4、同桌交换互改,还要改例题中的题,有误订正,统计正确率及时表扬。

谈话:我们今天学习了什么内容?你对什么印象最深?从中你明白了什么?

解方程教案教案篇三

教学内容:

教科书第12~13页,“回顾与整理”、“练习与应用”第1~4题。

教学目标:

1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。

2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

教学过程:

一、回顾与整理。

1、谈话引入。

本单元我们学习了哪些内容?

你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?

在小组中互相说说。

2、组织讨论。

(1)出示讨论题。

(2)小组交流,巡视指导。

(3)汇报交流。

你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?

(等式与方程都是等式;等式不一定是方程,方程一定是等式。)。

(含有未知数的等式是方程。)。

(等式性质:)。

(求方程中未知数的值的`过程叫做解方程。)。

3、小结。

同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

二、练习与应用。

1、完成第1题。

(1)独立完成计算。

(2)汇报与展示,说说错误的原因及改正的方法。

2、完成第2题。

(1)学生独立完成。

(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)。

3、完成第3题。

(1)列出方程,不解答。

(2)你是怎样列的?怎么想的?大家同意吗?

(3)完成计算。

4、完成第4题。

单价、数量、总价之间有怎样的数量关系?

指出:抓住基本关系列方程,y也可以表示未知数。

三、课堂总结。

通过回顾与整理,大家共同复习了有关方程的知识,你还有什么疑问吗?

解方程教案教案篇四

1.探索具体问题中的数量关系和变化规律,并用方程进行描述,进而让学生初步体验方程是刻画现实世界的一种有效模型。

2.通过观察所列的方程的特点,掌握一元一次方程的概念并能够熟练识别一元一次方程。

3.进一步培养学生观察、思考、分析问题、解决问题的能力,渗透建模的数学思想。

4.感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣。

分析与确定问题中的等量关系,能用方程来描述和刻画事物间的等量关系。

问题一:

如果设面值为1元的邮票买了x张,那么面值为2元的邮票买了_______张.

买面值为1元的邮票的钱+买面值为2元的邮票的钱=50元.

可得方程____________________。

1、学生自主归纳:如何从问题到方程?

2、自主归纳一元一次方程的特点,并举例说明。

根据实际问题的意义列出方程。

3.一个长方形足球场的周长是300m,它的长比宽多30m,求这个足球场的长.

1、从实际问题到方程,一般要经历哪些过程?

2、列方程的关键是什么?

班级姓名学号。

1.下列方程是一元一次方程的是()。

a.b.c.d.

2.根据下列条件能列出方程的是()。

a.一个数的与另一个数的的和b.与1的差的4倍是8。

c.和的60%d.甲的3倍与乙的差的2倍。

3.七年级二班共有学生48人,已知男生比女生少2人,问七年级二班男生、女生各有多少人?设七年级二班男生有男生x人,则下列方程中错误的是()。

a.b.c.d.

4.课外兴趣小组的女生人数占全组人数的,再加入6名女生后,女生人数就占原来人数的一半,课外兴趣小组原有多少人?若设原有x人,则下列方程正确的是()。

a.b.c.d.

5.根据“x的5倍比它的35%少28”列出方程为________.

6.一年三班55人,一年八班29人,因植树需要从三班中抽出x人到八班,使得两班人数相同,则根据题意可列方程为_____________.

9.三个连续奇数的和为57,求这三个数。

12.议一议:育红学校七年级学生步行到郊外旅行,1班的学生组成前队,步行的速度为4千米/小时,2班的学生组成后队,速度为6千米/小时,前队出发1小时后,后队出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/小时。

问题1:后队追上前队用了多长时间?

问题2:后队追上前队时联络员行了多少路程?

问题3:联络员第一次追上前队时用了多长时间?

问题4:当后队追上前队时,他们已经行进了多少路程?

你能根据题意再提出两个问题吗?和你的同学交流一下。

解方程教案教案篇五

1、学会根据一个数的几分之几是多少用乘法来列方程解分数除法的文字题,能正确地解分数方程。

2、认识分数除法里商的大小规律和分数乘法里积的大小规律,培养学生的计算能力。

教学重难点。

能正确地解分数方程,并。

认识分数除法里商的大小规律和分数乘法里积的'大小规律,培养学生的计算能力。

教学准备。

教学过程设计。

教学内容。

师生活动。

备注。

六、复习铺垫。

七、教学新课。

八、巩固练习。

九、课堂小结。

十、作业。

1、口答列式。

(1)24的是多少?

(2)的是多少?

问:为什么用乘法?

2、引入新课。

这节课,我们就根据求一个数的几分之几是多少可以列成乘法算式的知识来学习解分数方程。

问:这道题已知什么?要求什么?你能否用一个数量关系表示这句话的意思?

1、做练一练。

指出:由于一个数的几分之几是多少要用乘法式子来表示,因此,按照题意就可以设这个数为x,列出方程来解答。

2、做练习八第13题。

问:观察前面两列,你们发现了什么?

指出:在乘法里,一个数乘的数小于1,积小于这一个数;一个数乘的数大于1,积大于这一个数。在除法里,除数小于1,商大于被除数;除数大于1,商小于被除数。

这节课学会了什么?

练习八11、12。

板书:

一个数=。

课后感受。

本节课内容较简单,学生们对这一知识有一定的基础,所以本节课基本上是放手让学生自己做,自己讨论发现规律.整个课堂的学习氛围不错.

解方程教案教案篇六

教学内容:教科书第13~14页,“练习与应用”第5~7题,“探索与实践”第8~9题及“与反思”。

教学目标:

1、通过练习与应用,使学生进一步掌握列方程解决实际问题的方法与步骤,提高列方程解决实际问题的意识和能力。

2、通过小组合作,进一步培养学生探索的意识,发展思维能力。

3、通过与反思,使学生养成良好的学习习惯,获得成功体验,增强学好数学的信心。

教学过程:

一、练习与应用。

1、谈话引入这节课我们继续对列方程解决实际问题进行练习。板书课题。

2、指导练习。独立完成5~7题。展示交流。集体评讲。你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)。

二、探索与实践。

1、完成第8题。理解题意,完成填写。小组中交流第一个问题。汇报自己发现。把得到的和分别除以3,看看可以发现什么?可以得出什么结论?独立解答第二个问题。你是怎么解答第二个问题的?指导解答第三个问题。试着连续写出5个奇数,看看有什么发现?怎样求n的值呢?5个连续偶数的和有这样的规律吗?试试看。

三、与反思。

在小组中说说自己对每次指标的理解。自我反思与。说说自己的优点与不足。

四、阅读“你知道吗”可以再查找资料,详细了解。

五、课堂这节课我们复习了哪些内容?你有了哪些收获?

解方程教案教案篇七

通过练习,使学生进一步理解数量关系,掌握用方程解应用题的方法,能正确运用方程解答应用题。

培养学生分析问题、解答问题的能力。

培养学生认真细致的学习习惯。

理解数量关系,掌握用方程解应用题的方法,能正确运用方程解答应用题。

理解数量关系。

一、基本练习(5分钟)。

(1)某数的5倍加上它的2倍和是42,求这个数。

(2)x的5倍减去它的2倍差是1.2,求x。

(1)画图,找等量关系。

(2)列方程解应用题。

二、层次练习(15分钟)。

(1)这道题与上题有哪些相同点和不同点?

(2)你会解答这道题吗?试做。

(3)订正:

解:设四年级植x棵,五年级植3x棵。

3x-x=300。

2x=300。

x=150。

3x=3150=450。

答:四年级植150棵,五年级植450棵。

2.试一试:妈妈的年龄是女儿的4倍,妈妈比女儿大27岁,妈妈和女儿各多少岁?

学生独立做。

3.小结:解答时,要抓住有倍的那句话设出未知数。看一看是求它们的和还是差,列出方程。

三、巩固练习(15分钟)。

1.看图列方程125页3题。

完成后交流。

2.对比练习。

独立完成后交流。

四、总结交流(5分钟)。

说说你有什么收获?

亲情方程式作文。

九年级上册化学方程式课件。

提高学生化学方程式学习效率初探论文。

对不确定系数化学方程式的探讨论文。

虚位移原理到拉格朗日方程-物理学毕业论文。

解方程教案教案篇八

【考点及要求】:

1.掌握直线方程的各种形式,并会灵活的应用于求直线的方程.

2.理解直线的平行关系与垂直关系,理解两点间的距离和点到直线的距离.

【基础知识】:

1.直线方程的五种形式。

名称方程适用范围。

点斜式不含直线x=x1。

斜截式不含垂直于x=轴的直线。

两点式不含直线x=x1(x1x2)和直线y=y1(y1y2)。

截距式不含垂直于坐标轴和过原点的直线。

一般式平面直角坐标系内的直线都适用。

2.两条直线平行与垂直的判定。

3.点a、b间的距离:=.

4.点p到直线:ax+bx+c=0的距离:d=.

【基本训练】:

1.过点且斜率为2的直线方程为,过点且斜率为2的直线方程为,过点和的直线方程为,过点和的直线方程为.

2.过点且与直线平行的直线方程为.

3.点和的距离为.

4.若原点到直线的距离为,则.

【典型例题讲练】。

例1.一条直线经过点,且在两坐标轴上的截距和是6,求该直线的方程.

练习.直线与两坐标轴所围成的三角形的面积不大于1,求的取值范围.

例2.已知直线与互相垂直,垂足为,求的值.

练习.求过点且与原点距离最大的直线方程.

【课堂小结】。

【课堂检测】。

1.直线过定点.

2.过点,且在两坐标轴上的截距互为相反数的直线方程是.

3.点到直线的距离不大于3,则的取值范围为.

解方程教案教案篇九

1、知识与技能。

(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;

(2)能正确利用直线的点斜式、斜截式公式求直线方程。

(3)体会直线的斜截式方程与一次函数的关系.

2、过程与方法。

在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。

3、情态与价值观。

通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。

直线的点斜式方程和斜截式方程。

问题。

设计意图。

师生活动。

1、在直线坐标系内确定一条直线,应知道哪些条件?

使学生在已有知识和经验的基础上,探索新知。

学生回顾,并回答。然后教师指出,直线的方程,就是直线上任意一点的坐标满足的关系式。

2、直线经过点,且斜率为。设点是直线上的任意一点,请建立与之间的关系。

培养学生自主探索的能力,并体会直线的方程,就是直线上任意一点的坐标满足的关系式,从而掌握根据条件求直线方程的方法。

学生根据斜率公式,可以得到,当时,即(1)教师对基础薄弱的学生给予关注、引导,使每个学生都能推导出这个方程。

3、(1)过点,斜率是的直线上的点,其坐标都满足方程(1)吗?

使学生了解方程为直线方程必须满两个条件。

学生验证,教师引导。

问题。

设计意图。

师生活动。

(2)坐标满足方程(1)的点都在经过,斜率为的直线上吗?

使学生了解方程为直线方程必须满两个条件。

学生验证,教师引导。然后教师指出方程(1)由直线上一定点及其斜率确定,所以叫做直线的点斜式方程,简称点斜式(pointslopeform).

4、直线的点斜式方程能否表示坐标平面上的所有直线呢?

使学生理解直线的点斜式方程的适用范围。

学生分组互相讨论,然后说明理由。

5、(1)轴所在直线的方程是什么?轴所在直线的方程是什么?

(2)经过点且平行于轴(即垂直于轴)的直线方程是什么?

(3)经过点且平行于轴(即垂直于轴)的直线方程是什么?

进一步使学生理解直线的点斜式方程的适用范围,掌握特殊直线方程的表示形式。

教师学生引导通过画图分析,求得问题的解决。

6、例1的教学。(教材93页)。

学会运用点斜式方程解决问题,清楚用点斜式公式求直线方程必须具备的.两个条件:(1)一个定点;(2)有斜率。同时掌握已知直线方程画直线的方法。

教师引导学生分析要用点斜式求直线方程应已知那些条件?题目那些条件已经直接给予,那些条件还有待已去求。在坐标平面内,要画一条直线可以怎样去画。

7、已知直线的斜率为,且与轴的交点为,求直线的方程。

引入斜截式方程,让学生懂得斜截式方程源于点斜式方程,是点斜式方程的一种特殊情形。

学生独立求出直线的方程:

(2)。

再此基础上,教师给出截距的概念,引导学生分析方程(2)由哪两个条件确定,让学生理解斜截式方程概念的内涵。

8、观察方程,它的形式具有什么特点?

深入理解和掌握斜截式方程的特点?

学生讨论,教师及时给予评价。

问题。

设计意图。

师生活动。

9、直线在轴上的截距是什么?

使学生理解“截距”与“距离”两个概念的区别。

学生思考回答,教师评价。

体会直线的斜截式方程与一次函数的关系.

学生思考、讨论,教师评价、归纳概括。

11、例2的教学。(教材94页)。

掌握从直线方程的角度判断两条直线相互平行,或相互垂直;进一步理解斜截式方程中的几何意义。

教师引导学生分析:用斜率判断两条直线平行、垂直结论。思考(1)时,有何关系?(2)时,有何关系?在此由学生得出结论:

且;

12、课堂练习第95页练习第1,2,3,4题。

巩固本节课所学过的知识。

学生独立完成,教师检查反馈。

13、小结。

使学生对本节课所学的知识有一个整体性的认识,了解知识的来龙去脉。

14、布置作业:第106页第1题的(1)、(2)、(3)和第3、5题。

巩固深化。

学生课后独立完成。

例3.如果直线沿x轴负方向平移3个单位,再沿y轴正方向平移1个单位后,又回到原来的位置,求直线l的斜率.

作业布置:第100页第1题的(1)、(2)、(3)和第3、5题。

课后记:。

解方程教案教案篇十

教科书p17第9~15题。思考题。

1.通过练习,使学生进一步掌握列方程解决实际问题的思考方法,提高列方程解决问题的能力。

2.在练习中,使学生进一步感受方程的思想方法和应用价值,获得成功的体验,进一步树立学好数学的自信心,产生对数学的兴趣。

掌握列方程解决实际问题的基本思考方法。

根据情境,学生自己提出问题、解决问题。

一、基本练习。

1.先设要求的数为x,再列出方程。(口答且不解答)。

(1)一个数的12倍是84,求这个数。

(2)2.9比什么数少1.5?

(3)什么数与2.4和是6?

2.根据题意说出等量关系式并列方程。

(1)果园里有124棵梨树和桃树,梨树是桃树棵数的3倍。桃树梨树各有多少棵?

(2)书架上层有36本书,比下层少8本。书架下层有多少本书?

提问:每一题的数量关系式分别根据哪一个条件列的?

师生交流。

二、指导练习。

1.p17第9题。

(1)引导学生说一说数量关系式。

天鹅只数+丹顶鹤只数=960。

(2)根据关系式列方程。

x+2.2x=960。

2.p17第10题。

(1)引导学生说一说数量关系式。

六年级植树棵数-五年级植树棵树=24。

(2)根据关系式列方程。

1.5x-x=24。

3.p17第13题。

(1)引导学生说一说数量关系式。

历史故事总价+森林历险记总价=83。

(2)根据关系式列方程。

7x+124=83。

三、综合练习。

1.p17第11~12题。

(1)学生先说一说数量关系式。

(2)根据关系式列方程。

(5)集体评讲。

四、思考题。

(1)引导学生说一说等量关系式。

速度差追击时间=路程差。

甲路程-乙路程=路程差。

(280-240)x=400。

280x-240x=400。

五、课堂小结。

今天这节课是练习课,有谁来简单总结一下呢?还有什么问题吗?

板书设计:

列方程解决实际问题练习课。

天鹅只数+丹顶鹤只数=960六年级植树棵数-五年级植树棵树=24。

x+2.2x=9601.5x-x=24。

历史故事总价+森林历险记总价=83速度差追击时间=路程差甲路程-乙路程=路程差。

7x+124=83(280-240)x=400280x-240x=400。

解方程教案教案篇十一

2、通过列方程解应用题,提高学生分析问题与解决问题的能力。

重点、难点、关键点。

重点:找出应用题中存在的相等关系。

难点:正确分析应用题中的条件。

关键:理解题意,并能正确找出应用题中的量与量之间的关系。

教学过程。

时间分配。

1、列一元一次方程解应用题题的步骤。

2、例题探究。

师:列一元一次方程解应用题的步骤有哪些?

师:出示例题。

(教师引导,由学生自己解题过程)。

生:思考议论回答。

找等量关系。

设未知数。

列一元一次方程。

解方程。

写出答案。

生:讨论。

该问题需要分类讨论,有三种可能的情况。

可能购买的是甲、乙两种型号的电视机,也可能是乙丙或甲丙。

8分。

20分。

a组:

b组:

教后札记。

解方程教案教案篇十二

教学目标:

1、使学生进一步认识用字母表示数及其作用,能正确地用含有字母的式子表示数量及数量关系、计算公式,培养学生抽象,概括的能力。

2、使学生加深对方程及相关概念的认识,掌握解简易方程的步骤和方法,能正确地解简易方程。

教学重点、难点:应用等式的性质,理解和较熟练掌握简易方程的解法。

教学过程:

一、揭示课题。

我们在复习了整数、小数的概念,计算和应用题的基础上,今天要复习解简易方程,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,加深理解方程的概念,掌握解简易方程的步骤、方法,能正确地解简易方程。

二、复习用字母表示数。

1、用含有字母的式子表示:

(1)求路程的数量关系。

(2)乘法交换律。

(3)长方形的面积计算公式。

2、做“练一练”第1题。

让学生做在课本上。指名口答结果,老师板书,结合提问怎样求式子的值的。

3、做练习十四第1题。

指名学生口答。选择两道说说是怎样想的。

1、复习方程概念。

提问:什么是方程?你能举出方程的例子吗?(老师板书出方程的例子)这里用字母表示等式里的什么?指出:字母还可以表示等式里的未知数。含有未知数的等式就叫方程。(板书定义)。

2、做“练一练”第2题。

(1)做“练一练”第3题第一组题。

(2)做“练一练”第3题后两组题。

指名两人板演,其余学生分两组,分别做其中的一组题。集体订正,并让学生说说每组两题有什么不同,解方程的过程有什么不同。强调一定要先看清题,按运算顺序能先算的就先算出来,然后根据四则运算之间的关系求出方程的解。

(3)做“练一练”第4题。

让学生列出方程。指名口答方程,老师板书。提问列方程的等量关系是什么。

四、课堂小结。

今天复习了哪些知识?你进一步明确了什么内容?

五、布置作业。

课堂作业;完成“练一练”第4题解方程;练习十四第2题,第3题后三题,第4题。

家庭作业;练习十四第3题前三题、第5题。

解方程教案教案篇十三

第12册p92—93“练习与实践”7—9题。

1.使学生进一步理解商品打折出售的含义,进一步掌握分析数量关系的方法,熟练掌握列方程解答稍复杂的百分数实际问题的方法,理解不同形式的打折问题之间的联系,并能熟练解答。注重知识间的联系与融会贯通。

2.在分析问题、解决问题的活动中,发展学生的数学思考能力,提高用方程表示数量关系的能力,进一步积累解决问题的经验,增强数学应用意识。

3.让学生在学习和游戏中获得成功体验,提高学生的学习兴趣和爱好。

课件。

第二课时。

1.出示习题。一种图书打八折后售价是20元,这种图书原价是多少元?

2.学生练习、交流、检验。

3.练习p93第7、8两题。指导学生理解“降价10%”的含义。第8题提醒学生注意:两种衬衫的原价是相同的,但由于打的折扣不同所以现在售价是不同的;所花的108元是两种衬衣现价的和。

4.练习p93第9题。

学生通过自主探索和合作探索发现规律,并运用规律求出所框的4个数。

解方程教案教案篇十四

教科书第12~13页,“回顾与整理”、“练习与应用”第1~4题。

1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。

2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

一、回顾与整理

1、谈话引入。本单元我们学习了哪些内容?你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?在小组中互相说说。

2、组织讨论。

(1)出示讨论题。

(2)小组交流,巡视指导。

(3)汇报交流。

你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?

3、小结。同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

二、练习与应用

1、完成第1题。

(1)独立完成计算。

(2)汇报与展示,说说错误的原因及改正的方法。

2、完成第2题。

(1)学生独立完成。

(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)

3、完成第3题。

(1)列出方程,不解答。

(2)你是怎样列的?怎么想的?大家同意吗?

(3)完成计算。

4、完成第4题。单价、数量、总价之间有怎样的数量关系?指出:抓住基本关系列方程,y也可以表示未知数。

三、课堂总结

通过回顾与整理,大家共同复习了有关方程的知识,你还有什么疑问吗?

解方程教案教案篇十五

请你来接下句。

三只青蛙_________;

五只青蛙呢?

n只青蛙呢?

一首小小的儿歌展示了数学的机智和趣味,细心的同学已经发现,这首儿歌不仅融入了数字,还包含着字母,用字母来表示数。我们今天的课就围绕用“字母表示的数”来展开。

解方程教案教案篇十六

教学内容:

p53――54练习十一1,2,3。

教学目标:

1、通过观察天平演示,使学生初步理解方程的意义;

2、使学生能够判断一个式子是不是方程,并能解决简单的实际问题;

3、培养学生观察、描述、分类、抽象、概括、应用等能力。

教学重点:

判断一个式子是不是方程;初步理解方程的意义。

课前准备:

课件,习题板。

教学过程:

一、复习旧知,激趣导入。

同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有88位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:88+x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!

二、出示学习目标。

1、初步理解方程的意义,会判断一个式子是否是方程。

2、按要求用方程表示出数量关系,培养学生观察、比较、分析概括的能力。

(一)认识天平。

(二)新课学习。

自学指导(一)。

自学p53,分别说一说图1,图2,,显示的信息。

图1天平两边平衡,一个空杯重100克。

图2在空杯里加一杯水后天平不平衡了。

再看图3说说图3显示的信息。

天平1杯子和里面的水比200克法码重。

天平2杯子和里面的水比300克法码轻。

请用算式表示图3数量关系。

天平1、100+x200。

天平2、100+x300。

再看图4说说图4显示的信息,请用算式表示图4数量关系。

100+x=250。

观察比较下列算式说说你的发现。

观察比较。

100+x200。

100+x300。

100+x=250。

前面两个算式两边不相等,后面一个算式两边是相等的。

教师总结:像这样两边相等的算式我们把它叫做等式。(板书)。

写出几个等式。

请学生把这里的等式分类,并说说你们是如何分类的?

20+30=50。

20+χ=100。

50×2=100。

14―8=6。

3y=180。

78×3=234。

100+2y=3×50。

学生汇报后让学生说出分类的理由。(有的含有未知数,有的没有未知数)。

教师总结:含有未知数的等式,称为方程。(板书)。

请大家写出几个方程。

四、小结:回答什么是方程?

【本文地址:http://www.xuefen.com.cn/zuowen/17559666.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档