作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。
角平分线判定定理教学反思 角平分线的判定教案反思篇一
记得那是期末的展示汇报课,(主任说可能会有校外的教师来听课。)我当时很有压力,晚上也难以入睡.我选的是《勾股定理》一课。为了上好这节课,我反复研究了去洋思学习的一些记录,努力用新理念新手段来打造我的这节课。当我满怀信心地上完这节课时,我心情愉悦,因为我教态自然得体,与学生合作默契,基本上获得了教学的成功。
1、从生活出发的教学让学生感受到学习的快乐
在“勾股定理”这节课中,一开始引入情景:
平平湖水清可鉴,荷花半尺出水面。
忽来一阵狂风急,吹倒荷花水中偃。
湖面之上不复见,入秋渔翁始发现。
花离根二尺远,试问水深尺若干。
知识回味:复习勾股定理及它的公式变形,然后是几组简单的计算。
2、走进生活:以装修房子为主线,设计木板能否通过门框,梯子底端滑出多少,求蚂蚁爬的最短距离,这些都是勾股定理应用的典型例题。
3、名题欣赏:首尾呼应,用“代数方法”解决“几何问题”。 印度数学家婆什迦罗(1141-1225年)提出的“荷花问题” 比我国的“引葭赴岸”问题晚了一千多年。“引葭赴岸”问题,是我国数学经典著作《九章算术》中的一道名题。《九章算术》约成书于公元一世纪。该书的第九章,即勾股章,详细讨论了用勾股定理解决应用问题的方法。这一章的第6题,就是“引葭赴岸”问题,题目是:“今有池一丈,葭生其中央,出水一尺。引葭赴岸,适与岸齐。问水深、葭长各几何?” “荷花问题”的解法与“引葭赴岸”问题一样。它的出现却足以证明,举世公认的古典数学名著《九章算术》传入了印度。《九章算术》中的勾股定理应用方面的内容,涉及范围之广,解法之精巧,都是在世界上遥遥领先的,为推动世界数学的发展作出了贡献。鼓励学生可以自己利用课余时间查阅相关资料,丰富知识。
4、在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。并且将问题用动画的形式展现出来,不仅将问题形象化,又提高了学生的学习兴趣。同时将实际的问题转化为数学问题的过程用直观的图形表示,在降低难度的同时又鼓励了学生能够看到身边的数学,从而做到学以致用。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生之间的合作。
5、最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。这是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。这种对网络资源的重新组织,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。
通过本节课的教学,学生在勾股定理的学习中能感受“数形结合”和“转化”的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利;感受人类文明的力量,了解勾股定理的重要性。真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。这堂课将信息技术融入课堂,有利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为 “数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。不足之处:学生合作意识不强,讨论气氛不够活跃;计算不熟练,书写不规范。
角平分线判定定理教学反思 角平分线的判定教案反思篇二
让学生掌握角的平分线的性质定理和逆定理的运用,对这两个定理的学习进行以下设计:用数学语言给出条件和结论,让学生熟悉这两个定理的条件和结论后,再拿一些具体题目让学生在情境当中运用这两个定理。用数学语言叙述角平分线的性质定理。条件:点p是角aob平分线上的一点,pd垂直oa,pe垂直ob。结论:pd=pe。用数学语言叙述角平分线性质定理的逆定理。条件:点p是角aob上的一点,pd=pe,pd垂直oa,pe垂直ob。结论:点p在角aob的平分线上。具体题目设计,第22页第2,3题,第26页第5题。让学生看到题目后指出该用哪个定理。
一、成功之处
1、通过具体情境使学生能够比较容易的运用这两个定理。
许多学生学习了某个定理后,遇到相对应的题目往往不知道该用哪个定理,通过一些对应的题目,或者用数学语言给出条件,让学生得出结论,并说出用的是哪个定理,可以强化学生对定理的运用能力。
2、注重分析思路,学生学会思考问题,注重书写格式,让学生学会清楚的表达思考的过程。在证明的选题上,注意了减缓坡度,循序渐进。在开始阶段,证明方向明确,过程简单,书写容易规范化,这一阶段要求学生体会例题的证明思路及格式,然后再逐步增加题目的复杂程度,小步前进,每一步都为下一步做准备,下一步又注意复习前一步训练的内容。通过精心角平分线的证明问题,减缓学生几何证明的坡度。
二、不足之处
1、学生缺乏具体的自主探究几何的机会,只是培养了学生的几何证明思路。
2、没有理论结合实际生活。教材有通过确定集贸市场的位置的问题引出“到角平分线的两边距离相等的点在角的平分线上”的结论,使学生看到理论来自实际需要。但是教学上并没有体现。
角平分线判定定理教学反思 角平分线的判定教案反思篇三
一、在备课方面。我一直严格认真地进行课前的准备工作,仔细教参,认真钻研教材和新的课程标准,分析学生的实际(包括学习基础、学习态度、学习习惯、接受知识和理解知识及运用知识的能力等),做到在组织教学时胸有成竹。
二、在课堂上。在实际的教学过程中,对全体学生一视同仁,同时也注意因材施教,针对学生实际,采取读、讲、练、背、的教学方式,将课堂还给学生,力争让每位学生都能在课堂上有所收获。
这节课虽然有一定的成绩但也有不足之处,特别是小组合作探究的问题上存在着以下不足
1、分组简单机械
我所分的小组是按前后桌8个人一组,这样分组虽然开展小组活动简便易行,但人员搭配不合理,不利于让不同特质、不同层次的学生进行优化组合、优势互补、相互促进。2、讨论流于形式,过于简单
讨论流于形式过于简单是目前小组合作教学较为严重的问题。表现在:
讨论变成“闲聊”。当我提出一个问题后,学生就围坐在一起讨论,往往满教室都是嗡嗡声,每个人都在张嘴,但讨论内容很多与问题无关。
3、教师缺乏理性点拨。
小组讨论二、三分钟后,让学生个人发言了事。小组合作教学在这里成了活跃课堂气氛的辅助手段,成了作秀的表演,并不体现真正意义上合作学习。
4、学生参与不均
凡是听过我的课的老师多少都会有这样的发现:在小组活动中好学生发言的机会多,代表小组回答的现象多。我对小组的指导和监督不够,小组成员间的分工不明确。我只关注小组的学习结果,不关注学习过程和个人的学习情况,是形成这种现象的主要原因;另外一部分原因是小组长没有管理好小组活动,开小差的学生缺乏个人责任感等。重难点和值得讨论的问题,要紧密联系学生关心的社会热点,焦点问题,要尽可能采用发生在学生身边的,迫切需要解决的一些实际问题或现实生活问题,回顾这这节课与学生的教学互动,值得我进行深刻地反思。
角平分线判定定理教学反思 角平分线的判定教案反思篇四
不等式一章,对学生来说是难点,把握好教学很关键,我经过教学反思见下。
1、教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分求出解集,这是最容易理解的方法,也是最适用的方法。用“大大取较大、小小取较小、大小小大取中间、大大小小取不了”求解不等式,我认为减轻学生的学习负担,有易于培养学生的数形结合能力。在教学中我要求学生两者皆用。
2、加强对实际问题中抽象出数量关系的数学建模思想教学,体现课程标准中:对重要的概念和数学思想呈螺旋上升的原则。教学中,一方面加强训练,锻炼学生的自我解题能力。另一方面,通过“纠错”题型的练习和学生的相互学习、剖析逐步提高解题的正确性。
3、把握教学目标,防止在利用一元一次不等式(组)解决实际问题时提出过高的要求,重点加强文字与符号的联系,利用题 目中含有不等语言的语句找出不等关系,列出一元一次不等式(组)解答问题,注意与利用方程解实际问题的方法的区别(不等语言),防止学生应用方程解答不等关系的实际问题。
4、本节课 课堂容量(安排的例题的题量太多)偏大,而且在思维上也有比较特殊的地方,从而导致学生在课堂上的思考的时间不够,课堂时间比较紧张。因此今后在课时的安排上要尽可能的安排更多的课时,以减少每一节课的课堂容量,给学生更多的思考时间和空间,提高课堂的效果。同时还要重视思考题的作用,因为班上有一部分同学体现出基础比较扎实,而且对数学也比较有兴趣,出一些比较难的思考题,能够让这部分学有余力的同学能有所提高。
5.从课堂的效果来看学生对象客观题这样的题型(如:选择题、填空题)用特殊方法解题的思维还不够,他们总是担心会出问题,特别是选择题缺乏比较和分析的能力,因为选择题是一种比较特殊的题型,它的特殊性在于这类题目的答案是已知的,有的学生在做题的时候根本就不看题目中的四个选择答案,实际的解题过程中对于选择题来讲能把四个答案选项分析清楚对提高解题的速度和准确性是很有好处的。但本节课中出现的解客观题的一些特殊的方法在解与不等式有关的题目时特别的有效,但是如果不等式的问题中出现了分类讨论的情况,特殊的方法就有它的局限性,这时就需要学生能够灵活处理了。问题中出现了分类讨论的题目一般来讲都是比较难的题目,教学上我的处理是在教学的过程中如果出现了这类问题就具体跟学生讲解,在学期末的复习时候再跟学生总结。因此要求学生在使用特殊方法用选不等式教学反思教育。
角平分线判定定理教学反思 角平分线的判定教案反思篇五
今天的教学内容是分数乘分数,重点是巩固和进化理解分数乘法的意义,探索分数乘分数的计算法则。
在教学实践中我继续采用“数形结合”的数学方法,帮助学生达成以上的两个数学目标。对于今天的“探究活动”没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个得教学过程分为三个层次:
一、引导学生通过用图形表示分数的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。
二、以3/4×1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后在根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程是学生巩固分数乘法的意义,体会分数乘分数的计算过程。
三、学生运用数形结合的方法独立完成教材中的“做一做”,进一步达成以上目标,并为总结分数乘分数的计算积累知识。可以说整体教学的效果还好。
通过今天的课我对数形结合的思想有了更进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得特别重要了。纵观教材中,数形结合思想的渗透也有着不同的层次,例如上学期的分数乘法(一)和分数乘法(二)中是利用具体的实物图形,帮助学生从具体问题中抽象出数学问题;在本学期的分数乘分数中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,再从直观变为抽象,也就是要讲“以形论数”和“以数表形”两个方面有机的结合起来,只有完整的是学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。
【本文地址:http://www.xuefen.com.cn/zuowen/1932541.html】