微分方程无y 微分要微到无穷优秀

格式:DOC 上传日期:2023-04-28 07:50:03
微分方程无y 微分要微到无穷优秀
时间:2023-04-28 07:50:03     小编:zdfb

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。

微分方程无y 微分要微到无穷篇一

对于该部分内容的复习,考生首先要能识别各种方程类型(一阶:可分离变量的方程、齐次方程、一阶线性方程、伯努利方程(数一、二)、全微分方程(数一);高阶:线性方程、欧拉方程(数一)、高阶可降阶的方程(数一、二)),熟悉其求解步骤,并通过足量练习以求熟练掌握;在此基础上还要具备数学建模的能力——能根据几何或物理背景,建立微分方程。

另外,有几点需提醒考生:

1. 解微分方程主要考查考生计算积分的能力,而实际应用则对考生的综合能力提出较高要求,考生需结合练习把“解方程”和“列方程”的能力练好。

2. 非基本类型的方程一般都可通过变量替换化为基本类型。

3. 考生需弄清常见的物理量、几何量与微分、积分的关系。

微分方程无y 微分要微到无穷篇二

级数可视为微积分的综合应用。该部分是数一、数三的必考内容,分值约占10%。常考的题型有:常数项级数的收敛性,幂级数的收敛半径和收敛域,幂级数展开,幂级数求和,常数项级数求和以及傅里叶级数。其中幂级数是重点。

结合考试分析,建议考生从以下方面把握该部分内容:

1. 常数项级数

理解其收敛的相关概念并掌握各种收敛性判别法。

2. 幂级数

考试有三方面的要求:幂级数收敛域的计算,幂级数求和,幂级数展开。考生应通过一定量训练使自己具备这三方面的能力——给定幂级数,准确计算其收敛半径进而得到收敛域,能求其和函数,能将一个简单函数在指定点展开成幂级数。

3.傅里叶级数

考试出现频率和考试要求均较低,掌握傅里叶系数的求法,再了解狄利克雷定理的内容即可。

如何有效地复习考研数学?如果我们也视其为一道数学题,我想我们应该明白:我们要做微分运算——拿着放大镜把每个考点弄清,也要做积分运算——持续地投入,积跬步以至千里;我们要有严谨的态度——一张数表里有一个数不同结果就变了,还要有灵活的思维——于点、线、面,数、表、空间,常量、变量、随机变量间自由游弋;面对逝去的光阴不要悔恨——函数都可以不单调,人却要让过去决定未来吗,面对不如意的现状要接纳——作为考生,我们无权更改微分方程的初始条件,我们能做的是接受它,把题漂亮地解出来。

【本文地址:http://www.xuefen.com.cn/zuowen/2738122.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档