最新数学高考知识点及公式总结 数学高职高考知识点(五篇)

格式:DOC 上传日期:2023-06-06 16:08:06
最新数学高考知识点及公式总结 数学高职高考知识点(五篇)
时间:2023-06-06 16:08:06     小编:zdfb

总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。总结书写有哪些要求呢?我们怎样才能写好一篇总结呢?以下我给大家整理了一些优质的总结范文,希望对大家能够有所帮助。

数学高考知识点及公式总结数学高职高考知识点篇一

在高中数学的学习中,有很多需要我们记忆背诵的数学公式以及定理,这些都是我们在学习数学上的一些基础知识,我们一定要把相关的数学公式以及定理背下来,这样也方便我们解答高中数学题。下面是小编为大家整理的有关高考数学必备知识点及公式总结,希望对你们有帮助!

1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

中元素各表示什么?

注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

3.注意下列性质:

(3)德摩根定律:

4.你会用补集思想解决问题吗?(排除法、间接法)

的取值范围。

6.命题的四种形式及其相互关系是什么?

(互为逆否关系的命题是等价命题。)

原命题与逆否命题同真、同假;逆命题与否命题同真同假。

(一对一,多对一,允许b中有元素无原象。)

8.函数的三要素是什么?如何比较两个函数是否相同?

(定义域、对应法则、值域)

9.求函数的定义域有哪些常见类型?

10.如何求复合函数的定义域?

义域是_____________。

12.反函数存在的条件是什么?

(一一对应函数)

求反函数的步骤掌握了吗?

(①反解x;②互换x、y;③注明定义域)

13.反函数的性质有哪些?

①互为反函数的图象关于直线y=x对称;

②保存了原来函数的单调性、奇函数性;

14.如何用定义证明函数的单调性?

(取值、作差、判正负)

如何判断复合函数的单调性?

∴……)

15.如何利用导数判断函数的单调性?

值是()

a.0b.1c.2d.3

∴a的最大值为3)

16.函数f(x)具有奇偶性的必要(非充分)条件是什么?

(f(x)定义域关于原点对称)

注意如下结论:

(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

17.你熟悉周期函数的定义吗?

函数,t是一个周期。)

如:

18.你掌握常用的图象变换了吗?

注意如下“翻折”变换:

19.你熟练掌握常用函数的图象和性质了吗?

的双曲线。

②求闭区间[m,n]上的最值。

③求区间定(动),对称轴动(定)的最值问题。

④一元二次方程根的分布问题。

由图象记性质!(注意底数的限定!)

利用它的单调性求最值与利用均值不等式求最值的区别是什么?

20.你在基本运算上常出现错误吗?

21.如何解抽象函数问题?

(赋值法、结构变换法)

22.掌握求函数值域的常用方法了吗?

(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)

如求下列函数的最值:

24.熟记三角函数的定义,单位圆中三角函数线的定义

(x,y)作图象。

27.在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。

29.熟练掌握三角函数图象变换了吗?

(平移变换、伸缩变换)

平移公式:

图象?

30.熟练掌握同角三角函数关系和诱导公式了吗?

“奇”、“偶”指k取奇、偶数。

a.正值或负值b.负值c.非负值d.正值

31.熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?

理解公式之间的联系:

应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)

具体方法:

(2)名的变换:化弦或化切

(3)次数的变换:升、降幂公式

(4)形的变换:统一函数形式,注意运用代数运算。

(应用:已知两边一夹角求第三边;已知三边求角。)

33.用反三角函数表示角时要注意角的范围。

34.不等式的性质有哪些?

答案:c

35.利用均值不等式:

值?(一正、二定、三相等)

注意如下结论:

36.不等式证明的基本方法都掌握了吗?

(比较法、分析法、综合法、数学归纳法等)

并注意简单放缩法的应用。

(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)

39.解含有参数的不等式要注意对字母参数的讨论

40.对含有两个绝对值的不等式如何去解?

(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)

证明:

(按不等号方向放缩)

42.不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)

43.等差数列的定义与性质

0的二次函数)

项,即:

44.等比数列的定义与性质

46.你熟悉求数列通项公式的常用方法吗?

例如:(1)求差(商)法

解:

[练习]

(2)叠乘法

解:

(3)等差型递推公式

[练习]

(4)等比型递推公式

[练习]

(5)倒数法

47.你熟悉求数列前n项和的常用方法吗?

例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

解:

[练习]

(2)错位相减法:

(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

[练习]

48.你知道储蓄、贷款问题吗?

△零存整取储蓄(单利)本利和计算模型:

若每期存入本金p元,每期利率为r,n期后,本利和为:

△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)

p——贷款数,r——利率,n——还款期数

49.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

50.解排列与组合问题的规律是:

相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。

如:学号为1,2,3,4的四名学生的考试成绩

则这四位同学考试成绩的所有可能情况是()

a.24b.15c.12d.10

解析:可分成两类:

(2)中间两个分数相等

相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。

∴共有5+10=15(种)情况

51.二项式定理

性质:

表示)

52.你对随机事件之间的关系熟悉吗?

的和(并)。

(5)互斥事件(互不相容事件):“a与b不能同时发生”叫做a、b互斥。

(6)对立事件(互逆事件):

(7)独立事件:a发生与否对b发生的概率没有影响,这样的两个事件叫做相互独立事件。

53.对某一事件概率的求法:

分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即

如:设10件产品中有4件次品,6件正品,求下列事件的概率。

(1)从中任取2件都是次品;

(2)从中任取5件恰有2件次品;

(3)从中有放回地任取3件至少有2件次品;

解析:有放回地抽取3次(每次抽1件),∴n=103

而至少有2件次品为“恰有2次品”和“三件都是次品”

(4)从中依次取5件恰有2件次品。

解析:∵一件一件抽取(有顺序)

分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。

54.抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。

55.对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。

要熟悉样本频率直方图的作法:

(2)决定组距和组数;

(3)决定分点;

(4)列频率分布表;

(5)画频率直方图。

如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。

56.你对向量的有关概念清楚吗?

(1)向量——既有大小又有方向的量。

在此规定下向量可以在平面(或空间)平行移动而不改变。

(6)并线向量(平行向量)——方向相同或相反的向量。

规定零向量与任意向量平行。

(7)向量的加、减法如图:

(8)平面向量基本定理(向量的分解定理)

的一组基底。

(9)向量的坐标表示

表示。

57.平面向量的数量积

数量积的几何意义:

(2)数量积的运算法则

58.线段的定比分点

※.你能分清三角形的重心、垂心、外心、内心及其性质吗?

59.立体几何中平行、垂直关系证明的思路清楚吗?

平行垂直的证明主要利用线面关系的转化:

线面平行的判定:

线面平行的性质:

三垂线定理(及逆定理):

线面垂直:

面面垂直:

60.三类角的定义及求法

(1)异面直线所成的角θ,0°θ≤90°

(2)直线与平面所成的角θ,0°≤θ≤90°

(三垂线定理法:a∈α作或证ab⊥β于b,作bo⊥棱于o,连ao,则ao⊥棱l,∴∠aob为所求。)

三类角的求法:

①找出或作出有关的角。

②证明其符合定义,并指出所求作的角。

③计算大小(解直角三角形,或用余弦定理)。

[练习]

(1)如图,oa为α的斜线ob为其在α内射影,oc为α内过o点任一直线。

(2)如图,正四棱柱abcd—a1b1c1d1中对角线bd1=8,bd1与侧面b1bcc1所成的为30°。

①求bd1和底面abcd所成的角;

②求异面直线bd1和ad所成的角;

③求二面角c1—bd1—b1的大小。

(3)如图abcd为菱形,∠dab=60°,pd⊥面abcd,且pd=ad,求面pab与面pcd所成的锐二面角的大小。

(∵ab∥dc,p为面pab与面pcd的公共点,作pf∥ab,则pf为面pcd与面pab的交线……)

61.空间有几种距离?如何求距离?

点与点,点与线,点与面,线与线,线与面,面与面间距离。

将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。

如:正方形abcd—a1b1c1d1中,棱长为a,则:

(1)点c到面ab1c1的距离为___________;

(2)点b到面acb1的距离为____________;

(3)直线a1d1到面ab1c1的距离为____________;

(4)面ab1c与面a1dc1的距离为____________;

(5)点b到直线a1c1的距离为_____________。

62.你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?

正棱柱——底面为正多边形的直棱柱

正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

正棱锥的计算集中在四个直角三角形中:

它们各包含哪些元素?

63.球有哪些性质?

(2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角!

(3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。

(5)球内接长方体的对角线是球的直径。正四面体的外接球半径r与内切球半径r之比为r:r=3:1。

积为()

答案:a

64.熟记下列公式了吗?

(2)直线方程:

65.如何判断两直线平行、垂直?

66.怎样判断直线l与圆c的位置关系?

圆心到直线的距离与圆的半径比较。

直线与圆相交时,注意利用圆的“垂径定理”。

67.怎样判断直线与圆锥曲线的位置?

68.分清圆锥曲线的定义

70.在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。)

71.会用定义求圆锥曲线的焦半径吗?

如:

通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。

72.有关中点弦问题可考虑用“代点法”。

答案:

73.如何求解“对称”问题?

(1)证明曲线c:f(x,y)=0关于点m(a,b)成中心对称,设a(x,y)为曲线c上任意一点,设a'(x',y')为a关于点m的对称点。

75.求轨迹方程的常用方法有哪些?注意讨论范围。

(直接法、定义法、转移法、参数法)

76.对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。

1、函数的单调性

(1)设x1、x2[a,b],x1x2那么

f(x1)f(x2)0f(x)在[a,b]上是增函数;

f(x1)f(x2)0f(x)在[a,b]上是减函数.

2、函数的奇偶性

对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

3、判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac0 注:方程有两个不等的实根

b2-4ac0 注:方程没有实根,有共轭复数根

4、两角和公式

tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)

ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

5、倍角公式

6、抛物线

1、抛物线:y=ax+bx+c就是y等于ax的平方加上bx再加上c。

a0时,抛物线开口向上;a0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。

2、顶点式y=a(x+h)+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。

3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。

4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2p^2=2pyx^2=-2py。

学习高中数学上,需要形成自己独立数学思维能力,遇到数学题上我们需要多多进行独立思考,不断摸索数学解题思路,一道数学题可能有很多种解答方法,你可以选择适合自己的答题方法去解答,这样也能够提升自己数学答题效率。自己多动脑思考也方便在今后的数学解题中更好地运用答题技巧。

学好高中数学,我们要做好数学课前预习和课后复习工作,这是非常必要的步骤,课前预习中能够让我们在上课的时候紧跟老师讲课的思路,带着课前数学预习中的问题去思考答案,有助于养成数学思维,课后对于数学上的复习工作,能够让我们巩固好数学重要知识点,加深上课所讲知识的印象。

在高中数学的学习中,有很多需要我们记忆背诵的数学公式以及定理,这些都是我们在学习数学上的一些基础知识,我们一定要把相关的数学公式以及定理背下来,这样也方便我们解答高中数学题。

数学高考知识点及公式总结数学高职高考知识点篇二

排列p------和顺序有关

组合c-------不牵涉到顺序的问题

排列分顺序,组合不分

例如把5本不同的书分给3个人,有几种分法."排列"

把5本书分给3个人,有几种分法"组合"

1.排列及计算公式

2.组合及计算公式

c(n,m)表示.

3.其他排列与组合公式

n!/(n1!.n2!.....nk!).

排列(pnm(n为下标,m为上标))

组合(cnm(n为下标,m为上标))

因为从n到(n-r+1)个数为n-(n-r+1)=r

举例:

q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?

a1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列p”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9.8.7个三位数。计算公式=p(3,9)=9.8.7,(从9倒数3个的乘积)

a2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合c”计算范畴。

排列、组合的概念和公式典型例题分析

点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.

∴符合题意的不同排法共有9种.

例3判断下列问题是排列问题还是组合问题?并计算出结果.

(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).

(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.

例4证明.

证明左式

右式.

∴等式成立.

例5化简.

解法一原式

解法二原式

例6解方程:(1);(2).

解(1)原方程

解得.

(2)原方程可变为

∵,,

∴原方程可化为.

即,解得

数学高考知识点及公式总结数学高职高考知识点篇三

1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

中元素各表示什么?

注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

3.注意下列性质:

(3)德摩根定律:

4.你会用补集思想解决问题吗?(排除法、间接法)

的取值范围。

6.命题的四种形式及其相互关系是什么?

(互为逆否关系的命题是等价命题。)

原命题与逆否命题同真、同假;逆命题与否命题同真同假。

(一对一,多对一,允许b中有元素无原象。)

8.函数的三要素是什么?如何比较两个函数是否相同?

(定义域、对应法则、值域)

9.求函数的定义域有哪些常见类型?

10.如何求复合函数的定义域?

义域是_____________。

12.反函数存在的条件是什么?

(一一对应函数)

求反函数的步骤掌握了吗?

(①反解x;②互换x、y;③注明定义域)

13.反函数的性质有哪些?

①互为反函数的图象关于直线y=x对称;

②保存了原来函数的单调性、奇函数性;

14.如何用定义证明函数的单调性?

(取值、作差、判正负)

如何判断复合函数的单调性?

∴……)

15.如何利用导数判断函数的单调性?

值是()

a.0b.1c.2d.3

∴a的最大值为3)

16.函数f(x)具有奇偶性的必要(非充分)条件是什么?

(f(x)定义域关于原点对称)

注意如下结论:

(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

17.你熟悉周期函数的定义吗?

函数,t是一个周期。)

如:

18.你掌握常用的图象变换了吗?

注意如下“翻折”变换:

19.你熟练掌握常用函数的图象和性质了吗?

的双曲线。

②求闭区间[m,n]上的最值。

③求区间定(动),对称轴动(定)的最值问题。

④一元二次方程根的分布问题。

由图象记性质!(注意底数的限定!)

利用它的单调性求最值与利用均值不等式求最值的区别是什么?

20.你在基本运算上常出现错误吗?

21.如何解抽象函数问题?

(赋值法、结构变换法)

22.掌握求函数值域的常用方法了吗?

(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)

如求下列函数的最值:

24.熟记三角函数的定义,单位圆中三角函数线的定义

(x,y)作图象。

27.在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。

29.熟练掌握三角函数图象变换了吗?

(平移变换、伸缩变换)

平移公式:

图象?

30.熟练掌握同角三角函数关系和诱导公式了吗?

“奇”、“偶”指k取奇、偶数。

a.正值或负值b.负值c.非负值d.正值

31.熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?

理解公式之间的联系:

应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)

具体方法:

(2)名的变换:化弦或化切

(3)次数的变换:升、降幂公式

(4)形的变换:统一函数形式,注意运用代数运算。

(应用:已知两边一夹角求第三边;已知三边求角。)

33.用反三角函数表示角时要注意角的范围。

34.不等式的性质有哪些?

答案:c

35.利用均值不等式:

值?(一正、二定、三相等)

注意如下结论:

36.不等式证明的基本方法都掌握了吗?

(比较法、分析法、综合法、数学归纳法等)

并注意简单放缩法的应用。

(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)

39.解含有参数的不等式要注意对字母参数的讨论

40.对含有两个绝对值的不等式如何去解?

(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)

证明:

(按不等号方向放缩)

42.不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)

43.等差数列的定义与性质

0的二次函数)

项,即:

44.等比数列的定义与性质

46.你熟悉求数列通项公式的常用方法吗?

例如:(1)求差(商)法

解:

[练习]

(2)叠乘法

解:

(3)等差型递推公式

[练习]

(4)等比型递推公式

[练习]

(5)倒数法

47.你熟悉求数列前n项和的常用方法吗?

例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

解:

[练习]

(2)错位相减法:

(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

[练习]

48.你知道储蓄、贷款问题吗?

△零存整取储蓄(单利)本利和计算模型:

若每期存入本金p元,每期利率为r,n期后,本利和为:

△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)

p——贷款数,r——利率,n——还款期数

49.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

50.解排列与组合问题的规律是:

相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。

如:学号为1,2,3,4的四名学生的考试成绩

则这四位同学考试成绩的所有可能情况是()

a.24b.15c.12d.10

解析:可分成两类:

(2)中间两个分数相等

相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。

∴共有5+10=15(种)情况

51.二项式定理

性质:

表示)

52.你对随机事件之间的关系熟悉吗?

的和(并)。

(5)互斥事件(互不相容事件):“a与b不能同时发生”叫做a、b互斥。

(6)对立事件(互逆事件):

(7)独立事件:a发生与否对b发生的概率没有影响,这样的两个事件叫做相互独立事件。

53.对某一事件概率的求法:

分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即

如:设10件产品中有4件次品,6件正品,求下列事件的概率。

(1)从中任取2件都是次品;

(2)从中任取5件恰有2件次品;

(3)从中有放回地任取3件至少有2件次品;

解析:有放回地抽取3次(每次抽1件),∴n=103

而至少有2件次品为“恰有2次品”和“三件都是次品”

(4)从中依次取5件恰有2件次品。

解析:∵一件一件抽取(有顺序)

分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。

54.抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。

55.对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。

要熟悉样本频率直方图的作法:

(2)决定组距和组数;

(3)决定分点;

(4)列频率分布表;

(5)画频率直方图。

如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。

56.你对向量的有关概念清楚吗?

(1)向量——既有大小又有方向的量。

在此规定下向量可以在平面(或空间)平行移动而不改变。

(6)并线向量(平行向量)——方向相同或相反的向量。

规定零向量与任意向量平行。

(7)向量的加、减法如图:

(8)平面向量基本定理(向量的分解定理)

的一组基底。

(9)向量的坐标表示

表示。

57.平面向量的数量积

数量积的几何意义:

(2)数量积的运算法则

58.线段的定比分点

※.你能分清三角形的重心、垂心、外心、内心及其性质吗?

59.立体几何中平行、垂直关系证明的思路清楚吗?

平行垂直的证明主要利用线面关系的转化:

线面平行的判定:

线面平行的性质:

三垂线定理(及逆定理):

线面垂直:

面面垂直:

60.三类角的定义及求法

(1)异面直线所成的角θ,0°θ≤90°

(2)直线与平面所成的角θ,0°≤θ≤90°

(三垂线定理法:a∈α作或证ab⊥β于b,作bo⊥棱于o,连ao,则ao⊥棱l,∴∠aob为所求。)

三类角的求法:

①找出或作出有关的角。

②证明其符合定义,并指出所求作的角。

③计算大小(解直角三角形,或用余弦定理)。

[练习]

(1)如图,oa为α的斜线ob为其在α内射影,oc为α内过o点任一直线。

(2)如图,正四棱柱abcd—a1b1c1d1中对角线bd1=8,bd1与侧面b1bcc1所成的为30°。

①求bd1和底面abcd所成的角;

②求异面直线bd1和ad所成的角;

③求二面角c1—bd1—b1的大小。

(3)如图abcd为菱形,∠dab=60°,pd⊥面abcd,且pd=ad,求面pab与面pcd所成的锐二面角的大小。

(∵ab∥dc,p为面pab与面pcd的公共点,作pf∥ab,则pf为面pcd与面pab的交线……)

61.空间有几种距离?如何求距离?

点与点,点与线,点与面,线与线,线与面,面与面间距离。

将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。

如:正方形abcd—a1b1c1d1中,棱长为a,则:

(1)点c到面ab1c1的距离为___________;

(2)点b到面acb1的距离为____________;

(3)直线a1d1到面ab1c1的距离为____________;

(4)面ab1c与面a1dc1的距离为____________;

(5)点b到直线a1c1的距离为_____________。

62.你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?

正棱柱——底面为正多边形的直棱柱

正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

正棱锥的计算集中在四个直角三角形中:

它们各包含哪些元素?

63.球有哪些性质?

(2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角!

(3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。

(5)球内接长方体的对角线是球的直径。正四面体的外接球半径r与内切球半径r之比为r:r=3:1。

积为()

答案:a

64.熟记下列公式了吗?

(2)直线方程:

65.如何判断两直线平行、垂直?

66.怎样判断直线l与圆c的位置关系?

圆心到直线的距离与圆的半径比较。

直线与圆相交时,注意利用圆的“垂径定理”。

67.怎样判断直线与圆锥曲线的位置?

68.分清圆锥曲线的定义

70.在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。)

71.会用定义求圆锥曲线的焦半径吗?

如:

通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。

72.有关中点弦问题可考虑用“代点法”。

答案:

73.如何求解“对称”问题?

(1)证明曲线c:f(x,y)=0关于点m(a,b)成中心对称,设a(x,y)为曲线c上任意一点,设a'(x',y')为a关于点m的对称点。

75.求轨迹方程的常用方法有哪些?注意讨论范围。

(直接法、定义法、转移法、参数法)

76.对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。

数学高考知识点及公式总结数学高职高考知识点篇四

对每个人来说,高考是改变命运的重要机会。每一位家长都希望自己的孩子能上一所好大学,有一个美好的未来,改变自己的命运。下面是小编给大家带来的高考数学必考公式知识点归纳,希望能够帮到你哟!

1、圆柱体:

表面积:2πrr+2πrh体积:πr2h(r为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:

3、正方体

a-边长,s=6a2,v=a3

4、长方体

a-长,b-宽,c-高s=2(ab+ac+bc)v=abc

5、棱柱

s-底面积h-高v=sh

6、棱锥

s-底面积h-高v=sh/3

7、棱台

8、拟柱体

s1-上底面积,s2-下底面积,s0-中截面积

h-高,v=h(s1+s2+4s0)/6

9、圆柱

r-底半径,h-高,c—底面周长

s底—底面积,s侧—侧面积,s表—表面积c=2πr

s底=πr2,s侧=ch,s表=ch+2s底,v=s底h=πr2h

10、空心圆柱

r-外圆半径,r-内圆半径h-高v=πh(r^2-r^2)

11、直圆锥

r-底半径h-高v=πr^2h/3

12、圆台

r-上底半径,r-下底半径,h-高v=πh(r2+rr+r2)/3

13、球

r-半径d-直径v=4/3πr^3=πd^3/6

14、球缺

15、球台

16、圆环体

r-环体半径d-环体直径r-环体截面半径d-环体截面直径

v=2π2rr2=π2dd2/4

17、桶状体

d-桶腹直径d-桶底直径h-桶高

v=πh(2d2+d2)/12,(母线是圆弧形,圆心是桶的中心)

v=πh(2d2+dd+3d2/4)/15(母线是抛物线形)

1.适用条件:[直线过焦点],必有ecosa=(x-1)/(x+1),其中a为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。注上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2.函数的周期性问题(记忆三个):

(1)若f(x)=-f(x+k),则t=2k;

(2)若f(x)=m/(x+k)(m不为0),则t=2k;

周期必无限b.周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3.关于对称问题(无数人搞不懂的问题)总结如下:

4.函数奇偶性:

(1)对于属于r上的奇函数有f(0)=0

(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项

(3)奇偶性作用不大,一般用于选择填空

5.数列爆强定律:

1.等差数列中:s奇=na中,例如s 13 =13a 7

6.数列的终极利器,特征根方程。(如果看不懂就算了)。

首先介绍公式:对于a n+1 =pa n +q,a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p?(n-1)+x,这是一阶特征根方程的运用。二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)

7.函数详解补充:

(1)复合函数奇偶性:内偶则偶,内奇同外

(2)复合函数单调性:同增异减

(3)重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。

前面减去一个1,后面加一个,再整体加一个2

9.适用于标准方程(焦点在x轴)爆强公式

注:(xo,yo)均为直线过圆锥曲线所截段的中点。

10.强烈推荐一个两直线垂直或平行的必杀技

若它们垂直:(充要条件)a1a2+b1b2=0;

若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合)

注:以上两公式避免了斜率是否存在的麻烦,直接必杀!

备考的方向。很多考生觉得多做题就行了,还有一些考生进行“题海战术”,每天面对大量的习题,同时也有好像永远都做不完题,结果是成绩没有提升上去。那么这个方向,当然也有一些考生走向了另一个极端,不喜欢做题甚至很少做题,这些考生有的觉得自己很聪明,应该能学好理科,特别是数学,结果拿到试卷后,觉得生疏,在短时间内很难把题目做好,对以上两类考生,都是属于备考方向的问题。

训练方式。备考中学习和考试其实既有区别又有联系,现实中学习努力的考生有的不一定会考试,会考试的学生不一定努力学习。当然前者远远多于后者。无论是会考试还是不会考试的学生,要想把试考好,对于绝大多数考生来讲,还是需要合理的训练,例如说数学学科来说,你需要在平时训练中注重这些关键词:时间分配、正确率、题型以及相关的解题方法、步骤等等。很多学生没有训练的目标,甚至一些考生做题的目标仅仅是为了完成老师布置的作业,这样训练方式肯定很难让自己的成绩提升上去。

教师教学等客观原因。在毕业班中老师重视成绩优秀的考生是普遍的现象,当然如果面对一些平时努力学习,成绩没有提升的同学,作为老师肯定要给学生们出谋划策,帮他们做改变,把成绩提升上去,同时现实中也并非所有老师都能这样去做,有的老师精力也不允许。但是无论怎样,考生成绩上不去,帮他们提升成绩更是老师的责任。如果我带一个班级的学生,肯定不会一刀切去布置作业,让每一个学生都按照同样的模式去走,要根据他们的实际需要,给出建议和方向。还是那句话,很多时候学习数学不是你做了多少题而是做了多少有效的题。

数学高考知识点及公式总结数学高职高考知识点篇五

【轨迹方程】就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤

⒈建立适当的坐标系,设出动点m的坐标;

⒉写出点m的集合;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点q的坐标x,y表示相关点p的坐标x0、y0,然后代入点p的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

.直译法:求动点轨迹方程的一般步骤

①建系——建立适当的坐标系;

②设点——设轨迹上的任一点p(x,y);

③列式——列出动点p所满足的关系式;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

【本文地址:http://www.xuefen.com.cn/zuowen/2060113.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档