教案可以提供教学过程中的参考和支持,帮助教师更好地实施教学计划。教案的研究和改进是教师专业发展的重要方向,需要不断更新教学理念和方法。精心编写教案,能够提高教学效果,激发学生的学习积极性。
上海高三数学教案篇一
函数是中学数学的重要内容,中学数学对函数的研究大致分成了三个阶段。
三角函数是最具代表性的一种基本初等函数。4.8节是第二章《函数》学习的延伸,也是第四章《三角函数》的核心内容,是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式基础上进行的,其知识和方法将为后续内容的学习打下基础,有承上启下的作用。
本节课是数形结合思想方法的良好素材。数形结合是数学研究中的重要思想方法和解题方法。
本节通过对数形结合的进一步认识,可以改进学习方法,增强学习数学的自信心和兴趣。另外,三角函数的曲线性质也体现了数学的对称之美、和谐之美。
因此,本节课在教材中的知识作用和思想地位是相当重要的。
(二)课时安排。
4.8节教材安排为4课时,我计划用5课时。
(三)目标和重、难点。
1.教学目标。
教学目标的确定,考虑了以下几点:
(2)本班学生对数学科特别是函数内容的学习有畏难情绪,所以在内容上要降低深难度。
(3)学会方法比获得知识更重要,本节课着眼于新知识的探索过程与方法,巩固应用主要放在后面的三节课进行。
由此,我确定了以下三个层面的教学目标:
(3)情感层面:通过运用数形结合思想方法,让学生体会(数学)问题从抽象到形象的转化过程,体会数学之美,从而激发学习数学的信心和兴趣。
2.重、难点。
由以上教学目标可知,本节重点是师生共同探索,正、余函数的性质,在探索中体会数形结合思想方法。
难点是:函数周期定义、正弦函数的单调区间和对称性的理解。
为什么这样确定呢?
因为周期概念是学生第一次接触,理解上易错;单调区间从图上容易看出,但用一个区间形式表示出来,学生感到困难。
如何克服难点呢?
其一,抓住周期函数定义中的关键字眼,举反例说明;。
上海高三数学教案篇二
§3.1.1数列、数列的通项公式目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。
重点:1数列的概念。按一定次序排列的一列数叫做数列。数列中的每一个数叫做数列的项,数列的第n项an叫做数列的通项(或一般项)。由数列定义知:数列中的数是有序的,数列中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。
3.4.-1的正整数次幂:-1,1,-1,1,…。
5.无穷多个数排成一列数:1,1,1,1,…。
二、提出课题:数列。
1.数列的定义:按一定次序排列的一列数(数列的有序性)。
2.名称:项,序号,一般公式,表示法。
3.通项公式:与之间的函数关系式如数列1:数列2:数列4:
4.分类:递增数列、递减数列;常数列;摆动数列;有穷数列、无穷数列。
5.实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集n-(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。
6.用图象表示:—是一群孤立的点例一(p111例一略)。
三、关于数列的通项公式1.不是每一个数列都能写出其通项公式(如数列3)。
2.数列的通项公式不唯一如:数列4可写成和。
3.已知通项公式可写出数列的任一项,因此通项公式十分重要例二(p111例二)略。
五、小结:1.数列的有关概念2.观察法求数列的通项公式。
六、作业:练习p112习题3.1(p114)1、2。
2.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1、、、;(2)、、、;(3)、、、;(4)、、、。
3.求数列1,2,2,4,3,8,4,16,5,…的一个通项公式。
6.在数列{an}中a1=2,a17=66,通项公式或序号n的一次函数,求通项公式。
7.设函数(),数列{an}满足(1)求数列{an}的通项公式;(2)判断数列{an}的单调性。
7.(1)an=(2)。
上海高三数学教案篇三
(3)使学生初步了解有限集、无限集、空集的意义。
重点难点】。
教学重点:集合的基本概念及表示方法。
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。
授课类型:新授课。
课时安排:1课时。
教具:多媒体、实物投影仪。
内容分析】。
上海高三数学教案篇四
引出数形结合思想方法,强调其含义和重要性,告诉学生,本节课将利用数形结合方法来研究,会使学习变得轻松有趣。
采用这样的引入方法,目的是打消学生对函数学习的畏难情绪,引起学生注意,也激起学生好奇和兴趣。
(二)新知探索主要环节,分为两个部分。
教学过程如下:
第一部分————师生共同研究得出正弦函数的性质。
1.定义域、值域2.周期性。
3.单调性(重难点内容)。
为了突出重点、克服难点,采用以下手段和方法:
(1)利用多媒体动态演示函数性质,充分体现数形结合的重要作用;。
(2)以层层深入,环环相扣的课堂提问,启发学生思维,反馈课堂信息,使问题成为探索新知的线索和动力,随着问题的解决,学生的积极性将被调动起来。
(3)单调区间的探索过程是:
先在靠近原点的一个单调周期内找出正弦函数的一个增区间,由此表示出所有的增区间,体现从特殊到一般的知识认识过程。
**教师结合图象帮助学生理解并强调“距离”(“长度”)是周期的多少倍。
为什么要这样强调呢?
因为这是对知识的一种意义建构,有助于以后理解记忆正弦型函数的相关性质。
4.对称性。
设计意图:
(1)因为奇偶性是特殊的对称性,掌握了对称性,容易得出奇偶性,所以着重讲清对称性。体现了从一般到特殊的知识再现过程。
(2)从正弦函数的对称性看到了数学的对称之美、和谐之美,体现了数学的审美功能。
5.最值点和零值点。
有了对称性的理解,容易得出此性质。
第二部分————学习任务转移给学生。
设计意图:
(3)通过课堂教学结构的改革,提高课堂教学效率,最终使学生成为独立的学习者,这也符合建构主义的教学原则。
(三)巩固练习。
补充和选作题体现了课堂要求的差异性。
(四)结课。
上海高三数学教案篇五
1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二、识技能目标。
1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三、情感目标。
1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:
1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体。
【学前准备】对照指数函数试研究对数函数的定义、图象和性质。
上海高三数学教案篇六
(一)教法说明教法的确定基于如下考虑:
(1)心理学的研究表明:只有内化的东西才能充分外显,只有学生自己获取的知识,他才能灵活应用,所以要注重学生的自主探索。
(2)本节目的是让学生学会如何探索、理解正、余弦函数的性质。教师始终要注意的是引导学生探索,而不是自己探索、学生观看,所以教师要引导,而且只能引导不能代办,否则不但没有教给学习方法,而且会让学生产生依赖和倦怠。
(3)本节内容属于本源性知识,一般采用观察、实验、归纳、总结为主的方法,以培养学生自学能力。
所以,根据以人为本,以学定教的原则,我采取以问题为解决为中心、启发为主的教学方法,形成教师点拨引导、学生积极参与、师生共同探讨的课堂结构形式,营造一种民主和谐的课堂氛围。
(二)教学手段说明:
为完成本节课的教学目标,突出重点、克服难点,我采取了以下三个教学手段:
(1)精心设计课堂提问,整个课堂以问题为线索,带着问题探索新知,因为没有问题就没有发现。
(3)为节省课堂时间,制作幻灯片演示正、余弦函数图象和性质,也可以使教学更生动形象和连贯。
上海高三数学教案篇七
2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期。
3会用代数方法求等函数的周期。
4理解周期性的几何意义。
周期函数的概念,周期的求解。
1、是周期函数是指对定义域中所有都有。
即应是恒等式。
2、周期函数一定会有周期,但不一定存在最小正周期。
例1、若钟摆的高度与时间之间的函数关系如图所示。
(1)求该函数的周期;
(2)求时钟摆的高度。
例2、求下列函数的周期。
(1)(2)。
总结:(1)函数(其中均为常数,且。
的周期t=。
(2)函数(其中均为常数,且。
的周期t=。
例3、求证:的周期为。
例4、(1)研究和函数的图象,分析其周期性。
(2)求证:的周期为(其中均为常数,
且
总结:函数(其中均为常数,且。
的周期t=。
例5、(1)求的周期。
(2)已知满足,求证:是周期函数。
课后思考:能否利用单位圆作函数的图象。
六、作业:
七、自主体验与运用。
1、函数的周期为()。
a、b、c、d、
2、函数的`最小正周期是()。
a、b、c、d、
3、函数的最小正周期是()。
a、b、c、d、
4、函数的周期是()。
a、b、c、d、
5、设是定义域为r,最小正周期为的函数,
若,则的值等于()。
a、1b、c、0d、
6、函数的最小正周期是,则。
7、已知函数的最小正周期不大于2,则正整数。
的最小值是。
8、求函数的最小正周期为t,且,则正整数。
的最大值是。
9、已知函数是周期为6的奇函数,且则。
10、若函数,则。
11、用周期的定义分析的周期。
12、已知函数,如果使的周期在内,求。
正整数的值。
13、一机械振动中,某质子离开平衡位置的位移与时间之间的。
函数关系如图所示:
(1)求该函数的周期;
(2)求时,该质点离开平衡位置的位移。
14、已知是定义在r上的函数,且对任意有。
成立,
(1)证明:是周期函数;
(2)若求的值。
上海高三数学教案篇八
知识与技能:了解并掌握数据收集的基本方法。
过程与方法:在调查的过程中,要有认真的态度,积极参与。
情感、态度与价值观:体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。
【教学重难点】。
重点:掌握统计调查的基本方法。
难点:能根据实际情况合理地选择调查方法。
【教学过程】。
讲授新课。
像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。
调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。
在一个统计问题中,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量。
例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。
为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。
上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样。
师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。
学生小组合作、讨论,学生代表展示结果。
教师指导、评论。
师:除了问卷调查外,我们还有哪些方法收集到数据呢?
学生小组讨论、交流,学生代表回答。
(1)你班中的同学是如何安排周末时间的?
(2)我国濒临灭绝的植物数量;
(3)某种玉米种子的发芽率;
(4)学校门口十字路口每天7:00~7:10时的车流量。
上海高三数学教案篇九
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。
(二)学情分析。
(1)学生已熟练掌握_________________。
(2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。
(3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。
(4)学生层次参次不齐,个体差异比较明显。
二、目标分析。
新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:
(一)教学目标。
(1)知识与技能。
使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。
(2)过程与方法。
引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。
(3)情感态度与价值观。
在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
(二)重点难点。
本节课的教学重点是________________________,教学难点是_____________________。
三、教法、学法分析。
(一)教法。
基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.
2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.
(二)学法。
在学法上我重视了:
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。
四、教学过程分析。
(一)教学过程设计。
教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。
(1)创设情境,提出问题。
新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生的思考空间,充分体现学生主体地位。
(2)引导探究,建构概念。
数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过过程.
(3)自我尝试,初步应用。
有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.
(4)当堂训练,巩固深化。
通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。
(5)小结归纳,回顾反思。
小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:
(1)通过本节课的学习,你学到了哪些知识?
(2)通过本节课的学习,你的体验是什么?
(3)通过本节课的学习,你掌握了哪些技能?
(二)作业设计。
作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.
上海高三数学教案篇十
圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象。恰当地利用定义来解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。
二、学生学习情况分析。
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。
三、设计思想。
由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。
四、教学目标。
1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义__问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。
3、借助多媒体辅助教学,激发学习数学的兴趣。
五、教学重点与难点:
教学重点。
1、对圆锥曲线定义的理解。
2、利用圆锥曲线的定义求“最值”
3、“定义法”求轨迹方程。
教学难点:
巧用圆锥曲线定义__。
上海高三数学教案篇十一
(3)掌握复数的模的定义及其几何意义;。
(4)通过学习,培养学生的数形结合的数学思想;。
(5)通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法.
教学建议。
一、知识结构。
本节内容首先从物理中所遇到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式.
二、重点、难点分析。
本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离.
三、教学建议。
1.在学习新课之前一定要复习旧知识,包括实数的绝对值及几何意义,复数的有关概念、现行高中物理课本中的有关矢量知识等,特别是对于基础较差的学生,这一环节不可忽视.
如图所示,建立复平面以后,复数与复平面内的点形成—一对应关系,而点又与复平面的向量构成—一对应关系.因此,复数集与复平面的以为起点,以为终点的向量集形成—一对应关系.因此,我们常把复数说成点z或说成向量.点、向量是复数的另外两种表示形式,它们都是复数的几何表示.
相等的向量对应的是同一个复数,复平面内与向量相等的向量有无穷多个,所以复数集不能与复平面上所有的向量相成—一对应关系.复数集只能与复平面上以原点为起点的向量集合构成—一对应关系.
2.
这种对应关系的建立,为我们用解析几何方法解决复数问题,或用复数方法解决几何问题创造了条件.
3.向量的模,又叫向量的绝对值,也就是其有向线段的长度.它的计算公式是,当实部为零时,根据上面复数的模的公式与以前关于实数绝对值及算术平方根的规定一致.这些内容必须使学生在理解的基础上牢固地掌握.
4.讲解教材第182页上例2的第(1)小题建议.在讲解教材第182页上例2的第(1)小题时.如果结合提问的图形,可以帮助学生正确理解教材中的“圆”是指曲线而不是指圆面(曲线所包围的平面部分).对于倒2的第(2)小题的图形,画图时周界(两个同心圆)都应画成虚线.
5.讲解复数的模.讲复数的模的定义和计算公式时,要注意与向量的有关知识联系,结合复数与复平面内以原点为起点,以复数所对应的点为终点的向量之间的一一对应关系,使学生在理解的基础上记忆。向量的模,又叫做向量的绝对值,也就是有向线段oz的长度.它也叫做复数的模或绝对值.
上海高三数学教案篇十二
20__年是江苏高考进入新课程的第三年,我们应当在体现新课程多样性、选择性和探究性的特点的同时,结合__、__年高考数学试卷分析,在夯实基础的前提下让学生全面而有个性的发展。
根据20__届高三的特殊情况制定的我市高中数学教学进度建议,望各校能按照这个进度制定详细的学科教学进度计划,突出重点,在有效复习时间大大缩短的前提下,确保高三复习工作的顺利完成。
一、教学进度。
理科复习顺序。
文科复习顺序。
测试建议。
新授坐标系和参数方程;复习集合(含常用逻辑用语)、函数的概念与基本初等函数、导数及其应用(含定积分)、三角函数(含三角恒等变换、解三角形)、平面向量、数列、不等式、平面解析几何(含圆锥曲线方程)。
立体几何初步(含空间向量与立体几何)、推理与证明(含数学归纳法)、算法初步、概率统计、数系的扩充与复数的引入。
计数原理、概率。
矩阵与变换、坐标系与参数方程(或不等式选讲、几何证明选讲)。
复习集合与常用逻辑用语、函数的概念与基本初等函数、导数及其应用、三角函数(含三角恒等变换、解三角形)、平面向量、数列、不等式、平面解析几何(含圆锥曲线方程)。
立体几何初步、推理与证明、数系的扩充与复数的引入。
算法初步、概率统计。
9月底进行高三第一次统测,主要目的是摸底,范围均为全部必修。
1月中旬进行高三第二次统测,范围为全部必修和选修内容。
3月底进行高三第三次统测,范围为全部必修和选修内容。
计划到3月底第一轮复习全部结束。
专题复习、专题训练、
综合训练、模拟训练。
充分利用其它市等信息试卷模拟,迎接高考。
说明:统测全部内容的目的有二,一是各校可根据本校实际情况确定教学进度,不受统测进度的影响;二是有利于老师和学生准确了解高考,清楚把握难度,尽快适应高考。
二、复习策略。
1、第一轮复习的基础性。第一轮复习是整个数学复习的基础工程,其主要任务是在老师的指导下,让学生自己对基础知识、基本技能进行梳理,使之达到系统化、结构化、完整化;在老师的组织下通过对基础题的系统训练和规范训练,使学生准确理解每一个概念,能从不同角度把握所学的每一个知识点,及知识点所有可能涉及到的题型,熟练掌握各种典型问题的通性、通法。第一轮复习务必要做到细而实,统筹计划。切不可因轻重不分而出现“前紧后松,前松后紧”的现象,也不可因赶进度而出现“点到为止,草草了事”的现象,只有真正实现低起点、小坡度、严要求,真正改变教师一包到底,实施学生自主学习,才能达到夯实“双基”的目的。
2、第一轮复习的全面性。第一轮复习必须面向全体学生。降低复习起点,在夯实“双基”的前提下,注重培养学生的能力,包括:空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。提高学生对实际问题的阅读理解、思考判断能力;以及数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。复习教学要充分考虑到课标的教学要求和本校、本班学生的实际水平,坚决反对脱离学生实际的任意拔高和只抓几个“优生”放弃大部分“差生”的不良做法,不做或少做无效劳动,同时加大分层教学和个别指导的力度,狠抓复习的针对性、实效性,提高复习效果。
3、第一轮复习的针对性。06年、07年、__年的江苏高考试题,__年上海、广东、宁夏、海南的新课程试题,已经在暗示我们__年江苏高考数学考什么、怎么考,提醒我们要在将基础问题学实学活的同时,重视数学思想方法的复习。数形结合、函数方程、等价化归、分类讨论等数学思想依然是新课程数学高考的重点、热点、难点,因此一定要把复习内容中反映出来的数学思想方法的教学体现在第一轮复习的全过程中,使学生真证领悟到如何灵活运用数学思想方法解题。必须让学生明白复习的最终目标是新题会解,而不能单单立足于陈题的熟练。
4、第一轮复习的科学性。要强化运算能力、表达能力和阅读理解能力的训练,复习时要有意识地提供给学生自主思考的时间和空间,安排时间让学生定期、定时、定量地进行完整的、规范的解题训练。对解题过程和书面表达提出明确具体的要求,在一开始就注重培养学生良好的解题习惯、考试习惯,从而提高解题的成功率和得分率。同时要加强处理信息与数据、和寻求设计合理。简捷的运算途径万面的训练,提高阅读理解的水平和运算技能。尽管命题组一再强调“多考一点想的,少考一点算的”,事实上许多学生仍然因运算量大而无法完成。因此对运算技能的培养必须重视和加强。另外,网上阅卷对解题规范、书写轻重、表述完整等的新的要求必须人人清楚。
5、第一轮复习的学习性。在认真研究、学__年高考试题江苏卷以及全国卷、上海、广东、宁夏、海南的新课程卷,以及考试中心对各地__年高考试题的评价报告的同时,针对新课程的《数学课程标准的教学要求》,进一步加强对数学解题教学的学习研究,提高自身教学水平。我们既反对题海战术,又提倡做一定数量的有代表性的基础题、综合题和应用题。只有通过做一定量的题,才能让学生牢固掌握基本题型的通性、通法,以及其中的数学思想方法,才能提高学生寻求最佳解法、解题反思、归纳总结的能力,才能探索解各类数学题的一般规律,积累解题经验,进而提升独立解题的能力。
6、第一轮复习的研究性。要进一步加强对知识复习课和试卷讲评课的研究。各校的集体备课要多重实效少重形式,教学案一体化要保证质量控制数量,严格责任制、把关制。每周要通过独立作业等形式安排一次课内质量检测,主要检查本周内复习教学情况,而不是与复习内容无关的综合检测。检测题的难度要适合本班中下等生的水平,面向全体学生,有利于提高每个学生学习数学的兴趣。检测要注意滚动发展,防止前学后忘,对于每次检测,要做到定时收,及时改,改必评,错必纠,充分发挥讲评课的有效功能。讲评时切忌不做任何分析的对答案,讲评要专题化。要重点突出,以点触面,举一反三。二要进一步加强对复习资料的研究。我们提倡认真选用好复习资料,坚持教师拥有多种资料,学生用一本资料。在实际教学中,教师可以根据学生的实际水平对多种资料进行有针对性的选择、改编和重组,使之更符合本校或本班学生的实际水平,从而达到提高复习的针对性和复习效率的目的。大力提倡各校使用教学案一体化,要求凡使用教学案一体化的学校务必实行严格的分工、研讨、审核制度,同时重视经过个人精加工的二次备课,以确保教学案的针对性、科学性和实用性,坚决反对使用仅由个人盲目拼凑的(只有分工,没有研讨、审核、二次备课)错误百出的教学案。凡是给学生训练的题,教师都必须至少亲自做一遍,只有这样才能真正做到对学生解题的有针对性的训练和指导。
7、第二轮复习的专题性。要强化综合训练,上好专题训练课。要突出如何运用数学思想万法分析、解决问题;要联系社会、生活实际设置一些新颖情景题,强化学生在阅读理解、审题、探索思路等万面的训练;要多证学生独立思考,充分重视审颧的科学性、运算的准确性、解题的规范性、表述的精确性、以及解题速度的提高等,坚决克服懂而不会,全而不对,对而不全,全而不快的现象。同时要注意心理疏导,确保在各种意想不到的情况下有——个良好的心态;注意应试技巧的训练,确保在最短的时间内以最优的.万法拿到所有可能拿到的分数,使学生在高考中,充分发挥自已的水平,取得理想的成绩。
8、第二轮复习的针对性。为了更好地提高学生的解题能力,适应新课程高考的新题型,二轮复习务必加强计划性。开什么样的专题,开那些专题;练什么样的模拟卷,练几份模拟卷,都必须在进行深入细致的调研的前提下科学的决策。另外,还需强调的是为了确保第三次统测时,一轮复习全部结束,各校的理科必须增加课时,加快进度,而文科必须控制进度,按计划复习。
1、系统构建知识网络,准确把握教学要求。要按《数学课程标准和教学要求》理解掌握好每一个知识点,决不能顾此失彼,无端忽视自以为简单或不重要的知识点,直接导致应缺少某个必要的知识而失分;也不能无端的拓宽和加深,导致由于过多地无用功而影响教学成绩。
2、自始至终培养能力,夯实基础开拓视野。要不断提高学生的运算能力、空间想象能力、逻辑思维能力,以及运用知识解决实际问题的实践能力和创新意识。以不变应万变,而不应该以获得高考信息为借口,猜题、押题、盲目训练,导致学生对基本题型、通性通法的忽视。如阅读理解题、运算题、空间想象题、分类讨论题等。应按照新课程理念的要求,把学生推到问题的前沿。尽可能让他们主动的多角度的去分析、去探索、去发现、去研究、去创新,缺少反思的盲目训练绝不可能在高考中取得好成绩。
(1)对于处理问题的重要的数学思想方法,如函数与方程、变换与转化、分类与归纳、数形的结合与分离、定常与变化的对立与统一等思想观点和方法,高考将通过具体问题,测试考生掌握的程度。
(2)对思维能力的考查要求,与试题的解答过程结合起来就是:能正确领会题意,明确解题的目标与方向,会采用适当的步骤,合乎逻辑地进行推理和演算,实现解题目标并加以正确表述。今年的试题之所以难,思维能力的要求高是一个重要原因。
(3)对运算能力的考查要求,数值计算、字符运算,以及各种式子的变换运算,都是重要的考查内容。应懂得恰当地应用估算、图算、近似计算和精确计算进行解题。今后的试题对运算能力和估算能力的要求会比较高。
(4)对空间想像能力的考查要求,强调的是对图形的认识、理解和应用,既会用图形表现空间形体,又会由图形想像出直观的形象;既会观察、分析各种几何要素(点、线、面、体)的相互位置关系,又能对图形进行变换分解和组合。为了增强和发展空间想像能力,必须强化空间观念,培养直觉思维的习惯,把抽象思维与形象思维结合起来。
3、加强教学模式研究,形成有效教学手段。个人认为,抓基础落实,应从以下三个方面入手,一是回归课本、教材,理清知识本原,构建知识网络;二是以课本习题为素材,深入浅出、举一反三地加以推敲、延伸和变形,形成典型例题,借助启发式讲解、自主式训练帮助学生融会贯通;三是精心选择习题,悉心设置问题,充分挖掘题目的内涵和外延,引导学生变题为类,便所选习题的功能得到最大发挥,同时着重抓好应变能力的培养和解题规范化训练。在第一轮复习中要对每一章数学基础知识,作几次系统的回顾与总结,对所学内容能按类别形成知识网络,清理考点,清理错解,清理题型,消理方法。每一单元选5个左右的典型问题进行评点与反思。专题复习课、试卷讲评课是高三数学复习课中的两种主要教学模式,如何改进两课教学模式,促进课堂教学效益的提高,是永远不变的话题。首先要加强集体备课,通过集体智慧的凝聚,实现优势互补、资源共享。在高中扩招、师资大量流失的今天,尤其显得必要,可以说__年、__年之所以能取得较好的成绩,其关键在于各校在这一点上做得实,希望继续保持和发扬;其次是在使用教学案一体化的同时,重视针对所带学生实际情况的个人备课,虽然所有学生都用同一张试卷考数学,但各种不同选课的学生学数学的基础和基本素质相差太大,使我们不得不准对学生的实际情况实施有效教学,因此个人备课马虎不得;最后要在教学过程中不断地、自觉地研究考情、学情、教材、大纲,针对学生的情况变化、教学设备的变化等,制定确实可行的教学方案,并随时进行修订、完善,细节决定成败,只有把握好教学的每——个环节,才能真正提高教学效益。我们强调:注重视知识梳理、网络构建的同时,不能忽视方法教学和能力培养,要求在复习重点知识时适时渗透数学思想方法,在专题复习时提炼数学思想方法,在综合训练是巩固和深化数学思想方法,用细水长流的方式将阅读理解能力和应用意识融入平常教学的每一环节,使通性通法的运用在数学思想方法的指导下变得更加灵活、自如,使学生能自觉地用数学眼光去观察、去分析生产、生活和其他学科的一些具体问题,真正实现创新意识和数学素养的提高。复习中务必注意选择习题,做题要重质量,不要贪多。要选择反映数学学科特点的题目,如存在性,唯一性,充要条件,不变量,参数问题,恒成立的立向题,轨迹问题等,要针对学生的薄弱环节设制习题,不做偏题,怪题,不要觉得学生做不好的题就一定要考,犯疑心病,要重思想、重方法,务必做到每题弄懂弄透。
4、认真研究高考试卷,准确把握高考导向。通过新课程理念的学习,实现教学观念和教学思想的真正转变,即变只懂书本内容、只会解题的单一型教学目标为重实践能力和创新精神的综合素质教育目标;变只重知识积累、只重学习结果的质量体系为反映学生全面素质的综合学习评价;变陈旧、落后、传统的教学手段为先进、快捷、激趣式的现代教育技术方式。通过各项工作的有序进行,实现教学目标和教学效果的真正统一,即教学内容的重难点和高考内容重难点的真正统一;知识点的难易度和高考难易度的真正统一;教学能力要求和高考能力要求的真正统一,争创高考成绩的再辉煌。创新意识和创造能力是理性思维的高层次表现。在数学学习和研究过程中,知识的迁移、组合、融汇的程度越高,展示能力的区域就越宽泛,显现出的创造意识也就越强。
5、加强新增内容研究,注意新的考查点。新课程在过去的基础上增加了“简易逻辑”、“平面向量”、“导数”、“概率统计”等内容。这些内容是切合时代需要和数学发展的。增加这些内容,是先进教育理念指导的结果。高考既是选拔性考试可也是对中学教育的一种评价,这些极富生命力的课程内容必须考查。新增内容的相关试题在试卷中起点提高,难度加大,并形成了以向量、导数、概率为纽带的新的知识网络交汇点。但是,对新内容的命题考查并不是一步到位,而是采取逐步递进、最终完善的方法,在20__、__年的高考命题中,新增内容的相关试题所占的分值占有较大份额。新增内容在高考中绝对不是数学知识的简单复制,而是趋向于能力的考查。因此要特别关注:
(1)导数与函数的结合。函数是高中数学的主干内容,导数作为新课程中160分的重要内容之一,为研究函数提供了有力的工具,便函数的钓单调性、极值、最值等问题都得到了有效而较为彻底的解决。因此,用导数方法研究函数问题是数学学习的必然,也是高考命题的方向。
(2)平面向量与解析几何的结合。平面向量与解析几何都涉及坐标表示和坐标运算,坐标法可以将二者有机结合起来,高考命题必然会抓住这一契机。
(4)概率统计与排列组合的结合。概率与统计是近代数学的重要分支,在现实中应用广泛,同时概率统计与排列组合又有着紧密的联系,将它们有机结合应该是新课程高考的热点和亮点,但我们注意到概率及计数原理均为40分的学习内容,160分中的概率是非常简单的,所以这一块的高考难度不会大。
6、高考求新求变求稳,训练速度规范质量。立足教材、重视基础、突出知识主干、不回避知识重点是历年高考命题的不变之策,20__年如此,20__年也不例外,传统题目还将占大多数,创新问题占少数,减少运算量,增大思维量,是新课程标准的既定目标要求。个人认为__年题目的总体难易程度,应比20__年易一点但也不会太易,填充题侧重于双基的考查,其中有一些小技巧,注意合情思维(猜想、真觉等)、数形结合、化归与分类等思想方法的应用,也将出现定量分析与定性分析型的问题;通过计算与分析推理解决的问题是定量分析问题,凭直觉进行观察分析解决的问题是定性分析问题,会出现开放题与小综合题,主要表现在多项选择、试验发现、归纳猜想等问题中。解答题的考查空间较宽广,不仅形式灵活多样,而且内涵极其深刻,既可在多个层次上考查基本知识、基本技能和基本思想方法,又能深入地考查数学能力和数学素质。在设问方式上,可能出现串连式小步设问模式,其间会有递推条件型的开放性题目与材料分析型的开放性题目;在知识点的考查上,要加强知识点之间的综合联系,包括横向的与纵向的联系,比如立几与函数、解几与函数、数列与函数、向量与解几、三角与向量、不等式与函数等知识网络间的联系;在综合能力的考查上,除继续注重数学观察能力、数学记忆力、数学语言的转换能力外,还要增强探索试验能力、归纳概括能力及非智力因素的考查。
在后期的复习中,首先可考虑选几套模拟卷,只审题,不做题。题目本身是“怎样解这道题”的信息源,题目中的信息往往通过语言文字,公式符号,以及它们之间的关系间接告诉你,所以审题一定要逐字逐句看清楚,力求从语法结构,逻辑关系,数学含义等方面真正看懂题意,弄清条件是什么(告诉你从何处入手)?结论是什么(告诉你向何方前进)?它们分别与哪些知识有联系?从自己已掌握的知识方法模块中提取与之相适应的解题方法,通过已建立的思维链,把知识方法输入大脑,并在大脑中进行整合,找到解题途径,并留心易错点,想出解案。只有细致的审题才能从题目本身获得尽可能多的信息,这一步,开始不要怕“慢”,这是训练思维敏捷性必经的一步。其次做5套左右的高考模拟题,最好做几套近两年中上海、山东、广东、宁夏、海南以及南通、南京等地区的高考仿真题,不在于能得多少分;而在于真实感受一下“新课程高考”的难度,熟悉一下解答题评卷规则,以改进自已的书面表述习惯,进而了解在哪些问题上是得分的强项,哪些是得分的弱项。另外,网上阅卷所反映的解题规范、字迹工整方面导致的失分仍应在平常的教学中给予足够的重视。
20__年高考复习已经拉开帷幕,希望我们的设想和建议能给各校的复习带来一些帮助,在20__年高考中有所收获,让我们大家共同努力,辛勤的汗水定能浇灌出丰硕的果实。预祝20__年高考再创辉煌!
上海高三数学教案篇十三
一、教学目标:
掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
二、教学重点:
向量的性质及相关知识的综合应用。
三、教学过程:
(一)主要知识:
1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
(二)例题分析:略。
四、小结:
1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,
2、渗透数学建模的思想,切实培养分析和解决问题的能力。
【本文地址:http://www.xuefen.com.cn/zuowen/19446820.html】