每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
能被3整除数的特征教学设计篇一
1. 使学生通过观察、猜想、比较、验证等一系列数学活动,自主探索并掌握能被3整除的数的特征。
2. 使学生在具体的探索活动中,培养自主探索的意识,发展初步的推理能力。
3. 使学生在参与学习活动的过程中,体验成功的喜悦,增强学习数学的兴趣。
学号卡片,计算器,小棒等。
一、 对比中产生困惑
出示:按要求在下面的□里填上合适的数。
(1) 3□ 能被2整除;能被5整除;能被3整除。
(2) 2□ 能被3整除。
(3) 1□ 能被3整除。
学生回答后,引导思考:看一个数能不能被2、5整除,主要是看这个数的个位,你能从个位上发现能被3整除的数的特征吗?
揭示课题:怎样判断一个数能不能被3整除呢?这就是我们今天要研究的问题。(板书:能被3整除的数的特征)
【说明:学生已经掌握了能被2或5整除的数的特征,在研究能被3整除的数的特征时,会很自然地想到“看个位上的数”。这里正是把学生的已有知识经验作为教学资源,巧妙地通过对比引起学生的思维冲突,促使学生自觉克服思维定势的负面影响,激发学生强烈的探究欲望。】
二、 排列中感受奇妙
1. 谈话:我们班有55个同学,课前每个同学都准备了一张写有自己学号的卡片,请大家判断一下,自己的学号数能否被3整除。(稍停,让学生完成判断)请学号数能被3整除的同学,把自己的学号卡片贴在黑板的左边,不能被3整除的,把卡片贴在黑板的右边。
2. 抽取黑板左边能被3整除的12和21。
(1) 谈话:比较这两个数,你能发现什么有趣的现象?(数字相同,数字排列的顺序不同)
(2) 提问:在左边能被3整除的数中,像这样的数还有哪几组?请把它们一组一组地排列起来。(15、51;24、42;45、54)
(3) 提问:在右边不能被3整除的数中,也有这样的数,你能把它们一组一组地排列起来吗?(13、31;14、41;23、32;25、52、34、43;35、53)
3. 提问:你能用自己的语言描述这样的现象吗?(一个能被3整除的数,改变数字的顺序后,仍然能被3整除;一个不能被3整除的数,改变数字的顺序后,仍然不能被3整除)
4. 提问:由此我们可以推想,能被3整除的数的特征和什么有关?(和一个数各位上的数字有关,和数字的排列顺序没有关系)
【说明:以学生熟悉的学号数为研究新知识的素材,易于调动学生的学习兴趣。教师引导学生通过观察、比较、排列等具体的活动,自主地发现“有趣”的现象,体会“能被3整除的数的特征”与一个数各位上的数字密切相关,明确了进一步探究的方向。】
三、 操作中发现规律
1. 活动一:每个同学手中都有一些小棒和一张数位表,先请同学们拿出其中的3根小棒,在数位表上摆一个两位数或三位数,如用3根小棒摆两位数:
把摆出的数填在下面的表中:
小棒的根数
摆出的根数
能被3整除
不能被3整除
学生完成操作并填写表格。
反馈:你摆了哪些数?(根据学生回答,填表)这些数能被3整除吗?(在表格里画“√”)
追问:用3根小棒能摆出一个不能被3整除的数吗?
让认为能摆出一个不能被3整除的数的同学自己在下面摆一摆。
2. 活动二:再请同学们拿出5根小棒,在数位表上摆一个两位数或三位数,看摆出的数能不能被3整除。
学生操作并填写表格。
反馈:用5根小棒摆出的数能被3整除吗?
追问:用5根小棒能摆出一个能被3整除的数吗?
3. 活动三:请同学们自己选择小棒的根数摆一摆,把结果填在表格里,并和小组里的同学说一说,从摆小棒的活动中,你发现了什么。
学生活动,并在小组里交流。
反馈:你分别是用几根小棒摆的?结果怎样?你发现了什么?(如果小棒的根数能被3整除,摆出的数就一定能被3整除;如果小棒的根数不能被3整除,摆出的数就不能被3整除……)
4. 提问:通过刚才的活动,我们发现能被3整除的数的一些特点,你能归纳一下,能被3整除的数有什么特征吗?(一个数各位上数的和能被3整除,这个数就能被3整除)
【说明:本环节安排了三次摆小棒的活动,前两次活动主要是引导学生初步体会如果小棒的根数能被3整除,摆出的数一定能被3整数;如果小棒的根数不能被3整除,摆出的数就不能被3整除。第三次活动通过学生自主地操作、观察、比较、交流,进一步丰富前两次活动得出的结论,促使学生主动地发现规律。】
四、 练习中提升认识
谈话:我们已经知道能被3整除的数的特征,你能运用这一规律解决一些简单问题吗?
1. 完成第47页的练一练。
让学生说一说怎样判断每一个数能不能被3整除。
2. 完成练习八第6题。
让学生说一说方框里可以填几,为什么。逐步要求学生不重复、不遗漏地填出方框里的数。
五、 课堂总结
1. 提问:通过今天的学习,你有什么收获?
2. 延伸:为什么判断一个数能否被2、5整除,只有看它的个位,而判断一个数能否被3整除,却要看这个数各个数位上的数字的和呢?请同学们课后到网上或图书馆去查阅资料,进行研究。
能被3整除数的特征教学设计篇二
使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。
能被3整除的数的特征。
会判断一个数能否被3整除。
1、能被2、5整除的数有什么特征?
2、能同时被2和5整除的数有什么特征?
我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?现在我们就来学习和研究能被3整除的数的特征(板书课题)
1、小组合作学习---能被3整除的数的特征。
(1)思考并回答:①什么样的数能被3整除?②要想研究能被3整除的数的特征,应该怎样做?
(2)做法是:(根据学生说的逐一板书)
①②观察:③特征
×3(分组讨论,说发现的规律)一个数的各位上的数
13把各位上的数加起来看和有什么特征。的和能被3整除,这
26个数就能被3整除。
39
412
515
618
721
824
(3)检验:由学生和老师任意报一个较大的数让学生检验观察它的特征。如:8057921。
因为:8+0+5+7+9+2+1=323+2=55为能被3整除,所以8057921不能被3整除,8057921÷3=2685940......1。
1、做教材第55页下面的“做一做”。
2、做练习十二的第5题。
3、做练习十二的第6题。
4、做练习十二的第8题。
①让学生明确这个图所表示的就是判断一个数能否被3整除的顺序和方法。
②让学生按这个顺序和方法判断上面的3个数。
学生小结今天学习的内容。
做练习十二的第7题。
能被3整除数的特征教学设计篇三
:能被3整除的数的特征
1、使学生掌握能被3整除的.数的特征,并能正确判断一个数能被3整除
2、培养学生观察分析探求规律的能力。
一、复习
把下面每个数的各个数位上的数想加,求他们的和
61338126315507
二、引入新课
1、能被3整除的书的特征
过程:613------6+1+3=10
38------3+8=11
126-1+2+6=9
507-5+0+7=12
想:把3的倍数的各个数位上的数相加,她们的和有什么规律。
1、观察
能被3整除的数不能从个位上找到特征
2、试一试
写出右边括号里各个数的每个数位上的数的和。
3、比一比:这些和有什么特征?
4、结论:一个数的各个数位上的数的和能被3整除,这个数就能被3整除。
三、巩固练习
1、第一题,下面那些数能被3整除,为什么?
2、第二题,在下面每个数中的方块里填上一个数字,使这个数有约数3。
3、第四题,综合性练习
四、,布置作业
反思:这节课导入不够自然,没有让学生引入到课的内容上来。对于知识的也知识通过部分学生的的出,没有做到面向全体学生。所以在做练习的时候好多同学没有真正的领会。
能被3整除数的特征教学设计篇四
(1)使学生掌握能被3整除的数的特征、并能正确判断一个数能否被3整除。
(2)培养学生观察、分析、探求规律的能力。
掌握能被3整除的数的特征是重点。
判断一个数能否被3整除是难点。
备注
一、复习引入,揭示课题
1、请学生分别说出一个与生活密切相关的数,如电话号码、牌照号码、人数、钱数等。教师选择其中几个板书,如:7234698、6403105、3210、734、5816、72等。
2、说说这些数中哪些能被2整除,哪些能被5整除。
学生回答后再问:你是怎么判断的?(根据个位上的数字判断)
3、问:如果要判断一个数能不能被3整除,请说说你自己的想法。
(如果学生提出看个位上的数,就马上组织讨论。如果学生不提出这个观点,教师可在适当的时机提出:判断一个数能否被3整除,是不是也只要看它个位上的数就行了?再让学生在小组中展开讨论。)
小组讨论要求:
(1)小组中每个同学自己报几个能被3整除的数,供大家观察讨论。
(2)仔细观察,探求规律。
(3)各抒已见,敢于提出与别人不同的意见或补充自己的想法。
4、全班学生交流,最后得出结论:判断一个数能否被3整除不能看个位上的数。
5、揭题:今天我们一起来研究“能被3整除的数的特征”。(板书:能被3整除的数的特征)
二、动手实验,探索规律。
1、分类。
(1)请学生先在卡片“()4”中一个数字,使其成为两位数,再将这些数按能否被3整除进行分类。
能被3整除的数不能被3整除的数
235484143444647494
(2)分小组验证学生分类是否正确。
2、实验。
(1)实验(1)
a、将上面各数各个数位上的数字交换位置,得到一个新的数。
教学过程
备注
424548414344464749
b、通过观察计算,你发现了什么?请用自己的话说一说。(同桌交流)
(能被3整除的数,交换数位上的数字的位置,得到的数也能被3整除;不能被3整除的数,交换数位上的数字的位置,得到的数也不能被3整除。)
c、思考:一个数能否被3整除,跟数字所在的位置有没有关系呢?(没有)那和什么有关系呢?
(2)实验(2)
a、将组成各组数的几个数字分别相加,看看会发现什么?
2+4=64+5=912578101113
b、学生计算后交流自己的发现。
(能被3整除的数,它们各个数位上的数字的和也能被3整除;不能被3整除的数,它们各个数位上的数字的和也不能被3整除。)
思考:一个数各个数位上的数字的和能被3整除,这个数就能被3整除吗?(初步得出结论,并引导学生进一步验证)
3、验证。
(1)请同学们拿出准备好的3根小棒摆数,一根小棒在个位表示一个1,摆在十位表示一个10,请你任意摆出一个两位数(如12、21、30),再摆出一个任意的三位数(如111、120、102、201、300),观擦一下,你发现摆出的数有什么特点?
先请同学用一句话概括自己的发现(用3根小棒摆的任意两位数、三位数都能被3整除),再讨论3是这些数的什么?(实际上是这些数各位数字的和)那刚才的那句话也可以怎么说?(得出:只要一个数各数位上数字的和是3。这个书就能被3整除)
(2)游戏:用6根小棒或9根小棒在一分钟内摆出几个山三位数(同桌合作,边摆边作好记录),观察记录下的数据,你们发现了什么?(用6根小棒摆出的任意三位数都能被3整除)那么两位数呢?四位书呢?为什么?(得出:只要一个数各数位上数字的和是6或9,这个数就能被3整除)
4、总结:请同学们根据前面的实验和游戏,用自己的话说一说怎样来判断一个数能否被3整除,再对照课本加深记忆。
三、应用规律,巩固知识
1、基本练习。
(1)判断,下面哪些数能被3整除。(课本上练一练第1题)
学生先独立判断,再交流是怎样判断的。
(2)同桌间互说三个能被3整除的数。
2、发展练习。
(1)在下面每个数中的“()”里填上一个数字,使这个数有约数3。“()”里有几种填法?(课本上练一练第2题)
23()51()27346()58()0
教学过程
备注
(2)你能迅速判断出下面的数能否被3整除吗?
396399817263312874219
引导学生用简便方法,即先把数字3、6、9划掉,再把凑成是3的倍数的数字划掉,最后把剩下的各位数加起来看能否被3整除。
(3)课本上练一练第4题。
四、课堂小结
1、你学会了哪些知识?你是用什么方法学会的?你还想研究什么?
2、你有什么疑问?谁能帮他解决?
五、作业《作业本》
“问题情境”必须贴近儿童的生活现实,这节课我设计这么情境今天,老师想请同学们做一回小老师,由你们任意选一个自然数,考考老师:它能被2或3或5整除吗?看看哪位同学能考倒老师。学生无论举出什么数都难不倒老师,心里头觉得老师太了不起、太神奇了。看到学生的兴趣被激起来了,这时老师一语道破:同学们,不是老师有什么特异功能,而是掌握了有关数学的规律,这节课我们一起来探索这个规律,好不好?让学生也来当一回小老师,这事很新鲜。本案例的“新”就充分体现在这里。正是这幕别出心裁的“考老师”情境,吊起了学生的胃口,激起了学生急于想探索数学规律的强烈欲望。
能被3整除数的特征教学设计篇五
教学内容:
能被3整除的数的特征(《现代小学数学》第八册)。
教学目标:
1.使学生掌握能被3整除的数的特征,并能运用特征进行正确的判断;
2.培养学生的观察分析能力和逻辑思维能力;
教学重点:
认识并掌握能被3整除的数的特征。
教学难点:
通过概括能被3整除的数的特征掌握一定的数学思想和方法。
教具学具:
投影片、纸黑板、数字卡、作业纸
教学过程:
一、复检:
1.前面找们已经学习了能被2、5整除的数的特征,谁来分别说一说?
2.你能说出几个能被3整除的数吗?(板书其中两个45、234)
3.能被3整除的数有什么特征呢?这就是我们今天要研究的内容。(板书课题)
二、新授:
1.质疑引入
刚才同学们口算验证了234能被3整除,老师根据这个数可以写出许多个能被3整除的数(板书243、324、342、423、432、2043、)。你们想知道老师有什么窍门吗?下面我们一起来研究。
2.引导观察
(1)9能被3整除吗? 3|9
9的2倍能被3整除吗? 板书 3|(92)
9的3倍能被3整除吗? 3|(93)
由此,你想到了什么? 贴纸黑板 (9的倍数都能被3整除)①
(2)9与18的和能被3整除吗? 3|(9+18)
18与27的和能被3整除吗? 板书 3|(18+27)
36与90的和能被3整除吗?3|(36+90)
由此,你又想到了什么?贴纸黑板
(每个加数能被3整除,它们的和也能被3整除)②
(3)下面研究整十、整百数与9的关系。
由此,你推想到了什么?
(几十=几个9+几) (几百=几十几个9+几)③
能被3整除数的特征教学设计篇六
人教版九年义务教育六年制小学数学第十册
1、知识目标:掌握能被3整除的数的特征。
2、技能目标:能运用“能被3整除的数”的特征判断一个数能否被3整除。
3、情感目标:培养学生自主探索的能力,合作学习的品质。让学生感受
生活中蕴藏着丰富的数学知识。
探索“能被3整除的数”的特征
教具准备: 多媒体课件
(一)
师:刚才吉老师给同学们上了一节数学课,同学们在课堂上表现的特别棒!我也想给同学们上一节数学课,你们欢迎吗?
生:……
师:吉老师领大家做了报数游戏,现在我也领大家做一个报数游戏。你们愿意吗?
生:……
师:好,现在我们从第一排第一个同学开始报数,报数的要求是:第一个同学从3开始报数,第二个同学要在第一个同学报的数上加3,第三个同学要在第二个同学报的数上加3,依次类推,第一排最后一位同学报完后,第二排的第一位同学要接着往下报,第二排最后一位同学报完后,第三排的第一位同学要接着往下报,一直报到最后。听懂了吗?
生:……
师:想一想,第一位同学从3开始报数,第二位同学应该报几?第三位同学呢?
生:……
师:报数的时候,其他同学要注意听,同时想一想自己应该报几。并要记住自己的号码。现在开始:报数!
生:……
师:记住你们的号码了吗?
生:……
师:再报一遍!
生:……
师:游戏做到这里。上课!
生:……
师:同学们好!请坐!我们刚学过能被2、5整除的数的特征。现在请你们用3、4、5三个数字组成一个能被2整除的三位数。
生:……
师:为什么要把4放在个位上?
生:……
师:同样还用3、4、5三个数,组成能被5整除的三位数。
生:……
师:你是怎么想的?
生:……
师:判断一个数是否能被2或者5整除,只要看这个数的哪一位?
生:……
师:我们知道了能被2或者5整除的数的特征,请同学们大胆猜想一下,能被3整除的数是否也有特征呢?
生:……
师:有什么特征呢?
生:……
师:好,这就是我们这节课要研究的内容。(板书:能被3整除的数的特征)
师:请同学们看大屏幕:(屏幕出示)
3 6 9 12 15 18 21 24 27 30 33 36 39 42
45 48 51 54 57 60 63 66 69 72 75 78 81
84 87 90 93 96 99 102 105 108 111 114 117
120 123 126 129 132 135 138 141 144 147 150
师:这就是我们刚才报数游戏时同学们的号码。这些数都是3的倍数,都能被3整除,观察这些能被3整除的数,个位上有什么特点?
生:……
师:你从一个数的个位上能判断出这个数能被3整除吗?
生:……
师:那该怎么办呢?(学生猜想规律)请看大屏幕(屏幕出示)
12—21 24—42 48—84 36—63
师:你发现每组的两个数有什么联系?(追问)
生:……
师:你从大屏幕找出这样的例子吗?
生:……(找)
师:这些数把每个数的各位数字调换位置,它们仍然能被3整除。这说明能被3整除的数与组成这个数的数字无关。那么到底与什么有关呢?请同学们小组讨论,共同探讨一下。
生:……
师:讨论完了吗?哪个小组先来汇报?
生:……
师:回答的真好!其他小组同意他们的意见吗?
生:……
师:请同学们在大屏幕上任选一个数字,看看刚才的同学发现的是不是真理。
生:……
师:我们刚才发现的规律对于两位数、三位数是适用的,那么对于四位数、五位数是不是也适用呢?请看大屏幕(屏幕出示)
3246 5709 3428331
师:请同学们计算一下。这三个能被3整除的数各个数位的和是不是能被3整除?
生:……
师:看来同学们发现的规律确实很有道理。谁能把自己的发现用一句话叙述一下?
生:……
师:(谁能比他说的更完整)
师:对,一个数的各位上的数的和能被3整除,这个数就能被3整除。板书:(…)
小结:以后判断一个数能不能被3整除,只要把这个数的个位上的数加起来,看看和能不能被3整除,就知道了。
师:出示卡片:417,这个数能不能被3整除?
生:……
师:我现在把这个数的位置颠倒一下,出示:147。猜想一下老师下面会出什么数字?
生:……
师:猜对了。你说的这些数字能不能被3整除?你是怎么想的?
生:……(鼓励)
师:还记得我们课前做的游戏吗?看看你们忘没忘记你们的号码。现在我们继续做报数游戏,从3开始报数!
生:……
师:是偶数的同学站起来。请报一下你们的号码。
生:……
师:你们的号码能被2和3同时整除吗?
生:……
师:为什么?
生:……
师:真聪明!请坐!
师:我们已经初步掌握了能被3整除的数的特征。你们想不想做几道题检验一下自己学习的情况。
生:……
屏幕出示:
1、填适当的数使它能被3整除。
12□ 7□ 3□0 40□
□26 578□ □8 3□3
2、你今年11岁,再过几年,你的岁数能被3整除?
师:好了,通过检验,使我们对能同时被5和3整除的数的特征,认识的更深刻了。咱们再来做个练习,这里有5个数字,请你用这些数字组成同时能被2、3、5整除的三位数(每个数字在一个数里只能用一次),我只给20秒,看谁组的多、请写在本上,开始。
生:
师:时间到,有人组了三个,有人组了四个,最多的组了八个。我请一位组的最多的同学来说一说。
生:120,210;150,510;240,420;450,540。
师:对不对?
生:……
师:通过这节课的学习,你有什么收获?你对自己在课堂的表现满意吗?
生:……
师:这节课同学们的表现真棒,真高兴认识你们,谢谢同学们的合作!下课!
附板书设计:
能被3整除数的特征
一个数的各位上的数的和能被3整除,这个数就能被3整除。
【本文地址:http://www.xuefen.com.cn/zuowen/2579439.html】