总结可以帮助我们回顾过去,规划未来。为了写出一篇较为完美的文章,我们需要经常反思和自我审查,以便不断提高我们的写作水平。探寻历史背后的故事,了解历史对我们的影响和启示。
表面积的变化说课稿篇一
教学内容:教科书第36-37页.教学目标:1.让学生通过观察和实际操作,探索简单几何体组合过程中表面积的变化规律,进一步发展动手操作能力和空间观念.2.让学生应用发现的规律解决一些简单的实际问题.3.让学生进一步体会图形学习与生活实际的联系,感受图形学习的价值,提高数学学习的兴趣.
作者:咸高兵作者单位:江苏省淮安市复兴中心小学,223224刊名:小学时代(教育研究)英文刊名:primaryschooltimes年,卷(期):20xx“”(11)分类号:g62关键词:
表面积的变化说课稿篇二
1、说课内容:
五年级第二学期(试验本)第53页“表面积的变化”。
2、教材简析:
学生在前面的学习中已经掌握了长方体和正方体的特征及长方体、正方体表面积的计算。本次实践活动《表面积的变化》主要是研究几个相同的正方体(或长方体)拼起来,得到的立体图与原来几个正方体(长方体)表面积之和的关系,发现并理解其中的变化规律,培养空间观念。
教材分为两个大的版块:拼拼算算和拼拼说说。拼拼算算中三个活动,第一个活动是引导学生用两个相同的正方体拼出长方体,体验到两个正方体拼成长方体后表面积减少了原来两个面的面积。第二个活动,是引导学生用3个、4个甚至更多个相同的正方体摆成一行,拼成长方体,探索拼成后的长方体的表面积的变化规律。第三个活动用两个相同的长方体拼成大长方体,体验到不管怎么拼,每次都会减少两个长方形面的面积;而减少的面积越少,拼成的大长方体的表面积就越大。三个活动都是通过学生动手操作、观察、直观思考、合作交流等活动,让学生体验并发现物体拼摆过程中表面积的变化规律,提高空间观念的积累水平,发展数学思考。拼拼说说,主要是引导学生应用前面发现的规律,解决实际问题。
3、教学目标:
(1)利用表面积等有关知识,探索多个相同正方体叠放后表面积的变化规律,激发主动探索的欲望。
(2)通过解决包装问题,体验策略的多样化,发展优化思想。
(3)在操作、观察、分析等活动中,综合运用有关知识,解决物体表面积的问题,发展空间观念。
(4)体验解决问题的基本过程和方法,提高解决问题的能力。
根据五年级学生的年龄、心理、认知规律特点,遵循数学来源于生活,又运用于生活的原则,从学生已有的经验出发,倡导教师为主导,学生为主体,思维训练和语言表达为主线。通过拼拼、算算、观察、说说、讨论充分调动学生学习的积极性,让学生在实际操作与问题情境中主动地探究解决问题的方法,强化学生合作学习、自学思考,充分发挥学生的天赋和创造才能,保证课堂训练的密度。本节课使用多媒体教学手段,力求借助这些手段节约时间,突破难点,提高效率,并在恰当时机给与科学的评价,以达到本课的教学目标。
根据五年级儿童的特点以及本课的特点,把本节课学生的学法定格为:动手操作法、发现学习法、讨论学习法等。在摆弄学具的过程中,学生的思路会随之展开,这样学生在亲自获取的丰富的感性认识和直接经验的基础上,就能逐步地展开探索,逐步地理解和掌握知识,逐步学会利用学具进行学习掌握了多层次的观察对比的方法。
根据教学目的、学生已有知识经验,我设计如下教学环节:
(一)、创设情境、体验生活。
好的开头是成功的一半。新课导入是课堂教学的重要环节,是一堂课成功的起点。本节课一开始从生活实例引入,利用信息技术手段,创设了设计包装盒的情境,先带着学生走进商场,观察常见的包装盒,再通过问题“为什么我们所见到的都是用这种样式进行包装呢?”需要我们学习一些新的本领来解决这个问题,这样把数学与生活实际联起来,使学生感到生活中处处有数学,学起来有用处,就容易激发兴趣,为学习新知识创造了良好的开端。
(二)、拼拼算算、体验规律
叶圣陶先生曾说:“当教师像是帮助小孩走路。扶他一把,要随时准备放,能放手就放手。”在这个环节我共安排了3个活动。活动一:观察两个正方体拼成长方体后表面积的变化情况。这一环节通过让学生动手摆一摆、看一看、指一指,想一想这些活动,让学生体会到表面积发生了变化,体验到两个正方体拼成长方体后表面积减少了原来两个面的面积。通过学生自己动手实际操作,让多种感官协同活动,使具体事物形象在头脑中得到全面的反映,同时结合思维活动,促进空间观念的形成。活动二:用若干个相同的正方体拼成大长方体,表面积的变化情况。通过学生把几个正方体拼成较大的长方体,边操作、边思考,进一步发现表面积发生了变化,初步感到这个变化存在着一定的规律。经历了动手操作这一过程,使学生头脑中有“拼”这一过程,建立了空间观念。学生完成表格时,由于表格是2、3、4、5个正方体及省略号,所以学生摆了由2、3、4、5个正方体拼成长方体的情况后,就急于表现,忽略了表格中的省略号,其实体验是不够的。于是我又设计了一个问题,用挑战性的语气提问:如果用6个、8个拼是个什么情况,再操作验证,从而使学生把关注点落到找寻规律上,能把表格中的数据综合起来看。通过这些引领,学生的空间观念也得到了培养。活动三:用两个相同的长方体拼成大长方体,表面积的变化情况。学生的动手操作是建立空间观念的重要手段,通过学生动手操作,在活动中了解三种拼法:将上下面相拼包装、将左右面相拼包装、将前后面相拼包装,增强体验。通过动手操作、观察、直观思考、合作交流等活动,让学生在体验发现物体拼摆过程中表面积的变化规律中,提高空间观念的积累水平,发展数学思考。
(三)、拼拼说说,运用规律
要达到学生掌握知识,最终发展能力的目的,学生的思维就必须经过反复多次,循序渐进的实际应用。这一环节我要求学生把8个棱长为1厘米的正方体拼成一个长方体,有哪些不同的方法?哪种拼法表面积最小?这个环节的“拼拼说说”,是运用规律解决实际问题。只有学生前面的规律体验深刻,学生才能灵活运用。把8个棱长为1厘米的正方体拼成一个长方体,哪种拼法表面积最小?是应用前面拼正方体或长方体的经验:重叠的面越多,表面积减少越多;两两相拼的次数多,减少的面积也多。这两条经验要灵活地、综合地应用,才能得到理想的方案。这对空间观念和思维能力是很好的锻炼。接着,又通过把一个面积较大的长方体和一个面积较小的正方体拼成一个图形,并计算所拼图形的表面积后有什么发现?得出不管怎么拼,都是减少了2个正方形面的面积。
(四)、总结全课、深化目标
新课后,教师引导学生对新课进行总结,这种总结既有知识的总结,又有学习方法的总结,这样做,会对整课的教学内容起到梳理概括,画龙点睛的作用,帮助学生把新知识纳入到已有的知识结构中去,同时,增强学的目标意识,有利于提高学生整体思考能力和概括总结的能力。
总之,根据本课的教学内容和学生的认知规律,教学设计中力求体现知识的迁移作用和学生自主探究、合作学习的教学理念,发挥科学评价的作用,促使学生良好智力结构的形成和综合素质的提高。
以上是我就教学设计所作的简单说明,望在座各位给予指导,谢谢!
表面积的变化说课稿篇三
教学目标:
1.让学生通过把几个相同的正方体或长方体拼成较大的长方体的操作活动,探索并发现拼接前后有关几何体表面积的变化规律,并让学生应用发现的规律解决一些简单实际问题。
2.让学生应用发现的规律解决一些简单实际问题。
3.培养学生的合作能力、空间想象能力和思维能力。
教学重点:通过操作,比较拼成的长方体的表面积与原来两个正方体的表面积的和究竟发生了什么,发现规律,学会分析。
教学难点:经过动手操作,增强学生的空间观念,能运用知识解决生活中的数学问题。
教学准备:正方体、长方体、多媒体课件。
教学过程:
一、创设情境、体验生活。
出示:这是3盒一组包装的面纸,里面的面纸盒是这样摆放的,其实这些面纸盒还可以摆成其它样式进行组装哪为什么我们所见到的都是这样包装呢?这样的包装到底有什么奥秘呢?我相信只要大家认真研究完(揭示课题)表面积的变化就会明白其中的奥秘了。
二、拼拼算算、体验规律。
活动一:两个正方体拼成长方体后表面积的变化情况。
师:今天我们的研究活动就从这些小正方体开始,你能把两个正方体拼成一个长方体吗?老师巡视。
提问:把长方体和原来的两个小正方体的表面积之和相比,表面积有没有变化?发生了什么变化?(让学生思考并回答。)。
学生可能的发现:a、两个正方体拼成长方体后,表面积减少了原来2个正方形面的面积。
b、拼成的长方体的表面积比原来两个正方体的表面积之和减少了2平方厘米。
不管学生用哪种方法表达,教师根据情况再提出相应的问题。
老师:减少的是哪两个面的面积?为什么减少了?(两个面重叠在一起)。
活动二、用若干个小正方体拼成大长方体,观察表面积的变化情况。
正方体的个数。
拼的次数(重叠的次数)。
原来正方体一共有几个面。
拼成长方体后减少了原来几个面的面积。
1.同桌合作,先拼一拼,再观察,然后把表格填完整。
2.学生小组活动,师巡视。
3.小组汇报。
师:你是怎么知道用3个正方体拼成一个长方体,拼成长方体后减少了原来4个面的面积?
引导学生说出三个正方体拼成长方体要拼两次,一次减少两个面,两次就减少四个面。
追问:那四个正方体拼成长方体呢?五个呢?
师:用6个拼减少了几个面?请同学们想一想,也可以动手拼一拼。8个呢?10个呢?
老师:由此你发现了什么?
老师:要想知道减少几个面,我们要先知道什么?
活动三:用两个相同的长方体拼成大长方体,表面积的变化情况。
1.引入。
老师:我们研究完了把正方体拼成大的长方体以后表面积的变化规律,如果把同样的长方体拼成大的长方体又有什么规律呢?我们来进行第二项活动:用两个一样的长方体拼成大的长方体。并思考以下几个问题:
a.你能拼几种?拼成长方体后体积变化吗?
b.每种拼法分别减少几个面?(都比原来减少了2个面的面积)。
c.每种拼法减少的表面积一样吗?为什么?(不同的拼法减少的面积就不同。)。
d.哪种拼法的表面积最大?你是怎么知道的?
f.算算两个大长方体的表面积分别比原来减少了多少?怎么计算的?小组合作。
2.探讨研究并总结规律。先让学生汇报实验结果。
(板书:重叠面越大)。
老师:如果要把这两个长方体包装起来,你觉得用哪种方法最节约包装纸?
学生:将最大面重叠的方法最节省包装纸.
师:你能用我们刚学过的知识来解释三盒面纸盒为什么选择这种包装方法了吗?
3.教师谈话:同学们的这个发现可了不起了,在日常生活当中有很多地方运用了这一原理.(出示盒状装年牛奶等的图片).当我们购买数量较多的同种商品时,往往就会选择经过包装的组装产品。这些物品在进行包装时,可不是随意的,而是经过一番考虑的。为这些产品进行包装的厂家会考虑些什么呢?大家发表一下自己的看法吧。
三.联系生活,拓展应用。
将四块巧克力(如小长方体),包成一包,可能有几种不同的包装方法?哪种方法用的包装纸最节省?请大家先在小组里商量一下,确定一种包装方案,要求是既节省材料又携带方便。4人一组合作交流包装方案。
四.总结收获。
通过这堂课的研究,我们不仅发现了表面积的变化规律,而且还应用所学的新知识解决了一些有关物品包装的实际问题,希望同学们在今后的学习生活中多观察、多思考,享受到更多的数学乐趣!
表面积的变化说课稿篇四
义务教育课程标准实验教科书数学六年级上册表面积的变化。
2、情感目标:学生在活动中体会合作的乐趣,感悟数学与生活的密切联系;
3、价值目标:学生能运用知识解释生活中的一些现象,将数学知识应用到日常生活中去。
多媒体、每人准备一个长方体和一个正方体、每组准备一张包装纸和一根塑料绳。
一、复习:
小结:看来,同学们对长方体和正方体都有了一定的认识。在我们的日常生活中,会经常看到像这样长方体或正方体的外包装盒。
二、引入课题:(出示牛奶的包装盒)。这是牛奶的包装盒,它有多大呢?求包装盒的大小就是求什么?板书(表面积)让我们打开包装盒,看看里面的牛奶是怎样摆放的?(显示牛奶的摆放样式)其实这些牛奶还可以摆成其它样式进行包装,请大家看,(电脑演示几种不同的摆放样式),那么为什么我们所见到的都是用这种样式包装的呢?我想其中一定有一些奥秘吧。你们想知道吗?让我们在这堂实践活动课中探索和寻找答案吧。
2.如果同桌的同学把你们手中的小正方体像这样拼在一起,可以拼成一个什么图形?拼成后的长方体的体积和原来两个正方体的体积之和相比有没有变化呢?表面积呢?同组的同学一起算一算,说一说。
3.组织大家讨论。
4.交流讨论的想法。
5.小结:同学们都发现,用两个相同的正方体拼成一个长方体,体积不变,表面积会变化,那么为什么会变呢?让我们仔细观察,深入研究。
7.小结:(电脑演示)用两个完全一样的小正方体拼成一个长方体,拼成后的长方体表面积减少了原来两个面的面积。
9.请小组的同学先拼一拼、算一算,然后把下表填写完整。
当若干个正方体拼成一排时:
正方体的个数2345610。
拼成后长方体表面积减少原来几个面的面积246。
仔细观察,每一列中上下两个数之间的联系,你有什么发现吗?
2.拿出一个长方体,量一量这个长方体的长宽高各是多少,并记录下来。
3.小组的同学依据长宽高的长度算一算这个长方体的表面积是多少,比一比哪个小组算得又快又准。
5.讨论两个相同的长方体拼成一个大长方体,有不同的拼法,小组的同学互相指一指,减少的是哪些面。
a.将上下面相拼时,减少的就是上下两个面的面积之和。
b.将左右面相拼时,减少的是左右两个面的面积之和。
c.将前后面相拼时,减少的是前后两个面的面积之和。
6.看来表面积减少的多与少,和原来的.长方体的各个面的大小是有关系的。大家讨论讨论有什么关系呢?(电脑显示:把较大的面拼在一起,表面积就减少的较多,把较小的面拼在一起,表面积就减少的较少)。
7.同学们的这个发现可了不起了,它在日常生活中得到了广泛的应用。当我们购买数量较多的同种商品时,往往就会选择经过包装的组装产品。比如一包12袋的面纸,一箱24盒的牛奶,一卷18支的铅笔,这些物品在进行包装时,可不是随意的,而是经过一番考虑的。为这些产品进行包装的厂家会考虑些什么呢?大家发表一下自己的看法吧。先在小组里说一说。
五、联系生活,拓展应用。
六、作品展示,总结收获,并补充完整课题:
通过这堂课的探索和研究,我们不仅发现了表面积的变化规律,而且了解了一些物品包装的学问,将数学和生活紧紧地联系在了一起,愿同学们在今后的学习生活中更多的去观察和思考,那样我们会感受到更多生活的乐趣,数学的乐趣!
表面积的变化说课稿篇五
1.一个长方体的长是5分米、宽是4分米、高是3分米,6个面中最小的一个面的面积是平方分米,最大的一个面的面积是()平方分米,它的表面积是()平方分米。
2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是()平方分米。
3.把一个六面都涂上颜色的正方体木块切成大小相同的小正方体64块,每个小正方体最多会有()面涂上颜色;没有涂上颜色的小正方体有()块。
列式:答案。
答:长方体的表面积是平方厘米或者平方厘米。(先填较小的数)。
列式:答案。
答:至少增加平方厘米,这两个小正方体的表面积和最大是平方厘米。
6.用一块长16分米,宽8分米的长方形铁皮,做一个无盖的长方体容器。
列式:答案。
答:这个长方体容器的容积是升。
列式:答案。
答:长方体容器的容积是升。
(3)比较这两种不同的做法,哪一种方法做成的长方体的容积大?大多少升?
列式:答案。
答:第种做法做成的长方体容积大,大升。(第一个空填一或者二)。
表面积的变化说课稿篇六
1.通过包装问题,体验策略的多样化,发展优化思想。
2.在操作、观察、分析等活动中,综合运用有关知识,解决物体表面积的问题,发展空间观念。
3.在探索表面积规律的活动中,感受学习数学的乐趣。教学重难点运用表面积的知识解决实际生活中的包装问题。
一、新课导入。
在平时的超市中,我们经常会看见一些物体叠放在一起,如:盒装的餐巾纸,你们看到是怎么叠放的呢?为什么在超市中只采用了第一种的叠放方法呢?通过今天的学习我们就会了解的。
二、新课探究。
1、探究一。
将两盒巧克力(如下图)包成一包,可能有几种不同的包装方法?哪种方法包装纸最省?(接缝处忽略不计)。
表面积:(3×2+1×2×2+1×2×3)×2=(6+4+6)×2=32(平方分米)。
表面积:(3×2×2+1×2+3×2×1)×2=(12+2+6)×2=40(平方分米)。
表面积:(3×1+2×2×1+2×2×3)×2=(3+4+12)×2=38(平方分米)。
有的同学并没有计算出它们的表面积,一看就知道第一种方法包装纸最省,你知道为什么吗?把面积最大的面重叠起来,这样包装就能使包装纸最省。
2、探究二。
有三种不同的包装方法把面积大的面重叠起来,这样包装纸最省。
表面积:3×2×2+2×1×6+3×1×6=42(平方分米)。
小巧发现了一种特殊的包装方法,你看得懂吗?这种包装方法是不是最省材料的方法呢?
表面积:(2+1)×3×2+3×2×2+(2+1)×2×2=42(平方分米)。
是不是所有的长方体的包装盒都可以采用这样的叠放方法呢?
3、小结。
三、课内练习。
1、练习一。
(5×3+5×2+2×3)×2×2-2×3×2=31×2×2-12=112(平方厘米)。
答:拼成长方体的表面积最大是112平方厘米拼成表面积最小的长方体。
(5×3+5×2+2×3)×2×2-5×3×2=31×2×2-30=94(平方厘米)。
答:拼成长方体的表面积最大是94平方厘米。
2、练习二。
3、练习三。
四、教学反思。
通过今天的学习,学生们知道了将几个相同的长方体拼成大长方体时有多种拼法。把面积最大的两个面拼在一起,就可以使拼成图形的表面积最小,将面积最小的两个面拼在一起,就可以使拼成图形的表面积最大。此规律应多引导学生自己去推导总结出来并加以应用,才能达到教学效果。
表面积的变化说课稿篇七
1.教材分析:本课的教学内容是建立在学生已有的认知结构上。学生已经掌握了长方体和正方体的特征及长方体、正方体表面积的计算,在现有的老教材中,没有安排“表面积的变化”的例题教学,课后练习安排也甚少。但是,我觉得这部分的内容在生活中相当实用,因此增加了本节课的教学内容。本课的主要任务是研究几个相同的正方体(或长方体)拼起来,得到的立体图与原来几个正方体(长方体)表面积之和的关系,发现并理解其中的变化规律,培养空间观念,解决物品的包装问题。
2.学情分析:类似包装的问题学生在日常生活中经常遇到,本节课创设了“包装巧克力”的情境,使学生综合应用表面积等知识来讨论如何包装最省包装纸的问题,感受数学与实际生活的密切联系,体验解决问题策略的多样化,发展优化思想,提高解决实际问题的能力。
1.利用表面积等有关知识,探索并发现多个相同正方体、长方体叠放后表面积的变化规律,并能运用发现的规律解决一些简单的实际问题。
2.在操作、观察、分析、讨论等活动中,进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。
3.通过解决物品包装设计问题,进一步增强应用数学意识,体验解决问题的基本过程、方法与策略的多样化,发展优化思想。
4.激发主动探究的欲望,感受学习愉悦,逐渐养成独立思考、合作互助的习惯。
教学重点:运用发现的表面积的变化规律,解决简单的实际问题。
解决措施:从学生已有的经验出发,倡导教师为主导,学生为主体。通过实践操作、小组讨论等形式,充分调动学生学习的积极性,引导学生思考问题,让学生在实际操作与问题情境中,逐步探寻表面积的变化规律,并能运用规律解决实际问题。
1.合理分组,明确分工,强调合作。
2.以小组为单位,每小组准备若干个正方体的学具和若干个长方体的物品。
信息技术应用:
多媒体课件。
依据的理论:
根据五年级学生的年龄、心理、认知规律特点,遵循数学来源于生活,又运用于生活的原则,从学生已有的经验出发,倡导教师为主导,学生为主体,思维训练和语言表达为主线。以学生发展为本,进行探究性学习,培养学生的创新精神和实践能力。
一、情境导入激发兴趣。
二、自主探究发现规律。
(一)探究两个正方体拼成长方体后表面积的变化情况。
1.动手操作,仔细观察。
2.小组讨论,发现规律。
3.全班交流,得出结论,估计学生可能的发现:
b、两个正方体拼成一个长方体后,表面积减少了原来2个正方形面的面积。
(板书:每重叠1次减少2个面)。
c、拼成的长方体的表面积比原来两个正方体的表面积之和减少了2平方厘米。
(二)探究用若干个相同的正方体拼成大长方体后表面积的变化情况。
1.仔细观察发现,完成表格填写。
将3个、4个、5个的1立方厘米的正方体拼成一个长方体。仔细观察拼成后的长方体与原来几个正方体的体积、表面积又各有什么变化?(可以直接展开想象,也可以通过实物操作)(关注4个有2种拼法)。
2.学生完成表格,教师巡视指导。
3.结合表格,探讨规律。
仔细观察表格中的数据和实物图形,你又有什么新的发现?(板书:重叠面越多,表面积减少越多)。
(三)探究用两个相同的长方体拼成大长方体后表面积的变化情况。
2.小组合作:讨论包装方法。
(交流时课件呈现三种不同的拼法,比较各种方法的表面积)估计学生可能的发现:
b、都比原来减少了2个面的面积,但不同的拼法减少的面积就不同。
c、包装后表面积最小的那一种方法所用的包装纸最省。(板书:重叠面越大,表面积减少越多)。
4.师生共同总结:不管怎样拼,每次都会减少两个长方形面的面积;而减少的面积越大,拼成的.大长方体的表面积就越小,这时所用的包装纸就最省。
三、运用规律,内化新知。
教师谈话:刚才我们通过操作发现,几个相同的正方体或长方体,拼成一个较大的长方体,表面积都减少了,而且都有一定的规律。看看谁能运用刚才发现的规律再来解决一些数学问题。
1.分组讨论。
2.全班交流:估计可能只讲出有3种常见的包装方法,其中的有一种包装方法用纸最省。
3.多媒体呈现:第二种用纸最省的包装方法,两盒横着上下拼,另一盒竖着拼在一起(数据特殊)。
4.观察比较,讨论交流:为什么这两种方法包装纸最省?
5.师生共同总结:拼成的长方体的表面积最小,所用的包装纸最省。在设计包装时要考虑把最大的面重叠起来,就一定要仔细观察图形的特点和数据。
四、深化知识,整合延伸。
1.判断:
(1)2个棱长都是5厘米的正方体拼成一个长方体,体积不变,表面积减少了25平方厘米。
(2)一根长方体的木料,横截成3个小长方体后,增加了4个面。
五、体验收获,激励评价。
六、布置作业,课外拓展。
【让学生带着问题下课,使学生把探究的兴趣延伸到课外。】。
表面积的变化说课稿篇八
上个星期,我们有幸聆听了x老师执教《表面积的变化》。这节实践活动课是在学生认识了长方体和正方体的特征,并掌握了长方体和正方体表面积计算的基础上展开教学的。主要是研究几个相同的正方体(或长方体)拼起来得到的形体与原来几个正方体(或长方体)表面积之和的关系,引导学生发现并理解其中的变化规律,并让学生应用发现的规律解决一些简单的实际问题。整个课堂教学体现了理念新、方法活、基础实等特点,学生学得积极主动,知识的获得与情感的体验同步进行,达到了有效上课的标准。教者精心设计了教学流程,教学过程脉络清晰,层次分明。教学目标明确具体,整个教学活动是开放的,但不是放开的。学生始终是主体,教师是组织者、引导者和合作者。整节课上x老师扎实的教学功底,亲切自然的教态,敏锐的思维,使整个课堂成了生生交流,师生互动的平台,充分展示了她个人独特的教学风采,也让我们真正感受到数学课堂教学的神奇奥秘与无穷魅力。听了《表面积的变化》的这课,使我有了一次学习的机会,我就教学活动设计的有效性谈一下自己的看法:
1、注重学生的探究活动。数学的学习过程不是让学生被动地吸取教材和教师给出的现成结论,而是由学生亲自参与的、生动活泼的、主动的和富有个性的过程。课堂上,x老师以学生为中心,以学生的主动探究为主,让学生敢想、敢说,从而主动去获取知识。这节课从形式上吸引了学生,从学生的内心深处调动他们对学习的需求性,在正确处理活动与发展的关系,很好的体现了“一切为了学生的.发展”这个课程改革的核心理念。让学生在活动中对话,在活动中互动,在活动中体验,在活动中自主建构,实现自身的主动发展。而且使学生能在活动中学习数学、感受数学,加深对数学的理解和掌握,对数学产生兴趣,产生情感。
2、活动与数学教学要求的关系。这节课的活动设计从发展学生思维,从学生的可持续发展的角度来说,是非常到位的。
3、教学活动面向全体。在组织数学活动时,首先关注了全体学生,让每一个学生都有比较均等的参与机会。其次在活动设计上,为学有余力的学生留下思维、创造的空间,让他们根据已有的生活经验、知识基础和认识水平去建构属于自己的认知结构,并得到发展。
表面积的变化说课稿篇九
《表面积的变化》是苏教版六年级上册第二章的教学内容,在学生认识并掌握了长方体、正方体特征及会计算长方体与正方体表面积、体积的基础上教学的。主要让学生通过把几个相同的正方体或长方体拼成较大的长方体的操作活动,探索并发现拼接前后有关几何体表面积的变化规律,并让学生应用发现的规律解决一些简单实际问题。
《表面积的变化》是在学生认识并掌握了长方体、正方体特征及会计算长方体与正方体表面积的基础上教学的。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成。为了使学生更好地理解表面积的变化,我加强动手操作,按照创设情境实践操作自主探究掌握规律的教学流程进行教学。
2、情感目标:学生在活动中体会合作的乐趣,感悟数学与生活的密切联系;
3、价值目标:学生能运用知识解释生活中的一些现象,将数学知识应用到日常生活中去。
难点:应用发现的表面积变化规律解决一些简单实际问题。
一、创设情境,激发兴趣。
二、动手操作,探究规律。
三、拼拼说说,运用规律。
四、全课小结。
教师活动。
活动一:观察两个正方体拼成长方体后表面积的变化情况。
教师演示,提出问题:体积有没有变化?表面积有没有变化?
教师小结:刚才我们用2个正方体拼成一个长方体,原来一共有12个面,拼成后减少了原来2个面的面积。课件出示数据:
活动二:用若干个相同的正方体拼成大长方体,表面积的变化情况。
演示操作,提出问题:表面积又发生了什么变化呢?
引导完成填表,组织交流发现的规律。
活动三。
用两个相同的长方体拼成大长方体,表面积的变化情况。让学生分组拼一拼,表面积的变化情况。
通过这课的研究和探讨,我们不仅发现了表面积的变化规律,而且将数学和生活仅仅的连在了一起。愿同学们在今后的生活中多观察和思考,了解事物变化的规律。
(一)、动手摆一摆、看一看、指一指,想一想、说一说,体会到表面积发生了变化,体验到两个正方体拼成长方体后表面积减少了原来两个面的面积。
猜想,操作探究,交流讨论,验证发现。
学生可能的发现:
1、拼的次数比正方体的个数少1.
2、拼一次少两个面。
(二)、学生可能发现的规律:
1、减少的面的面积越大,剩下的面的面积越小。
2、减少的面的面积越小,剩下的面的面积越大。
(这样设计能刺激学生产生好奇心,进而唤醒学生强烈的参与意识,产生学习的需要,为探索正方体和长方体在拼摆过程中表面积的变化打下了良好的基础。
(一)、通过学生自己动手实际操作,让多种感官协同活动,使具体事物形象在头脑中得到全面的反映,同时结合思维活动,促进空间观念的形成。
(二)、通过学生把几个正方体拼成较大的长方体,边操作、边思考,进一步发现表面积发生了变化,初步感到这个变化存在着一定的规律,从而使学生把关注点落到找寻规律上,能把表格中的数据综合起来看。通过这些引领,学生的空间观念也得到了培养。在学生充分交流的基础上,教者再带着学生到表格中再次体验规律,让规律成为每一位学生的发现。
您现在正在阅读的苏教版《表面积的变化》公开课教学设计文章内容由收集!本站将为您提供更多的精品教学资源!苏教版《表面积的变化》公开课教学设计(三)、学生的动手操作是建立空间观念的重要手段,通过学生动手操作,在活动中了解三种拼法,增强体验。通过动手操作、观察、直观思考、合作交流等活动,让学生在体验发现物体拼摆过程中表面积的变化规律中,提高空间观念的积累水平,发展数学思考。)。
(三)、学生可能的发现:
(1)拼成长方体后,体积没有变化,表面积有变化。
(2)都比原来减少了2个面的面积,不同的拼法减少的面积就不同。
3、可能出现几种摆法,就请同学们再在小组里拼一拼,比一比,说一说,然后让学生在比较中得出最节省的包装方法。
(这一环节拼拼说说,是运用规律解决实际问题。只有学生前面的规律体验深刻,学生才能灵活运用。)。
活动一的规律:
1、拼的次数比正方体的个数少1.
2、拼一次少两个面。
活动二的规律:
1、减少的面的面积越大,剩下的面的面积越小。
2、减少的面的面积越小,剩下的面的面积越大。
活动三的规律:
(1)拼成长方体后,体积没有变化,表面积有变化。
(2)都比原来减少了2个面的面积,不同的拼法减少的面积就不同。
活动四的结果说明:重叠的面越大,表面积减少越多;两两相拼的次数多,减少的面积也多。
教学反思。
本节课是一节综合实践活动课,是在学生学习了长方体、正方体的特征表面积的计算,体积、容积的意义及计算方法的基础上设计的实践活动。旨在让学生通过动手拼一拼、算一算,发现完全相同的正方体或长方体拼成新体形后的体积是原来小正方体或长方体的体积之和,体积没有变化,而拼成的新体形的表面积发生了变化,变化的规律是比原来单个的总面积减少了,重叠一次减少两个面。
一、能做到引导学生积极参与。数学的学习过程不是让学生被动的吸收教材和教师给出的现成结论,而是由一个学生亲自参与的、生动活泼的、主动的和富有个性的过程。本节课,安排了3次动手操作探究规律的活动:活动一:两个正方体拼成长方体后表面积的变化情况。活动二:用若干个相同的正方体拼成大长方体,表面积的变化情况。活动三:用两个相同的长方体拼成大长方体,表面积的变化情况。每次操作完学具后,我又安排了小小组进行了讨论:如比较一下拼成的长方体的表面积与原来两个正方体的表面积之和,是否相等?将3个、4个甚至更多个相同的正方体摆成一行,拼成一个长方体,表面积比原来减少几个正方形面的面积?其中有什么规律吗?将两个长方体形状包成一包,可能有几种不同的包装方法?哪种方法包装纸最省?等问题在小组里讨论、交流各自的想法。这样不仅为学生提供动手操作、观察以及交流讨论的平台,而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强团队协作意识。
二、能做到层层递进,以练促思。在学生掌握了正方体的表面积的变化规律后,我马上安排了一个小练习:应用规律,让学生对这个刚发现的新规律深刻地烙在脑中。之后才进行长方体拼长方体的延伸学习,这样就使得难点突破得更快了,也为下面的实际应用,打下了基础。在学了长方体的拼接之后我又给学生出示了更第二次练习,这样让学生将刚学掌握的知识运用到生活中解决生活中包装物品的实际问题,让学生学以致用,形成能力。
三、使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好数学的自信心,促进了学生思维的发展。
表面积的变化说课稿篇十
1.一个长方体的长是5分米、宽是4分米、高是3分米,6个面中最小的一个面的面积是()平方分米,最大的一个面的面积是()平方分米,它的表面积是()平方分米。
2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是()。
3.把4个体积都是1立方厘米的正方体拼成一个长方体,长方体的表面积是多少平方厘米?请你动手拼一拼,画出示意图。
4.把一个长6厘米、宽5厘米、高4厘米的长方体木块锯成两个小长方体,表面积至少增加多少平方厘米?这两个小长方体的表面积的和最大是多少平方厘米?请你画出示意图再解答。
5.用一块长16分米,宽8分米的长方形铁皮,做一个无盖的'长方体容器。
(3)比较这两种不同的做法,哪一种方法做成的长方体的容积大?大多少升?
表面积的变化说课稿篇十一
本《表面积的变化》是在学生认识并掌握了长方体、正方体特征及会计算长方体与正方体表面积的基础上教学的,主要研究几个相同的正方体排成一行拼起,得到的长方体与原几个正方体表面积之和的关系,发现并理解其中的变化规律,培养学生的空间观念。我在传授新知时主要以学生活动为主,让学生在操作活动中发现规律,解决问题。
新标强调,教学是教与学的交往、互动,师生双方相互交流、相互沟通、相互启发、相互补充,在这个过程中教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求得新的发现,从而达到共识、共享、共进,实现教学相长和共同发展。为了达成这一目标,我在授这一环节中安排了2个活动。活动一:探索2个棱长是1厘米的正方体拼成长方体的表面积变化情况,通过让学生动手拼一拼、看一看、指一指、想一想这些活动,让学生体会表面积发生了变化,体验两个正方体拼成长方体后表面积减少了原两个面的面积。通过学生自己动手操作,让多种感官协同活动,使具体事物形象在头脑中得到全面的反映。活动二:探索、4、个棱长是1厘米的正方体拼成长方体的表面积变化规律,进而加深到用n个棱长为1厘米的小正方体呢?教材对这节的要求没有明确的规定。比如在活动:学生很容易发现,每增加一个正方体,表面积就减少两个拼接面。找到“减少的面的个数”与“正方体的个数”之间的关系才是最关键的。为了让学生发现这些规律,安排了活动二,学生发现这些规律还是有些困难的,因此我在修改教案时增加了一个环节:我就直接提出问题“拼接条数”、“正方体的个数”与“减少的面的个数”之间有什么关系吗?再进一步就举例,五个正方体拼在一起,有4个拼接处,6个、7个……n个呢?每个拼接处减少两个面,所以可以用公式(正方体的个数-1)×2表示减少的面的个数。在寻找“减少的面数”与“减少的面积数”、“拼成的长方体的表面积”有什么关系吗?学生在用棱长为1厘米的小正方体时,很快找出规律,但接着将棱长加深到棱长是a时,表面积减少和拼成的长方体的表面积时,找出这个环节上的表现不佳,这是本节的难点,对五年级的学生说确实存在困难,后我反思在此环节上我的引导不到位,并没有找到学生通俗易懂的方法,比如引导时我可以考虑引导学生从拼成的长方体剩下多少个正方形的面,发现剩下面与正方体的个数有什么规律进行引导,可能效果会好。
本节通过让学生把几个正方体拼成较大的长方体,边操作、边思考,进一步发现表面积发生了变化,初步感到这个变化存在着一定的规律。经历了操作、观察、猜测、分析、实验、验证等活动过程,使学生头脑中有“拼”这一表象,建立了空间观念。这两个活动都是学生通过动手操作、仔细观察、认真思考、合作交流等形式,在引领中体验发现物体拼摆过程中表面积的变化规律,接着用n个棱长为a厘米的正方体排成一行拼成一个长方体让学生思考,进一步巩固发现的规律,提高了学生空间观念的积累水平,发展了数学思考。
在学生掌握了表面积的变化规律后,安排了拼拼说说,运用规律这一环节。
培养了学生优化思维和求异思维的能力,促进堂效益的提高,也使学生在愉快的气氛中,感受到学习的乐趣。
表面积的变化说课稿篇十二
《表面积的变化》是在学生认识并掌握了长方体、正方体特征及会计算长方体与正方体表面积的基础上教学的。主要让学生通过把几个相同的正方体或长方体拼成较大的长方体的操作活动,探索并发现拼接前后有关几何体表面积的变化规律,并让学生应用发现的规律解决一些简单实际问题。
本堂课是一节综合实践活动课,为此在设计教案时有别于一般的数学课注重学生的动手操作,通过实践操作自主探究掌握规律的教学流程进行教学。结合本课的教学实际情况,谈几点反思:
数学的学习过程不是让学生被动的吸收教材和教师给出的现成结论,而是由一个学生亲自参与的、生动活泼的、主动的和富有个性的过程。本节课,安排了3次动手操作探究规律的活动:活动一:两个正方体拼成长方体后表面积的变化情况。活动二:用若干个相同的正方体拼成大长方体,表面积的变化情况。活动三:用两个相同的长方体拼成大长方体,表面积的变化情况。每次操作完学具后,我又安排了小小组进行了讨论:如比较一下拼成的长方体的表面积与原来两个正方体的表面积之和,是否相等?将3个、4个甚至更多个相同的正方体摆成一行,拼成一个长方体,表面积比原来减少几个正方形面的面积?其中有什么规律吗?将两盒长方体形状的巧克力包成一包,可能有几种不同的包装方法?哪种方法包装纸最省?等问题在小组里讨论、交流各自的想法。这样不仅为学生提供动手操作、观察以及交流讨论的平台,而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强团队协作意识。
在学生认识了几个完全一样正方体拼接成一行过程中的规律之后,让学生拿6个完全一样的正方体任意拼,以让学生更充分地认识拼接处的规律。培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,感受到学习的乐趣。最后环节让学生包装火柴盒,通过接近生活实际的动手操作,培养学生学以致用的能力。最后环节的拓展延伸,一改拼接的惯性思维,让学生认识切过程使表面积增大。
表面积的变化说课稿篇十三
1、教师演示:把两个体积是1立方厘米拼成一个长方体。
提问:体积有没有变化?
学生观察、交流、讨论(可以计算、可以用肉眼观察)鼓励方法的多样性。
小结:把2个体积是1立方厘米的正方体拼成一个长方体,体积没有发生变化。
追问:把3个体积是1立方厘米的正方体拼成一个长方体,体积有没有发生变化?
再次小结:同样大小的正方体拼成一个长方体,体积不发生变化。
2、课件再次演示:把两个体积是1立方厘米拼成一个长方体。
让学生通过拼一拼,计算或观察的方法来发现,在小组讨论,再集体交流。
组织交流:a两个同样大小的正方体拼成长方体,表面积发生变化了吗?
b拼成长方体后表面积是增加了还是减少了?
c那么具体减少的是哪几个面的面积呢?(请学生指指摸摸)明确表面积减少了原来2个正方形面的面积,即减少了2平方厘米。
3、深入探究:
课件演示操作要求:
(1)、如果用3个、4个正方体拼成长方体,表面积又发生了什么变化呢?(排法要求是排成一排)。
(学生自己猜想、操作、探究、验证)。
提醒学生把相关数据及时填在表中。并交流填写结果。
(2)、当正方体增加到5个6个时,表面积会怎么变化呢?
学生先猜想,再通过拼一拼来验证。
(3)、发现规律:你能联系操作和填表的过程提出自己发现的规律吗?
给予充分时间让学生讨论。
交流(可以有多种表述,只要符合题意即可)。
“从最简单的体积变了,表面积变了,或每一种具体拼法减少了哪两个面的面积都是可以的。”
(1)、学生操作探究讨论。
交流:“体积没有变,表面积变了。”“都比原来减少了2个面的面积,但不同的拼法减少的面积就不同。(交流时课件演示三种不同的拼法)。
(2)、你能看出哪个大长方体的表面积最大,哪个最小吗?(学生交流讨论)。
(3)、怎么验证你的发现呢?(引导学生通过计算验证自己的发现)。
小结:不管怎样拼,每次都会减少两个长方形面的面积;而减少的面积越少,拼成的大长方体的表面积就越大。
二、拼拼说说。
1、课件演示:用6个体积是1立方厘米的正方体可以拼成不同的长方体。
问:哪个长方体的表面积?大多少?
学生观察,并动手拼一拼,再体积讨论交流,交流时请学生说说你是怎么想的。
(教师应侧重引导学生应用前面发现的规律,并通过对拼成的每个长方体的具体分析得出。)。
2、拼10包火柴盒,包成一包有几种包法?怎样包装最节省包装纸。
学生分组操作讨论交流。
教师引导学生具体分析每一种包装方法,并适当说明理由。
“怎样包装最省纸”就是什么最少?(拼成的长方体的表面积最小)。
怎样拼最少呢?(5盒叠一起,并排两叠)。
三、全课小结。
通过这节实践活动课,你知道了什么?
“相邻体积单位间的进率”教学设计。
一、复习导入。
1、教师提问: 。
(3)我们认识的体积单位有哪些?
板书:立方米立方分米立方厘米。
二、自主探索验证猜测。
1、教学例11。
(1)挂图出示一个棱长1分米的正方体和一个棱长10厘米的正方体。
(2)提问:这两个正方体的体积是否相等?你是怎样想的?
(引导学生根据两个正方体棱长的关系作出判断,即:1分米=10厘米,两个正方体的棱长相等,体积就相等。)。
(3)用图中给出的数据分别计算它们的体积。
学生分别算一算,然后在班内交流:
棱长是1分米的正方体体积是1立方分米;(板书:1立方分米)。
棱长是10厘米的正方体体积是1000立方厘米。(板书:1000立方厘米)。
(4)根据它们的体积相等,可以得出怎样的结论?
1立方分米=1000立方厘米(板书:=)。
(5)谁来说一说,为什么1立方分米=1000立方厘米?
2、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?
学生在小组里讨论。(板书:立方米=1000立方分米)。
引导学生把棱长1米的正方体和棱长10分米的正方体进行比较,并通过计算得出:1立方米=1000立方分米。
三、巩固深化。
1、出示书第30页的“练一练”。
学生先独立完成。
交流你是怎样想的。
2、出示练习七第1题。
学生独立完成表格。
班内交流:说说长度、面积和体积单位有什么联系?
而它们的进率是不同的,你能说说它们每相邻两个单位间的进率分别说多少呢?
3、出示练习七的第2题。
学生先独立完成。
交流:你是怎样想的。
指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。
4、出示练习七的第3题。
学生独立完成。
交流:结合前两题说说怎样把高级单位的数量换算成低级单位的数量,再结合后两题说说怎样把低级单位的数量换算成高级单位的数量。
5、出示练习七的第4题。
学生独立完成后集体交流。
四、课堂总结。
通过这节课的学习,你有什么收获?
表面积的变化说课稿篇十四
课前思考1:
课堂上的活动要在学生动手操作的基础上及时进行讨论和交流。教师在课堂上要有较强的组织、调控能力,不能让操作活动流于形式。
第一环节中要将两个1立方厘米的正方体拼成一个长方体,让学生感受到不管怎么拼,拼成的长方体的体积是原来两个正方体体积和,拼成的长方体的表面积比原来两个正方体表面积的和少了2个面的面积。
第二环节中组织学生将3个、4个、5个------这样的正方体拼成一个长方体,研究表面积的变化,发现其中的规律,规律有多种表述方式,只要符合题目意思就可以。课堂上要多给学生表达的机会,教师还要及时给予鼓励性评价。
第三环节中将两个相同的长方体拼成大长方体,引导学生发现表面积的变化。
“拼拼说说”栏目里变化了拼法,不但把正方体拼成一行,还拼成两行。教学中要仔细地体会拼的活动和研究教材里的示意图。最后为10盒火柴设计一个最节省的包装方案,是应用前面拼正方体或长方体的经验:重叠的面越大,表面积减少越多;两两相拼的次数多,减少的面积也多。这两条经验要灵活地、综合地应用,才能得到理想的方案。这对空间观念和思维能力是很好的锻炼。
课前思考2:
长正方体表面积和体积的实际问题在生活中有很多类型,在前面学习中我们将能想到的各种类型都通过习题进行了巩固训练,但在前面的学习中,都是一题一个类型,没有像今天教材上这样,将几个相关知识点通过一系列的数学活动来揭示,教材上这样的安排,对发展学生的思维是有益的。
在课堂教学中,要引导学生先通过直观操作,建立表象,再逐步提升,发现蕴涵着的规律,逐步发展学生的抽象思维。
对长方体的包装,我想不能仅仅限于通过实际操作,发现火柴盒最省的包装方法,还应进一步提升,也要通过学习活动,引导学生掌握长方体的最省的包装方法,这也有一定规律的,这个规律也要引导学生掌握,可能今天课堂上余下的时间并不多了,可利用自习课继续研究,一定要研究透彻!不能仅仅停留在操作层面!
课后反思1:
本课时的内容需要学生在动手操作中发现规律,所以课前我就布置学生要准备好学具。整节课上得比较顺利,特别是在研究若干个正方体拼成一个长方体,表面积和体积会发生什么变化时,学生们学习热情高涨,在动手操作后研究出了其中的变化规律,而且两个班中都有几位学生用自己的语言总结出了规律。第二环节中组织学生研究两个相同的长方体拼成三个不同的长方体时,由于学具中没有相应的长方体,所以学生无法操作,我在课前也疏忽了这一点,否则可以让学生准备两个完全相同的长方体纸盒来代替学具进行操作。跳过操作这一环节,我直接让学生通过计算来验证自己的猜想。
本课中因为有了多次的操作和计算验证,学生们都能很好地理解重叠的面积越大,表面积减少越多;两两相拼的次数越多,减少的面积也越多。
课后反思2:
由于这课内容比较多,所以在课前要求学生提前预习。课堂教学中,先使用小正方体,实际操作(将小正方体拼搭成一行),再计算来验证课前预习的猜测,并将发现的规律上升到一定的高度。再将这个内容适当拓展:将6个小正方体拼搭成几行几列的状况,计算表面积减少了多少?使学生体会到这时减少的面更多了,只要找到拼搭的拼缝是几条,那么减少的面只要再乘2即可。
再组织学生观察两个同样的长方体的拼搭,先估计哪种拼搭后的大长方体的表面积最大?哪种最小?你是怎样想的?并计算出三种不同拼搭后的大长方体的表面积验证刚才的猜测。再将这个内容拓展:如果有4块这样的长方体,那么怎样拼搭表面积最小?怎样拼搭表面积最大?要求学生画出拼搭后的示意图,并计算拼搭后的大长方体的表面积,组织学生板演,再比较拼搭后的表面积的分别减少了哪几面?最后得出拼搭后表面积最小的拼搭方法。追问:现在只有4块,大家在计算时使感觉很麻烦,如果有10块,也让你找到表面积最小的拼搭方法,你感觉怎样?其实,这样的问题有更巧妙的解决办法,想学吗?于是组织学生学习很快算最小表面积的方法:(1)计算4块小长方体体积;(2)将体积数分解质因数,使拼搭后的长、宽、高三个数据越接近,它的体积就越小。
列成算式:5×4×3×4:
(1)5×(4×2)×(3×2)=5×8×6。
(2)(5×2)×(4×2)×3=10×8×3。
(3)5×4×(3×4)=5×4×12。
(4)(5×4)×4×3=20×4×3。
在这些方案中,第一种方案中的长、宽、高数据最接近,所以第一种拼搭方法表面积最小!反之拼搭后的表面积最大!
掌握了这个方法,那么10包火柴盒包装后哪种表面积最省?学生就不会用列举的方法,既麻烦又不一定找到的答案是最省的方案!
课后反思3:
本节课,在体验规律中,每次操作完学具后,安排了小组进行了讨论:如比较一下拼成的长方体的表面积与原来两个正方体的表面积之和,是否相等?将3个、4个甚至更多个相同的正方体摆成一行,拼成一个长方体,表面积比原来减少几个正方形面的面积?其中有什么规律吗?将两盒长方体形状的巧克力包成一包,可能有几种不同的包装方法?哪种方法包装纸最省?等问题在小组里讨论、交流各自的想法。这样不仅为学生提供动手操作、观察以及交流讨论的平台,而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强团队协作意识。
本节课同学们学习兴趣浓厚,积极主动,课堂上学生通过动手操作,认真观察,独立思考,互相讨论,合作交流,发现了知识,领悟了知识,品尝到了成功的喜悦。
表面积的变化说课稿篇十五
《表面积的变化》这是一节实践活动课,是在学生认识并掌握了长方体、正方体特征及会计算长方体与正方体表面积的基础上教学的。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成。为了使学生更好地理解表面积的变化,我加强动手操作,按照创设情境实践操作自主探究掌握规律的教学流程进行教学。
新课伊始,我利用多媒体创设情境,带领同学们到商场看看有关商品的包装问题,让学生说一说为什么我们所见到的都是用这种样式进行包装呢这一情境,引发学生思考。这样设计能刺激学生产生好奇心,进而唤醒学生强烈的参与意识,产生学习的需要,为探索正方体和长方体在拼摆过程中表面积的变化打下了良好的基础。
《新课标》明确指出:数学的学习过程不是让学生被动的吸收教材和教师给出的现成结论,而是由一个学生亲自参与的、生动活泼的、主动的和富有个性的过程。因此,本节课我安排了4次动手操作探究规律的活动:
活动二:用两个相同的长方体拼成大长方体,表面积的变化情况。
活动三:用若干个相同的正方体拼成大长方体,表面积的变化情况。
活动四:用若干个相同的长方体拼成长方体,表面积的变化情况。
每次操作完学具后,我又安排了小小组进行了讨论:如比较一下拼成的长方体的表面积与原来两个正方体的表面积之和,是否相等?将3个、4个甚至更多个相同的正方体摆成一行,拼成一个长方体,表面积比原来减少几个正方形面的面积?其中有什么规律吗?将两盒长方体形状的巧克力包成一包,可能有几种不同的包装方法?哪种方法包装纸最省?等问题在小组里讨论、交流各自的想法。这样不仅为学生提供动手操作、观察以及交流讨论的平台,而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强团队协作意识。
在学生掌握了表面积的变化规律后,安排了拼拼说说,运用规律这一环节。用八个相同的正方体拼成一个长方体,表面积的变化情况;把一个面积较大的长方体和一个面积较小的正方体拼成一个图形,这个图形的表面积的变化情况。培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,感受到学习的乐趣。
表面积的变化说课稿篇十六
本课《表面积的变化》是在学生认识并掌握了长方体、正方体特征及会计算长方体与正方体表面积的基础上教学的,主要研究几个相同的正方体排成一行拼起来,得到的长方体与原来几个正方体表面积之和的关系,发现并理解其中的变化规律,培养学生的空间观念。我在传授新知时主要以学生活动为主,让学生在操作活动中发现规律,解决问题。
新课标强调,教学是教与学的交往、互动,师生双方相互交流、相互沟通、相互启发、相互补充,在这个过程中教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求得新的发现,从而达到共识、共享、共进,实现教学相长和共同发展。为了达成这一目标,我在授课这一环节中安排了2个活动。活动一:探索2个棱长是1厘米的正方体拼成长方体的表面积变化情况,通过让学生动手拼一拼、看一看、指一指、想一想这些活动,让学生体会表面积发生了变化,体验两个正方体拼成长方体后表面积减少了原来两个面的面积。通过学生自己动手操作,让多种感官协同活动,使具体事物形象在头脑中得到全面的反映。活动二:探索3、4、5个棱长是1厘米的正方体拼成长方体的表面积变化规律,进而加深到用n个棱长为1厘米的小正方体呢?教材对这节课的要求没有明确的规定。比如在活动:学生很容易发现,每增加一个正方体,表面积就减少两个拼接面。找到“减少的面的个数”与“正方体的个数”之间的关系才是最关键的。为了让学生发现这些规律,安排了活动二,学生发现这些规律还是有些困难的,因此我在修改教案时增加了一个环节:我就直接提出问题“拼接条数”、“正方体的个数”与“减少的面的个数”之间有什么关系吗?再进一步就举例,五个正方体拼在一起,有4个拼接处,6个、7个……n个呢?每个拼接处减少两个面,所以可以用公式(正方体的个数-1)×2来表示减少的面的个数。在寻找“减少的面数”与“减少的面积数”、“拼成的长方体的表面积”有什么关系吗?学生在用棱长为1厘米的小正方体时,很快找出规律,但接着将棱长加深到棱长是a时,表面积减少和拼成的长方体的表面积时,找出这个环节上的表现不佳,这是本节课的难点,对五年级的学生来说确实存在困难,课后我反思在此环节上我的引导不到位,并没有找到学生通俗易懂的方法,比如引导时我可以考虑引导学生从拼成的长方体剩下多少个正方形的面,发现剩下面与正方体的个数有什么规律来进行引导,可能效果会好。
本节课通过让学生把几个正方体拼成较大的长方体,边操作、边思考,进一步发现表面积发生了变化,初步感到这个变化存在着一定的规律。经历了操作、观察、猜测、分析、实验、验证等活动过程,使学生头脑中有“拼”这一表象,建立了空间观念。这两个活动都是学生通过动手操作、仔细观察、认真思考、合作交流等形式,在引领中体验发现物体拼摆过程中表面积的变化规律,接着用n个棱长为a厘米的正方体排成一行拼成一个长方体让学生思考,进一步巩固发现的规律,提高了学生空间观念的积累水平,发展了数学思考。
在学生掌握了表面积的变化规律后,安排了拼拼说说,运用规律这一环节。
培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,感受到学习的乐趣。
表面积的变化说课稿篇十七
《表面积的变化》是在学生认识并掌握了长方体、正方体特征及会计算长方体与正方体表面积的基础上教学的。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成。为了使学生更好地理解表面积的变化,我加强动手操作,按照创设情境——实践操作——自主探究——掌握规律的教学流程进行教学。结合本课的教学实际情况,谈几点反思:
一、创设情境。
新课伊始,我通过创设情境,带领同学们到商场看看有关商品的包装问题,让学生说一说“为什么我们所见到的都是用这种样式进行包装呢”这一情境,引发学生思考。这样设计能刺激学生产生好奇心,进而唤醒学生强烈的参与意识,产生学习的需要,为探索正方体和长方体在拼摆过程中表面积的变化打下了良好的基础。
二、引导参与。
数学的学习过程不是让学生被动的吸收教材和教师给出的现成结论,而是由一个学生亲自参与的、生动活泼的、主动的和富有个性的过程。本节课,在体验规律中,我安排了3次拼拼算算:活动一:两个正方体拼成长方体后表面积的变化情况。活动二:用若干个相同的正方体拼成大长方体,表面积的变化情况。活动三:用两个相同的长方体拼成大长方体,表面积的变化情况。每次操作完学具后,我又安排了小组进行了讨论:如比较一下拼成的长方体的表面积与原来两个正方体的表面积之和,是否相等?将3个、4个甚至更多个相同的正方体摆成一行,拼成一个长方体,表面积比原来减少几个正方形面的面积?其中有什么规律吗?将两盒长方体形状的巧克力包成一包,可能有几种不同的包装方法?哪种方法包装纸最省?等问题在小组里讨论、交流各自的想法。这样不仅为学生提供动手操作、观察以及交流讨论的平台,而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强团队协作意识。
三、以练促思。
在学生掌握了表面积的变化规律后,安排了拼拼说说,运用规律这一环节。用八个相同的正方体拼成一个长方体,表面积的变化情况;把一个面积较大的长方体和一个面积较小的正方体拼成一个图形,这个图形的表面积的变化情况。培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,感受到学习的乐趣。
总之,本节课同学们学习兴趣浓厚,积极主动,课堂上学生通过动手操作,认真观察,独立思考,互相讨论,合作交流,发现了知识,领悟了知识,品尝到了成功的喜悦。
表面积的变化说课稿篇十八
《长方体和正方体》单元最后一课时是一节实践活动课,主要探讨相同的正方体拼成的大长方体表面积的变化规律。这一课如何去教,备课组的老师曾在一起进行了初步研讨,大家提到最多的就是这一内容考试会考什么,学生最容易出现的错误是什么,采取怎样的策略防止学生少出差错,等等。显然,仅仅着眼于帮助学生应付考试的观念是狭隘的,教学时应更关注如何促进学生的有效发展。因此,在教材最后一部分“拼拼说说”的环节,我是这样组织教学的。
书上原来的问题是“哪个长方体的表面积大?大多少?”只要求学生通过简单地数一数减少的面,计算拼成的长方体表面积。而我把问题改成“哪个长方体的表面积小?为什么?”主要是为了引导学生探索,体积一定时,物体表面积的变化规律。
学生通过学具操作,很快发现有两种不同的拼法。第一种拼法减少了10个小正方形的面,第二种拼法减少了14个小正方形的面,所以第二种拼法得到的长方体表面积小。
学生一时茫然。
各组学生完成了如下操作:
学生很快发现,当把第一种拼法分成两部分时,长方体增加了2个小正方形面,再把两部分拼在一起时,又减少了6个小正方形面,所以第二种拼法表面积小。
很多学生都认为这种方法简单,但就在这时,一个男生站了起来:“老师,你的要求是不能数,刚才我们比较的时候还不是数了吗?”
是啊,这是我备课时没有考虑到的。我灵机一动,在黑板上画了一个隐去了小正方体的示意图:
通过示意图很容易发现增加的两个面比较小,而减少的两个面却要大得多。
(按教材要求,教学内容已基本完成,以下是我对教材的进一步开发与尝试。)。
学生很快通过操作发现有以下三种拼法,其中第三种拼法的表面积最小。
学生摆出了以下四种拼法,第四种拼法的表面积最小。
师:如果用16个体积是1立方厘米的小正方体拼,拼成怎样的长方体表面积最小?
……。
师:从前面的四次操作中,怎样拼得的长方体表面积最大?怎样拼得的长方体表面积最小?
学生的讨论异常热烈,并很快发现拼成一长排,表面积最大,但对表面积最小的拼法表述却各不一样。
生1:表面积最小,就要尽可能地多摆几层。
大部分学生同意该生的意见,教师随接以12个小正方体为例,把图中的第二种拼法竖起来。
师:这个长方体共有6层,你能说它的表面积比3层(第四种拼法)的长方体表面积小吗?
生1很快补充:这种不能算真正的6层,如果把它推倒,只能算是一层2排。
师:那你的意思应该怎样表述更为准确呢?
生2:摆成的长方体既不能是一排,也不能是一层。
学生普遍同意这样的表述。
生3:我认为如果能拼成一个大正方体,就一定要拼成正方体,如果不能拼成大正方体,那么就尽可能地把它们拼成近似于正方体的形状。
生:就是拼成的长方体的长、宽、高要尽可能地接近。
生4:老师,我还发现,用小正方体拼长方体,与我们五年级时学的用小正方形拼长方形有相似的地方,也就是拼得的图形越接近正方形,它的周长就越小。而这里是拼的形体越接近正方体,它的表面积就越小。
师:当然不要忘记前提条件,那就是小正方体的个数或小正方形的个数同样多。是吗?
(片段二教学结束,应该说已经很好地完成了我预定的教学目标,但我认为还可以进一步将表面积的'变化规律进行简单的拓展。)。
学生一致认为把它堆成正方体的沙堆,它的表面积最小,而把这个沙堆平铺在地面上,铺得越薄,它的表面积就越大。
师:你们的想法很好!不过老师还要告诉你们,如果把它堆成一个球,它的表面积比正方体还要小。教室里一下子安静了一来,学生似乎都陷入了沉思。
师:冬天小狗、小猫在睡觉时总喜欢把身体蜷缩成一团,这是为什么?
生:这样可以更暖和。
师:为什么蜷缩成一团睡觉就更暖和呢?能否联系我们今天学的表面积变化规律想一想?
生:蜷缩成一团,身体更接近于一个球体,表面积最小,所以热量不容易散发出去。
因为对教材内容做了适当拓展,因此,我比其他教师多用了一课时才完成了教学。这一课时对学生应付考试或许没有直接的作用,但我认为是值得的。因为我充分利用教材提供的素材,适度拓展,引导学生利用已有的知识经验,探索了富有数学内涵的规律。
在这一过程中,学生经历了观察、比较、归纳、概括的过程,初步体验了从简单的数学现象出发探索一般数学规律的方法。应该说,在这一过程中,学生会发现数学的奇妙,会发现数学的乐趣。他们一定惊讶于小狗、小猫居然也“精通”数学!其实教材中像这样好的学习素材并不缺少,缺少的只是我们发现的眼睛!
表面积的变化说课稿篇十九
《表面积的变化》是在学生认识并掌握了长方体、正方体特征及会计算长方体与正方体表面积的基础上教学的。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成。根据六年级学生的年龄、心理、认知规律特点,遵循数学来源于生活,又运用于生活的原则,本课从学生已有的经验出发,倡导教师为主导,学生为主体的教学理念。为了使学生更好地理解表面积的变化,我加强动手操作,按照创设情境——实践操作——自主探究——掌握规律的教学流程进行教学。通过拼拼、算算、观察、说说、讨论充分调动学生学习的积极性,让学生在实际操作与问题情境中主动地探究解决问题的方法,强化学生合作学习、独立思考。本节课使用多媒体教学手段,力求借助这些手段节约时间,突破难点,提高效率,并在恰当时机给与科学的评价,以达到本课的教学目标。结合本课的教学实际情况,谈几点反思:
好的开头是成功的一半。新课导入是课堂教学的重要环节,是一堂课成功的起点。本节课一开始从生活实例引入,利用信息技术手段,带领同学们到商场看看有关商品的包装问题,感受数学与生活的联系。创设了“为什么我们所见到的都是用这种样式进行包装呢?这其中一定有一些奥秘。”这一情境,引发学生思考。这样设计能刺激学生产生好奇心,进而唤醒学生强烈的参与意识,产生学习的需要,为探索正方体和长方体在拼摆过程中表面积的变化打下了良好的基础。
间观念。学生完成表格时,由于表头是3、4、5及省略号,所以学生摆了3、4、5个拼成长方体的情况后,就急于表现,忽略了表格中的省略号,其实体验是不够的。于是教者又用挑战性的语气提问:如果用6个、8个拼是个什么情况,再操作验证,从而使学生把关注点落到找寻规律上,能把表格中的数据综合起来看。通过这些引领,学生的空间观念也得到了培养。在学生充分交流的基础上,教者再带着学生到表格中再次体验规律,让规律成为每一位学生的发现。活动三:用两个相同的长方体拼成大长方体,表面积的变化情况。学生的动手操作是建立空间观念的重要手段,通过学生动手操作,在活动中了解三种拼法,增强体验。通过动手操作、观察、直观思考、合作交流等活动,让学生体验、发现变化规律中,提高空间观念的积累水平,发展数学思考。运用表格的形式对拼成的三个大长方体进行异同点的比较,使学生清楚地认识物体拼摆过程中表面积的变化规律。
每次操作活动后,都让学生先独立思考,再在小组内交流自己的想法。本节课上,安排了多次讨论交流:比较拼成的长方体的表面积与原来两个正方体的表面积之和,你有什么发现?在拼摆的过程中,你们发现了什么规律?比较用两个同样的长方体拼成三种不同的较大的长方体的相同点和不同点;用6个相同的1立方厘米的正方体拼成的不同的长方体的表面大小的比较;为产品包装厂家会考虑些什么?10盒火柴怎么包装最省材料等。同学们在小组里讨论、交流各自的想法。这样不仅为学生提供动手操作、观察以及交流讨论的平台,而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强团队协作意识。
2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。
3、使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好数学的自信心。
明白重叠的面越大,表面积减少得越多;两两相拼的次数多,减少的面积也多,从而使学生的空间观念和思维能力得到很好的锻炼。
总之,本节课同学们学习兴趣浓厚,积极主动,课堂上学生通过动手操作,认真观察,独立思考,互相讨论,合作交流,发现了知识,领悟了知识,品尝到了成功的喜悦。
表面积的变化说课稿篇二十
《面积的变化》是利用学生对长方体、正方体表面积计算的已有认识,通过把几个相同的正方体或长方体拼成新的长方体的操作活动,探索发现拼接前后表面积的变化规律,感受数学学习的趣味性和挑战性,发展空间观念和总结、归纳数学规律的能力。为了使学生教好地理解表面积的变化,我加强动手操作,按照情境导入,唤醒意识——拼拼算算,体验规律——拼拼说说,运用规律——的教学流程进行教学。结合本课的教学实际情况,谈几点反思:
导入部分,我创设了以下情境:
出示3盒包装的面纸。提问:面纸为什么这样包装?
生1:这样包装比较省包装纸。。
生2:携带方便。
……。
师:今天我们就来研究与包装有关的数学问题。
这一情境设置,引发了学生的思考,刺激了学生产生学习的好奇心,唤醒了学生强烈的参与意识,产生了学习的需要,为探索正方体和长方体在拼摆过程中表面积的变化打下了良好的基础。
《新课标》明确指出:数学的学习过程不是让学生被动的吸收教材和教师给出的现成结论,而是由一个学生亲自参与的、生动活泼的、主动的和富有个性的过程。本节课,在体验规律中,我安排了3次拼拼算算:活动一:两个正方体拼成长方体后表面积的变化情况。活动二:用若干个相同的正方体拼成大长方体,表面积的变化情况。活动三:用两个相同的长方体拼成大长方体,表面积的变化情况。每次操作完后,我又安排了小小组进行了讨论:如(1)比较一下拼成的长方体的表面积与原来两个正方体的表面积之和,是否相等?(2)将3个、4个甚至更多个相同的正方体摆成一行,拼成一个长方体,表面积比原来减少几个正方形面的面积?其中有什么规律吗?并对猜测进行了验证。
(3)将两个长方体拼成一个大长方体,可能有几种不同的拼法?哪种拼法表面积最大?哪种拼法表面积最小?为什么?等问题在小组里讨论、交流各自的想法。并让学生通过计算验证用两个相同的长方体拼成大长方体的讨论结果是否正确,验证时出现了两种方法:方法1:用拼成长方体的长、宽、高分别求三个长方体的表面积。方法2:计算拼成的三种长方体分别比原来两个长方体的表面积减少的面的面积。减少的面积越多,拼成长方体的表面积越大。再比较这两种方法,进行方法的优化。
这样不仅为学生提供动手操作、观察以及交流讨论的平台,而且有利于学生克服胆怯的心理障碍,大胆参与,发挥了学生的主动性,同时还增强了团队协作意识。
在学生掌握了表面积的变化规律后,我安排了拼拼说说,运用规律这一环节。
我让学生在小组里说说哪个长方体的表面积大?大多少?
集体交流后,学生明确:拼成一排的方法减少的表面积最少,所以表面积最大。
这一环节培养了学生优化思维和求异思维的能力,促进了课堂效益的提高,也使学生在愉快的气氛中,感受到学习的乐趣。
总之,本节课同学们学习兴趣浓厚,积极主动,课堂上学生通过动手操作,认真观察,独立思考,互相讨论,合作交流,发现了知识,领悟了知识,品尝到了成功的喜悦。
表面积的变化说课稿篇二十一
本节课《表面积的变化》是在学生认识并掌握了长方体、正方体特征及会计算长方体与正方体表面积的基础上教学的。学生对这一内容有些生活经验,但是他们已有经验尚处于浅层次状态,离开了实物,空间思维还没有真正形成。
为了使学生更好地理解表面积的变化,在体验规律中,安排了三次探究活动:
1、几个正方体排成一排拼成长方体。2、用若干个相同的正方体拼成大长方体。
3、用两个相同的长方体拼成大长方体。并且我围绕这一知识点进行了大胆的设计有了如下突破:一、设计的思维过程相对完整。以拼拼算算—拼拼说说—实际运用为主要线索,让学生在主题突出的问题情境下经历全过程,获得解决问题的能力。二、始终抓住主要方法来解决问题。让学生学会举一反三,对于多个长方体正方体拼成不同的长方体表面积的变化情况有了深刻的印象。让学生抓住主要方法就可万变不离其宗。三、用课件生动再现情境,帮助学生理解。因本微课学习过程不能实践操作,故充分利用课件的优势,生动形象地使学生理解了教学内容。
总之,本节课学习学生兴趣浓厚,积极主动,课堂上学生通过动手操作,认真观察,独立思考,互相讨论,合作交流,发现了知识,领悟了知识,品尝到了成功的喜悦。
表面积的变化说课稿篇二十二
1、教师演示:把两个体积是1立方厘米拼成一个长方体。
提问:体积有没有变化?
学生观察、交流、讨论(可以计算、可以用肉眼观察)鼓励方法的多样性。
小结:把2个体积是1立方厘米的正方体拼成一个长方体,体积没有发生变化。
追问:把3个体积是1立方厘米的正方体拼成一个长方体,体积有没有发生变化?
再次小结:同样大小的正方体拼成一个长方体,体积不发生变化。
2、课件再次演示:把两个体积是1立方厘米拼成一个长方体。
提问:表面积有没有发生?
让学生通过拼一拼,计算或观察的方法来发现,在小组讨论,再集体交流。
组织交流:a两个同样大小的正方体拼成长方体,表面积发生变化了吗?
b拼成长方体后表面积是增加了还是减少了?
c那么具体减少的是哪几个面的面积呢?(请学生指指摸摸)明确表面积减少了原来2个正方形面的面积,即减少了2平方厘米。
3、深入探究:
课件演示操作要求:
(1)、如果用3个、4个正方体拼成长方体,表面积又发生了什么变化呢?(排法要求是排成一排)。
(学生自己猜想、操作、探究、验证)。
提醒学生把相关数据及时填在表中。并交流填写结果。
(2)、当正方体增加到5个6个时,表面积会怎么变化呢?
学生先猜想,再通过拼一拼来验证。
(3)、发现规律:你能联系操作和填表的过程提出自己发现的规律吗?
给予充分时间让学生讨论。
交流(可以有多种表述,只要符合题意即可)。
从最简单的体积变了,表面积变了,或每一种具体拼法减少了哪两个面的面积都是可以的。
(1)、学生操作探究讨论。
交流:体积没有变,表面积变了。都比原来减少了2个面的面积,但不同的拼法减少的面积就不同。(交流时课件演示三种不同的拼法)。
(2)、你能看出哪个大长方体的表面积最大,哪个最小吗?(学生交流讨论)。
(3)、怎么验证你的发现呢?(引导学生通过计算验证自己的'发现)。
小结:不管怎样拼,每次都会减少两个长方形面的面积;而减少的面积越少,拼成的大长方体的表面积就越大。
1、课件演示:用6个体积是1立方厘米的正方体可以拼成不同的长方体。
问:哪个长方体的表面积?大多少?
学生观察,并动手拼一拼,再体积讨论交流,交流时请学生说说你是怎么想的。
(教师应侧重引导学生应用前面发现的规律,并通过对拼成的每个长方体的具体分析得出。)。
2、拼10包火柴盒,包成一包有几种包法?怎样包装最节省包装纸。
学生分组操作讨论交流。
教师引导学生具体分析每一种包装方法,并适当说明理由。
怎样包装最省纸就是什么最少?(拼成的长方体的表面积最小)。
怎样拼最少呢?(5盒叠一起,并排两叠)。
通过这节实践活动课,你知道了什么?
相邻体积单位间的进率教学设计。
1、教师提问:
(1)常用的长度单位有哪些?相邻的两个长度单位间的进率是多少?板书:米分米厘米。
(3)我们认识的体积单位有哪些?
板书:立方米立方分米立方厘米。
提问:你能猜出相邻两个体积单位间的进率是多少呢?引出课题:相邻体积单位间的进率。
1、教学例11。
(1)挂图出示一个棱长1分米的正方体和一个棱长10厘米的正方体。
(2)提问:这两个正方体的体积是否相等?你是怎样想的?
(引导学生根据两个正方体棱长的关系作出判断,即:1分米=10厘米,两个正方体的棱长相等,体积就相等。)。
(3)用图中给出的数据分别计算它们的体积。
学生分别算一算,然后在班内交流:
棱长是1分米的正方体体积是1立方分米;(板书:1立方分米)。
棱长是10厘米的正方体体积是1000立方厘米。(板书:1000立方厘米)。
(4)根据它们的体积相等,可以得出怎样的结论?
1立方分米=1000立方厘米(板书:=)。
(5)谁来说一说,为什么1立方分米=1000立方厘米?
2、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?
学生在小组里讨论。(板书:立方米=1000立方分米)。
引导学生把棱长1米的正方体和棱长10分米的正方体进行比较,并通过计算得出:1立方米=1000立方分米。
1、出示书第30页的练一练。
学生先独立完成。
交流你是怎样想的。
小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。
2、出示练习七第1题。
学生独立完成表格。
班内交流:说说长度、面积和体积单位有什么联系?
而它们的进率是不同的,你能说说它们每相邻两个单位间的进率分别说多少呢?
3、出示练习七的第2题。
学生先独立完成。
交流:你是怎样想的。
指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。
4、出示练习七的第3题。
学生独立完成。
交流:结合前两题说说怎样把高级单位的数量换算成低级单位的数量,再结合后两题说说怎样把低级单位的数量换算成高级单位的数量。
5、出示练习七的第4题。
学生独立完成后集体交流。
通过这节课的学习,你有什么收获?
【本文地址:http://www.xuefen.com.cn/zuowen/17840982.html】