七年级数学教案正数与负数(汇总17篇)

格式:DOC 上传日期:2023-12-10 17:40:12
七年级数学教案正数与负数(汇总17篇)
时间:2023-12-10 17:40:12     小编:书香墨

教案的编写过程中要注意教材的结构和内容的整合,注重知识点的串联和扩展。那么我们如何才能编写一份优秀的教案呢?首先,需要明确教学目标,确保目标与教学资源相适应。其次,要合理安排教学内容,确保各个知识点之间有逻辑性和连贯性。还应设计合理的教学过程,灵活运用各种教学方法,激发学生的学习兴趣和积极性。最后,要制定科学评价方式,及时掌握学生的学习情况,为下一步的教学提供参考。紧密结合素质教育的教案范文,培养学生全面发展。

七年级数学教案正数与负数篇一

初中生爱玩、好动,处于形象思维向抽象思维过渡的阶段,过分抽象的问题,学生往往感到乏味而百思不得其解。而多媒体具有形象、直观的特点,利用它为学生构建思维想象的平台,营造良好的学习氛围,充分调动学生学习的积极性、自觉性,用以达到以快乐的形式去追求知识的目的;新课程标准要求:课堂教学要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动,内容的呈现应采用不同的表达方式,以满足多样化的学习需求。教学过程中。要加强学生的动手实践、自主探索与合作交流的意识,并着力培养学生解决实际问题的能力。

(第1课时)。

人教版九年级数学上册。

山东省滨州市滨城区滨北街道办事处北城中学耿新华。

邮编:256651联系电话:15865403584。

教材分析:

一、教材所处的地位及作用:“1.1正数和负数”一节,是人教版七年级上册第一章第一节的内容,本节内容主要是学习正数、负数和零的定义、联系。是本章有理数学习的基础。

二、教学目标。

知识与技能:借助生活中的实例理解有理数的意义,会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量。

过程与方法:1.体会负数引入的必要性,感受有理数应用的广泛性,并领悟数学知识来源于生活,体会数学知识与现实世界的联系。

2.能结合具体情境出现并提出数学问题,并解释结果的合理性。

情感态度与价值观:乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。

三、教学重、难点。

重点:体会负数引入的必要性和有理数应用的广泛性,能应用正负数表示生活中的具有相反的意义的量。

难点:能应用正负数表示生活中的具有相反的意义的量,养成把数学应用于生活实际问题的习惯。

教学过程。

教师在轻松欢快的音乐中演示第一节首图片为主体的多媒体课件。

环节教师活动学生活动设计意图。

创设情境导入新课。

自主学习。

师生互动。

合作探究。

达标检测。

学习总结。

教师出示图片说明自然数的产生、分数的产生.接着。

出示问题。

一、出示本节课的学习目标。

1、通过生活中实例认识到引入负数的必要性。

2、知道什么是负数,零,正数。

4、能用正数、负数表示实际生活中具有相反意义的量。

二、出示本节课的自学提纲。

1、.知识点1:正数、负数的概念---------阅读教材第2页,像3、2、0.5、1.8%这样比0大的数叫,根据需要,有时在正数前面加上“+”,如+5,,,,…。正数前面的“+”,一般省略不写:而像-3、-2、-3.5%这样在正数前面加上“—”号的数叫。如-6,,…。“-6”读作。

2、知识点2:对“0”的理解--------阅读教材第2页。

0既不是数,也不是数,它是正数与负数的分水岭。它的意义很丰富,它既可以表示“没有”,也可以表示其它特定的意义。

3、知识点3;用正数和负数表示具有相反意义的量--------阅读教材第3页。

相反意义的量必须具有两个要素:一是它们的意义;二是它们都具有数量,而且一定是量。

一、指导学生在本组内交流结果,收集每组不会的问题,试着让其他组解决。

二、教师收集全班不会的问题,帮着解决。

做一做:(出示幻灯片)。

七年级数学教案正数与负数篇二

2.利用正负数正确表示相反意义的量(规定了指定方向变化的量)

3.进一步体验正负数在生产生活实际中的广泛应用,提高解决

实际问题的能力,激发学习数学的兴趣。

:深化对正负数概念的理解

:正确理解和表示向指定方向变化的量

活动流程图活动内容和目的

活动1 创设情景,引入新课

活动2 揭示规律

活动3知识应用

活动4 布置作业及小结通过复习回顾正负数的知识导入新课.

利用温度中的零度来解释与理解数0的意义。正负数表示相反意义的量。

通过生活实例理解正负数表示相反意义的量,及零的分界意义

回顾梳理知识,,培养学生的归纳总结能力,通过课外作业,使学生进一步理解,内化知识。.

问题与情境 师生行为 设计意图

[活动1]

复习回顾

正负数的概念

问题1:

有没有一种既不是正数又不是负数的数呢?

问题2:引入负数后,数按照两种相反意义的量来分,可以分成几类?师生一起回顾:

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

和-5℃,这里+7℃和-5℃就分别称为正数和负数.

把0以外的'数分为正数和负数,起源于表示两种相反意义的量.数0耽不是正数,也不是负数也应看作是负数定义的一部分.在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。

所举的例子,要考虑学生的可接受性.数0既不是正数,也不是负数应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.

[活动2]

问题3:教科书第6页例题

展示老师的存折

1000表示什么意思+1500表示什么意思?

,例题6

例题7

对两道例题进行分析说明

说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验增长和减少是两种相反意义的量,要求写出体重的增长值和进出口额的增长率,就暗示着用正数来表示增长的量。

归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).

类似的例子很多,如:

水位上升-3m,实际表示什么意思呢?

收人增加-10%,实际表示什么意思呢?

等等。

不必向学生提出.

通过具体实例,激发学生的学习热情,调动学生的学习兴趣,使学生对正负数表示相反意义的内涵有比较充分的感知,深层次的理解相反意义的量,正负数在实际应用中的意义。

[活动3]

巩固练习

教科书第6页练习学生独立完成练习,交流、展示解题过程。教师巡视,收集学生在本次活动中有价值的信息,结合学情做必要点评。

学生思考问题,谈谈自己的观点,并说明理由。通过练习使学生从不同的侧面,不同的视角进一步深化对频率估计概率的理解与认识.

[活动4]

课堂小结1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

2,怎样用正负数表示具有相反意义的量?以问题的形式,要求学生思考交流:

学生自己总结发言,其他学生补充完善,教师做必要的归纳总结

(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)总结回顾学习内容,帮助学生学会归纳,反思。

通过归纳总结,培养学生的归纳总结能力,通过课外作业,使学生进一步理解,内化知识。

[活动5]

本课作业必做题:教科书第7页习题1.1第3,6,7,8题学生独立完成作业反馈教学效果。

七年级数学教案正数与负数篇三

2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.

深化对正负数概念的理解.

正确理解和表示向指定方向变化的量.

(一)知识回顾和理解。

通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

[问题1]:“零”为什么既不是正数也不是负数呢?

学生思考讨论,借助举例说明.

参考例子:用正数、负数和零表示零上温度、零下温度和零度.

思考“0”在实际问题中有什么意义?

归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.

如:水位不升不降时的水位变化,记作:0m.

(二)深化理解,解决问题。

[问题3]:(课本p3例题)。

【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:。

美国减少6.4%,德国增长1.3%,。

法国减少2.4%,英国减少3.5%,。

意大利增长0.2%,中国增长7.5%.

写出这些国家这一年商品进出口总额的增长率.

解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的`增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.

巩固练习。

1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

2.让学生再举出一些常见的具有相反意义的量.

3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:。

中国减少866,印度增长72,。

韩国减少130,新西兰增长434,。

泰国减少3247,孟加拉减少88.

(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;。

(2)如何表示森林面积减少量,所得结果与增长量有什么关系?

(3)哪个国家森林面积减少最多?

(4)通过对这些数据的分析,你想到了什么?

阅读与思考。

问题:1.直径为30.032mm和直径为29.97mm的零件是否合格?

2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.

(三)应用迁移,巩固提高。

1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是.

3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:。

星期一二三四。

增减-5+7-3+4。

类比例题,要求学生注意书写格式,体会正负数的应用.

(四)课时小结(师生共同完成)。

七年级数学教案正数与负数篇四

借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量。

二、过程与方法。

1、过程:通过实例引入负数,从而指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。

2、方法:讨论法、探究法、讲授法、观察法。

三、情感、态度、价值观。

乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。

〔重点难点〕本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。

正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。

关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。

教学建议。

这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.

为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。

一、负数的引入。

我们知道,数产生于人们实际生产和生活的需要。[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数。

在生活、生产、科研中经常遇到数的表示与数的运算的问题。

七年级数学教案正数与负数篇五

1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.

引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.

2.通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:

(1)数轴能反映出数形之间的对应关系.

(2)数轴能反映数的性质.

(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.

(4)数轴可使有理数大小的比较形象化.

3.对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.

七年级数学教案正数与负数篇六

掌握正数和负数的意义,会正确读写和表示;能正确区分正数和负数,知道零既不是正数也不是负数;掌握有理数的概念;会用正数和负数这样的数学语言来表示实际中具有相反意义的量。

一、课堂前奏。

师:我们先来看看"正"和"负"这两个字的含义。

正,这个字最早是一个象形字,在甲骨文中是用来指做事情的。正的组成是由上面的一横"一"和下面的止(止在古文中有代表足的含义)。甲骨文字形,上面一横是一个符号,表示方向、目标,下面是足(止),意思是向这个方位或目标不偏不斜地走去。最初的本义是指不偏斜,平正。后来这个字的引申意义就非常多了,但绝大部分的解释还是围绕本义的不偏斜,平正。例如,我们在形容一个的人刚直不阿,我们就是在说这个人为人正直、刚正、正派、正气凛然,还可以说这个人做事公正无私等。这个正字被用于学术中像物理中有正极、正电等;用在我们的数学中的主要有正方向、正方形、正面等,今天我们要用的则是正数、正号。

负,本义是倚仗、凭仗的意思。例如,《史记·廉颇蔺相如列传》中说"秦贪,负其强",就是说秦国贪图其他各个诸侯国的领土,是倚仗或凭仗自己国家的强大,有势力,有本事。后引申为背负的意思,如负荆请罪就是背负的意思;我们平时也经常说某人的负担很重,或者说是负债累累等,总之,负的含义不如正的含义好,总是有那么点不如意的地方,总是给人以沉重的感觉;它在学术中的应用如果在物理中,一般就是和正相反的意思,例如,有正极就必有负极;在数学中也用了表示与正相反的意义。当然,你说有正方形是不是就应该有负方形,这个先告诉大家是没有这个称呼的,那具体称号什么呀我们小学已经学习过了长方形、菱形、平行四边形等。大家学习时应该灵活应变,学会变通,不要让你举一反三你就死扣,那就不叫变通,更不是举一反三了,而是叫呆板,不开窍了。我们是来学习知识的,人家都说是越学越聪明,你别越学越傻,那就不行了。

言归正传,我们今天要学习的是正数和负数,即两个互为相反的数。正数,英语里面用了positive这个单词来表示"正","positive"这个单词含有一个正面的、积极向上的、乐观的意义。负数,同样英语也用了一个与positive意义相反的单词"negative",它含有负面的、消极的等的意思在里面。

大家看书上给我们举了我们常见的例子,天气预报。这里有一幅天气预报的画面,有哪位同学来模仿天气预报员的口气,给我们大家播报一下这幅画面的天气情况。

一位同学站起来,并向大家播报了天气情况。

生:有,零下。

师:那他为什么要读着零下呢?

生:因为温度很低,比零度还要低。

师:这幅画面上的零下都是怎么表示的呢?

生:每个数字前面都有一个减号(部分同学回答负号)。

生:沉默(不知如何准确回答)。

师:没关系。能够回答负号的同学说明我们课前是很用功的,做过预习的,这是我们学习最好的方法,就是要学会课前预习,这样他在课堂上能够准确说出负号,现在只需要理解为什么叫负号就可以了,这样他在学习的时候就比其他的同学要容易得多。课前预习是非常有好处的。(老师上课是需要不时向学生灌输学习的思想方法。)。

生(小声说话,或者说是嘀咕):你前面不是说了正数和正号,这里和正号相反的不就是负号了嘛。

生:用与减号相反的符号"+"表示。

师:非常正确。现在我们知道了表示方法,但是我们该怎么读呢?也就是说我们现在知道了怎么用数学符号去表示,或者说是会书写了。但是我们要说给别人听该怎么说呢?也就是该怎么读它呢?(正号!)正确。这两个符号在我们数学的术语里面又有了另外一个称呼,就是"+"在这里读着"正号","-"在这里读着"负号".这个读法是数学里面规定的,是我们日常用语中的习惯读法。这里的+5,+6而不是我们所说的加上5,加上6,加是一个运算过程,而正号只是一个符号,它可以和数字组合在一起作为是整体的,是一个整体的数字,是不含运算的。同理,这里的-5,-6它也不是减去5,、减去6,而是一个-5、-6的数字。为了和我们的加号和减号相区分,所以我们就给了它另外一种读法。

我们知道了读法,但是是不是非得都这样读呢?负号需要这样,而且必须按照规定的去读和写,但是正号就不一样了,比如说我们在天气预报时,我们只看到了10°c,而没有看到过+10°c吧?同样,我们也只听到了10°c,没有听到过零上10度嘛?有听到过的吗?有哪位同学曾经听到过说零上10度或看到过+10°c的?(均回答没有)所以说,正号我们在写的过程中也可以省略不写,读的时候也可以不用刻意去读出来。

师:现在我们知道了正号和负号,但是什么又是正数和负数呢?

生:带正号的数是正数,带负号的数是负数。

师:对了,不是这样的。而是我们把一种意义规定为正的,把另一种和它意义相反的量规定为负的,这样就产生了正数和负数,它是根据实际需要产生的。这里,我们需要总结一下正数和负数的性质。还是来看看这天气情况。表示正数的零上的温度是不是都比零大呢?反之,比零小的零下的温度是不是都是用负数表示的呢?这下我们可以先简单总结一下正数和负数的性质了。

(生说,师板书):比零大的数是正数,比零小的数是负数。

师:那零是什么数呢?我们可以看到零上和零下就是从字面意义来讲,也是上下是互为相反的意义,而零始终没有变吧?对了。(生说,师板书),0既不是正数也不是负数。

师:我们知道了正数和负数的性质,我们先看看我们这些正数和负数都有什么相同的地方?

生:都是整数。

师:对,都是整数,正数我们称为正整数,负数我们成为负整数呢?那0呢?还是整数。今天我们要给整数下一个定义,(板书)。正整数、负整数与0统称整数。

师:那我们再来看看比零大的数还有哪些?分数是吗?例如:昨天的温度是6°c,说今天的温度比昨天高了1/3,表示今天的温度比昨天高了2°c;如果说我们今天的温度比昨天低了1/3,表示比昨天低了2°c.这里的高低我们可以用正数和负数表示吗?当然可以的。所以说我们的正数和负数还包括了正分数和负分数。看书,书上对于正数和负数的定义,大家可以看一下,它说类似这样的一些数是正数,类似这样的一些数是负数。

师:从前面讲的我们可以看出,正数和负数比较是用来表示比0大或者是0小的量的数,同时还可以表示两个意义相反的量的数。例如:防汛部门每年都要做水文测量,水位上涨了,用正数表示,水位下降了,就用负数表示。在日常生活中,还有很大相反意义的量的表示,大家先看看书上这几个例子,然后自己再举一些我们生活中遇到的实际例子,看看哪些可以用正数,和负数表示。

(学生看了书上的例子后,纷纷举出生活中接触的例子)一个同学说:"我在家帮我爸爸打印文章,挣了50元,用正数表示,记为+50元或50元;去吃肯德基花了40元记为-50元。"。

师:非常好。我们再总结一下我们今天所学习到的知识。

然后重复正数、负数、零以及整数的概念。太好了。我们今天还要学习一个新的数学名词——有理数。大家总结一下什么叫有理数,有理数的概念是什么?.(生说,老师板书)。

2.零既不是正数也不是负数,它表示正数和负数的分界;

3.有理数的有关概念。

(1)整数和分数统称为有理数。

注意:整数也可以看成分母为1的分数,但为了研究方便,本章中分数就是指不包括整数的分数。

(2)整数包括正整数、零、负整数。

4.有理数分类。

(1)按正数、负数和0的关系分类:

(2)按整数和分数的关系分类:

七年级数学教案正数与负数篇七

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)。

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有-的新数。

七年级数学教案正数与负数篇八

用数学语言概括运算性质、

(三)解决办法

增强对三种运算性质的理解,并运用对比的方法强化训练以达到准确地区分、

一课时、

投影仪或电脑、自制胶片、

3、通过举例来说明积的乘方性质应如何正确使用,师生共练以达到熟练掌握、

4、多种题型的设计,让学生能从不同的角度全面准确地理解和运用该性质、

(一)明确目标

本节课重点学习积的乘方的运算性质及其较灵活地运用、

(二)整体感知

(三)教学过程

1、创设情境,复习导入

前面我们学习了同底数幂的乘法、幂的乘方这两个寨的运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:

填空:

七年级数学教案正数与负数篇九

教学目标:。

1.正确理解正,负数及零的意义,会用正,负数表示具有相反意义的量,能简单说出正数和负数的意义。

2.借助生活中的实例理解正数,负数的意义,体会负数引入的必要性和有理数应用的广泛性。

3.通过有理数的学习,培养抽象思维能力、归纳与概括能力。

教学重点:。

教学难点:。

体会负数的意义,两种相反意义的量。

教学过程设计:。

1.创设情境,引入新知。

教师展示教科书图1.1-1并提出问题1:哪位同学知道这些图片介绍的是什么内容?学生回答,教师补充说明数的产生与日常生活,生产实践的关系,感受数随着社会的发展而发展的必要行。

【设计意图】:使学生感受数的产生和发展离不开生活和生产的需要。

问题2:请同学们阅读本章的引言,你能回答其中的问题吗?

学生思考并解释。

2.观察感知,理解概念。

问题3:根据小学的知识,你能指出上述例子中哪些是正数,哪些是负数吗?

学生给出正确答案后,教师给出正,负数的定义,大于0的数叫做正数,在正数前加上符号“-”的数叫做负数。

问题4:阅读课本第二页倒数第二段,你能举例说明什么叫一个数的符号吗?

学生阅读举例,只要学生说出与课本不同的实例并说明它们的符号就表明他们看懂了这段话。

教师补充:有时,为了明确表达意义,在正数前也加上“+”号,正数的符号是“+”,负数的符号是“-”,0既不是正数也不是负数。

3.例题示范,学会应用。

课本例题,

提问:你是怎么理解例的?

【设计意图】通过具体问题情境,使学生学会正数与负数是具有相反意义的量的方法,通过师生合作突破用正数,负数表示指定方向变化的量这一难点,通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词。

选定一方用正数表示,另一方就用负数表示。

实际问题中,有时需要描述指定方向变化的量,如:本例中,进出口总额减少64%,表示为增长-64%,这就是说增长量是一个负数实际上是减少了,也可以说成“负增长”。

当数据没有变化时,增长率为0。

【设计意图】引导学生及时总结、提炼出可以指导解答其他同类问题的一般性结论。

4.巩固概念,学以致用。

练习:第三页练习1,2。

【设计意图】巩固性练习,同时检验用正数,负数表示具有相反意义的量的掌握情况。

5.归纳小结。

回顾本节课内容。

6.布置作业。

习题1.1第1.2.4题。

七年级数学教案正数与负数篇十

比较正数和负数的大小。

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

负数与负数的比较。

一、复习:

1、读数,指出哪些是正数,哪些是负数?

—85。6+0。9—+0—82。

2、如果+20%表示增加20%,那么—6%表示。

二、新授:

(一)教学例3:

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)。

2、出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

a、从0起往右依次是?从0起往左依次是?你发现什么规律?

(7)练习:做一做的第1、2题。

(二)教学例4:

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“—8在—6的左边,所以—8〈—6”

5、再通过让另一学生比较“8〉6,但是—8〈—6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,所有的负数都在0的'左边,也就是负数都比0小,而正数比0大,负数比正数小。

7、练习:做一做第3题。

三、巩固练习。

1、练习一第4、5题。

2、练习一第6题。

3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。

四、全课总结。

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

第二课教学反思:

许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

例3——两个不同层面的拓展:

1、在数轴上表示数要求的拓展。

数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1。5。建议此处教师补充要求学生表示出“+1。5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1。5和—1。5绝对值相等。同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

2、渗透负数加减法。

教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

例4——薄书读厚、厚书读薄。

薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)。

例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。

将厚书读薄——无论哪种类型,比较方法万变不离其宗。

无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“86,所以—8—6”来阐述其原因,其实也与数轴相关。因为当绝对值越大时,表示离原点的距离越远,那么在数轴上表示的点也就在原点左边越远,数也就越小。所以,抓住精髓就能以不变应万变。

在此,我还补充了—3/7和—2/5比较大小的练习,提升学生灵活应用知识解决实际问题的能力。

七年级数学教案正数与负数篇十一

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;。

3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

正确分析实际问题中的不等关系,列出不等式组。

建立不等式组解实际问题的数学模型。

出示教科书第145页例2(略)。

问:(1)你是怎样理解“不能完成任务”的数量含义的?

(2)你是怎样理解“提前完成任务”的数量含义的?

(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

师生一起讨论解决例2.

1、教科书146页“归纳”(略).

2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?

在讨论或议论的基础上老师揭示:

步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

七年级数学教案正数与负数篇十二

从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题

在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

情感态度与价值观

在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。

创设情境,切入标题

请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

请各小组分别派一名代表,看哪组能转出红色。

结果,8小组有6组转出了红色。

为什么会出现这样的结果呢?

因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

大家同意这种看法吗?下面我们亲自动手感受一下。

学生按照题目要求进行实验。

请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。

根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

在小组内实验结果不明显,实验次数越多越能说明问题。

通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

同学们说出很多种方法,不一一列举。

“平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

如果将这个实验继续做下去,卡片上所有数的平均数会增大。

同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

以下过程同教学设计,略去。

指导学生完成教材第206页习题。

学生可从各个方面加以小结。 布置作业

仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。

七年级数学教案正数与负数篇十三

重点:列代数式。

难点:弄清楚语句中各数量的意义及相互关系。

本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。

列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。

如:用代数式表示:比的2倍大2的数。

分析本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2+2.

(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。

(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。

(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。

(4)在代数式中出现除法时,用分数线表示。

列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。

七年级数学教案正数与负数篇十四

学习目标:

1.会用正.负数表示具有相反意义的量.

2.通过正.负数学习,培养学生应用数学知识的意识.

3.通过探究,渗透对立统一的辨证思想。

学习重点:

用正.负数表示具有相反意义的量。

学习难点:

实际问题中的数量关系。

教学方法:

讲练相结合。

教学过程。

一.学前准备。

通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

问题1:“零”为什么即不是正数也不是负数呢?

引导学生思考讨论,借助举例说明.

参考例子:温度表示中的零上,零下和零度.

二.探究理解解决问题。

问题2:(教科书第4页例题)。

先引导学生分析,再让学生独立完成。

(2)20xx年下列国家的商品进出口总额比上一年的变化情况是:

美国减少6.4%,德国增长1.3%,

法国减少2.4%,英国减少3.5%,

意大利增长0.2%,中国增长7.5%.

写出这些国家20xx年商品进出口总额的增长率.

解:(1)这个月小明体重增长2kg,小华体重增长―1kg,小强体重增长0kg.

(2)六个国家20xx年商品进出口总额的增长率:

美国―6.4%,德国1.3%,

法国―2.4%,英国―3.5%,

意大利0.2%,中国7.5%.

三.巩固练习。

从0表示一个也没有,是正数和负数的分界的角度引导学生理解.

在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.

在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.

通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

四.阅读思考1页。

(教科书第8页)用正负数表示加工允许误差.

问题:1.直径为30.032mm和直径为29.97的零件是否合格?

2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.

五.小结。

1.本节课你有那些收获?

2.还有没解决的问题吗?

六.应用与拓展。

1.必做题:

教科书5页习题4.5.:6.7.8题。

2.选做题。

1).甲冷库的温度是―12°c,乙冷库的温度比甲冷酷低5°c,则乙冷库的温度是.

七年级数学教案正数与负数篇十五

本课(节)课题3.1认识直棱柱第1课时/共课时。

教学目标(含重点、难点)及。

1、了解多面体、直棱柱的有关概念.

2、会认直棱柱的侧棱、侧面、底面.。

3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.。

教学重点与难点。

教学重点:直棱柱的有关概念.

教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.

内容与环节预设、简明设计意图二度备课(即时反思与纠正)。

析:学生很容易回答出更多的答案。

师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。

1.多面体、棱、顶点概念:

2.合作交流。

师:以学习小组为单位,拿出事先准备好的几何体。

学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描。

述其特征。)。

师:同学们再讨论一下,能否把自己的语言转化为数学语言。

学生活动:分小组讨论。

说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。

师:请大家找出与长方体,立方体类似的物体或模型。

析:举出实例。(找出区别)。

师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:

有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;

侧面都是长方形含正方形。

长方体和正方体都是直四棱柱。

3.反馈巩固。

完成“做一做”

析:由第(3)小题可以得到:

直棱柱的'相邻两条侧棱互相平行且相等。

4.学以至用。

出示例题。(先请学生单独考虑,再作讲解)。

析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)。

最后完成例题中的“想一想”

5.巩固练习(学生练习)。

完成“课内练习”

师:我们这节课的重点是什么?哪些地方比较难学呢?

合作交流后得到:重点直棱柱的有关概念。

直棱柱有以下特征:

有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;

侧面都是长方形含正方形。

例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。

板书设计。

作业布置或设计作业本及课时特训。

七年级数学教案正数与负数篇十六

练习就是用题进行多角度、多层次的训练,通过多方面的强化,恰当的重复来掌握知识和技巧。题,既包括书面文字,又包括口述和动手操作的实验等。下面是正数和负数检练习题,请参考!

一、选择题。

1.若规定收入为+,那么支出-50元表示()。

a.收入了50元;b.支出了50元;c.没有收入也没有支出;d.收入了100元。

2.下列说法正确的是()。

a.一个数前面加上-号,这个数就是负数;b.零既不是正数也不是负数。

c.零既是正数也是负数;d.若a是正数,则-a不一定就是负数。

3.既是分数,又是正数的是()。

a.+5b.-5c.0d.8。

4.下列说法不正确的是()。

a.有最小的正整数,没有最小的负整数;b.一个整数不是奇数,就是偶数。

c.如果a是有理数,2a就是偶数;d.正整数、负整数和零统称整数。

5.下列说法正确的是()。

a.有理数是指整数、分数、正有理数、零、负有理数这五类数。

b.有理数不是正数就是负数。

c.有理数不是整数就是分数;d.以上说法都正确。

二、填空题。

1.向东走10米记作-10米,那么向西走5米,记作____________.

2.某城市白天的最高气温为零上6℃,到了晚上8时,气温下降了8℃,该城市当晚8时的气温为_________.

3.如果某股票第一天跌了3.01%,应表示为________,第二天涨了4.21%,应表示为_____________.

4.一种零件标明的要求是(单位:mm),表示这种零件的标准尺寸为直径10mm,该零件最大直径不超过____________mm,最小不小于____________mm,为合格产品.

5.若书店在学校的东面500米记作+500米,那么超市的位置记作-600米,则表示____________.

6.在东西走向的公路上,乙在甲的东边3千米处,丙距乙5千米,则丙在甲的__________.

7.一潜水艇所在的高度为-100米,如果它再下潜20米,则高度是___________,如果在原来的位置上再上升20米,则高度是____________.

8.收入-200元的实际意义是_____________________.

三、解答题。

1.把下列各数填入相应的大括号内:-13.5,2,0,0.128,-2.236,3.14,+27,-,-15%,-1,,26.

正数集合{},负数集合{},

整数集合{},分数集合{},

非负整数集合{}.

3.在一次数学测验中,一年(4)班的.平均分为86分,把高于平均分的部分记作正数.

(1)李洋得了90分,应记作多少?

(2)刘红被记作-5分,她实际得分多少?

(3)王明得了86分,应记作多少?

(4)李洋和刘红相差多少分?

四、学科内综合题。

1.已知有a,b,c三个数集,每个数集中所含的数都写在各自的大括号内,请把这些数填入图中相应的部分.

a.{-5,2.7,-9,7,2.1}。

b.{-8.1,2.1,-5,9.2,-}。

c.{2.1,-8.1,10,7}。

2.观察下列各组数,请找出它们的排列规律,并写出后面的2个数.

(1)-2,0,2,4,

(2)1,-,,-,,-,

(3)1,0,-1,0,1,0,-1,0,

(4),2,4,-6,8,10,-12,14,.

3.我们用字母a表示一个有理数,试判断下列说法是否正确,若不正确,请举出反例.

(1)a一定表示正数,-a一定表示负数;。

(2)如果a是零,那么-a就是负数;。

(3)若-a是正数,则a一定为非正数.

五、竞赛题。

1.下列是按某种规律排列的一串数:0,3,8,17,34,,那么第6个数是_______.

六、中考题。

(吉林)如果自行车车条的长度比标准长度长2mm,记作+2mm,那么比标准长度短1.5mm,应记作________mm.

七年级数学教案正数与负数篇十七

2.使学生掌握求一个已知数的;。

3.培养学生的观察、归纳与概括的能力.

重点:理解的意义,理解的代数定义与几何定义的一致性.

难点:多重符号的化简.

一、从学生原有的认知结构提出问题。

二、师生共同研究的定义。

特点?

引导学生回答:符号不同,一正一负;数字相同.

像这样,只有符号不同的两个数,我们说它们互为,如+5与。

应点有什么特点?

引导学生回答:分别在原点的两侧;到原点的距离相等.

这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.

3.0的是0.

这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.

三、运用举例变式练习。

例1(1)分别写出9与-7的;。

例1由学生完成.

在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?

引导学生观察例1,自己得出结论:

数a的是-a,即在一个数前面加上一个负号即是它的。

1.当a=7时,-a=-7,7的是-7;。

2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.

3.当a=0时,-a=-0,0的是0,因此,-0=0.

么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的`;。

例2简化-(+3),-(-4),+(-6),+(+5)的符号.

能自己总结出简化符号的规律吗?

括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.

课堂练习。

1.填空:

(1)+1.3的是______;(2)-3的是______;。

(5)-(+4)是______的;(6)-(-7)是______的。

2.简化下列各数的符号:

-(+8),+(-9),-(-6),-(+7),+(+5).

3.下列两对数中,哪些是相等的数?哪对互为?

-(-8)与+(-8);-(+8)与+(-8).

四、小结。

指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义——代数定义与几何定义;二是求a的;三是简化多重符号的问题.

五、作业。

1.分别写出下列各数的:

2.在数轴上标出2,-4.5,0各数与它们的。

3.填空:

(1)-1.6是______的,______的是-0.2.

4.化简下列各数:

5.填空:

(3)如果-x=-6,那么x=______;(4)如果-x=9,那么x=______.

教学过程是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.

探究活动。

有理数a、b在数轴上的位置如图:

将a,-a,b,-b,1,-1用“”号排列出来.

分析:由图看出,a1,-1。

解:在数轴上画出表示-a、-b的点:

由图看出:-a-1。

点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.

【本文地址:http://www.xuefen.com.cn/zuowen/18513921.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档