作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?下面是小编带来的优秀教案范文,希望大家能够喜欢!
苏教版数学六年级教案全册篇一
教学要求:
1.使学生进一步掌握含有百分数统计表的结构及能够准确熟练地进行数据计算与表格填写。
2.进一步培养学生观察、分析的能力。
3.通过制统计表,培养学生认真、仔细的良好习惯。
教学过程:
1.讲述练习内容
上节课我们学习了制作含有百分数的统计表,这节课我们进行巩固练习。
2.复习
让学生观察教材52页例1统计表提问:制一张合格的统计表的步骤是什么?(要求边看书边讨论,然后回答)
制复式统计表的步骤:
(1)设计“表头”
(2)定纵横栏目各需几格
(3)画表
(4)填写数据(包括总计、合计)
(5)写上名称、制表日期
3.巩固练习
在学生掌握复式统计表制作方法的基础上,出示练习十七第3题。
方法:指导做题,让学生研究后再制表
(1)提问:“各年级”和“全年级”各表示什么意思?
(2)教师巡视指导,然后让学生结合题目说一说制表的步骤。
4.综合练习
(1)完成教材练习十一第5题。
方法:独立完成。然后让学生回答第二季度合计数填写的位置,全班齐练。
(2)完成教材练习十一第4题。
方法:要求学生认真审题,抓住关键词语,弄清数量关系,正确列出算式,准确计算。在做题时一定要注意差后,发现普通的问题要统一纠正。
5.深化练习
练习十一第6题,不要求所有的学生都能完成,教师提示引导,学生试做。
教师引导,表中各班占总数的百分几中的总数指的是谁平均每人植树的棵数又是什么意思?学生试做后讲评。
6.全课总结
有关统计部分的知识在我们的生活中应用很广,因此这部分知识很重要,同学们一定要牢牢记住。
7.作业(补充)
(1)请把下面统计表填写完整
双林衬衫厂去年各季度生产情况统计表1993年1月
(2)填表。根据统计要求将下表填写完整
东方小学男、女生人数统计表
苏教版数学六年级教案全册篇二
教学目标
1.知识技能:学生经历用切割拼合的方法推导出圆柱体积公式
的过程,理解圆柱体积公式的推导过程,掌握圆柱体积的计算方法。
2.数学思考与问题解决:在自主探究的过程中,运用圆柱体的体积解决简单的实际问题,培养学生独立思考及解决问题的能力。
3.情感态度:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重难点
学生经历并理解圆柱体积公式的推导过程。
教学难点:圆柱体积的计算公式的推导过程及其应用。
教学过程
一.情景导入,激起兴趣。
同学们,我们的图形世界十分丰富多彩,让我们一起来欣赏吧。这些图形都有什么特点?如何计算出它们的体积呢?你觉得圆柱的体积和什么有关?这节课我们一起来探究圆柱的体积。(板书:圆柱的体积)
二.巧妙转化,探究新知。
1.呈现长方体、正方体和圆柱的直观图,它们都是直柱体,我们回忆一下长方体的体积公式。
长方体的体积=长×宽×高,长方体和正方体的体积的体积统一公式“底面积×高”,用字母怎样表示?(板书)
2.出示圆柱体,它的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?回忆一下圆面积计算公式的推导过程。
学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径)根据学生的叙述,教师课件演示。(演示课件:圆转化成长方形,推导圆面积公式的过程。)
3.现在老师给这个圆柱体变个魔术,仔细观察看看发生了什么变化?(动画演示)
4.学生小组讨论、交流。
教师:同学们自己先在小组里讨论一下
(1)圆柱体转化成什么立体图形?
(2)它是怎样转化成这个长方体的?
下一页更多精彩“六年级下册数学总复习教案”
苏教版数学六年级教案全册篇三
教学目的:
1、使学生理解倒数的意义。掌握求一个数的倒数的方法。
2、渗透事物都是普遍联系观点的启蒙教育。
教学重点:理解倒数的意义和怎样求倒数。
教学难点:求倒数方法的叙述。
教学过程:
一、引新:开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。
二、自学新课:
自学书本p19。并思考以下问题:
1、什么叫倒数?
2、怎么求一个数的倒数?
3、是不是任何数都有倒数?小数有吗?带分数有吗?
三、讨论辨析:
1、什么叫倒数?
2、看下面四道题,你能说一些什么有关“倒数”的话。
3、存在倒数有那些条件
(1)两个数。
(2)这两个数的乘积是1。
4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?
5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。
6、总结求一个数的倒数的方法。
四、思考:0.2的倒数是多少?
五、小结:请学生说一说这节课学习了哪些内容。
六、作业:练习五3—8。
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
苏教版数学六年级教案全册篇四
教学目标:
1、让学生尝试用图表示成反比例的量之间的关系,利用图进一步认识反比例。
2、渗透事物之间都是相互联系和发展变化的观点,初步渗透函数思想。
教学重难点:
动手操作,用图表示成反比例的量之间的关系,利用图进一步认识反比例。
教学过程:
一、复习
长方形面积一定,长与宽成反比例吗?为什么?
二、新课
这节课我们用图表表示成反比例的量之间的关系。
用x、y表示面积为24cm2的长方形相邻的两条边长,它们的变化关系如下表。(略)
1、观察表格,根据数据在方格纸上画出这8个长方形。
2、把图中的点用平滑的曲线依次连起来。
3、长和宽是怎样变化的?有什么规律?——长扩大,宽缩小,相对应的长和宽的乘积是24。
关系式:长×宽=长方形面积(一定)
4、图上的点a、b、c、d……在一条直线上吗?
最新苏教版六年级数学上册教案
苏教版数学六年级教案全册篇五
1 .理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
2 .能正确地计算圆柱的表面积。
3 会解决简单的实际问题。
4 .初步培养学生抽象的逻辑思维能力。
教学重点
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程
一 复习旧知。
1 计算下面圆柱的侧面积。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
2 求出下面长方体、正方体的表面积。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3 讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二 新课导入。
1 教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)
2 学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3 反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)
4 教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5 说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三 新课教学。
1 例2 一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)
2 学生尝试练习,教师巡回检查、指导。
3 反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)
(2)底面积:3.14×2×2=12.56(平方分米)
(3)表面积:56.52+12.56=81.64(平方分米)
答:它的表面积是81.64平方分米。
4 学生质疑。
5 教师强调答题过程的清楚完整和计算的正确。
6 教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四 反馈练习:试一试。
1 学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)
2 学生交流练习结果(注意计算结果的要求)。
3 教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五 拓展练习
1 教师发给学生教具,学生分组进行数据测量。
2 学生自行计算所需的材料。
3 计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六 巩固练习。
1 计算下面图形的表面积(单位:厘米)(略)
2 计算下面各圆柱的表面积。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3 一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4 一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)
苏教版数学六年级教案全册篇六
教学目标:
1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。
教学重点:理解题中的单位“1”和问题的关系。
教学难点:抓住知识关键,正确、灵活判断单位“1”。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)
1、先说下列各算式表示的意义,再口算出得数。
12× ×
2、列式计算。
(1)20的 是多少?(2)6的 是多少?
3、学生得出:求一个数的几分之几用乘法。
二、新知探究
(一)课件出示自学目标
1、通过学习掌握求一个数的几分之几是多少的应用题的解
题方法并会分析数量关系。
2、知道解这类应用题的关键是什么?
3、知道如何找单位“1”。
(二)、教学例1
1、课件出示自学提示
(1)、正确理解关键句“我国人均耕地面积仅占世界人均耕地面积的 ”。
(2)、结合线段图理解题意,找到解题思路。
(3)、如何来理解单位“1”?(小组讨论,理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的 是多少)
(4)、在分析题意的基础上,学生独立列式、计算。
2、学生根据提示自学
全班交流汇报:
2500× =1000(平方米)
3、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。
4、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。
三、当堂测评
练习四第2题、第3题。
学生独立完成,教师巡回指点,照顾差生。
小组内订正后
四、课堂总结
解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出关键句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)
设计意图:
本堂课是解决“求一个数的几分之几是多少”的问题,教学中,我紧扣分数乘分数的意义进行复习,并事先复习如“20的 是多少?”的文字题,为解决与此相似的应用题做好准备。
由于本节课是分数应用题学习的初始,因而教学中,我除了帮助学生分析、理解题意之外,更重要的还在于教给学生分析、解答分数应用题的方法,特别是在如何找单位“1”这个关键点上,更是花了较多的时间,但我认为这是十分必要的。
苏教版数学六年级教案全册篇七
教学内容:学习课本第一页的例1、完成“试一试”和“练一练”,练习一的第1至3题。
教学目标:
1.在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
2.在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。
教学重、难点:
理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
教学准备:
教学光盘及多媒体设备
教学过程:
一、复习导入
(出示下列题目,请学生解答。)
东山村去年原计划造林16公顷,实际造林24公顷。实际造林是原计划的百分之几?
2.学生独立列式计算后进行交流,重点说说数量关系。
3.揭示课题:今天这节课我们继续学习有关百分数的知识。
二、教学例1
1.出示例1中的两个已知条件,要求学生各自画线段图表示这两个数量之间的关系。
提出要求:根据这两个已知条件,你能求出哪些问题?
引导学生分别从差比和倍比的角度提出如“实际造林比计划多多少公顷”“原计划造林比实际少多少公顷”“实际造林面积相当于原计划的百分之几”“原计划造林面积相当于实际的百分之几”等问题。
在学生充分交流的基础上提出例1中的问题:实际造林比原计划多百分之几?
2.引导思考:
小结:要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数相当于原计划的百分之几。
启发:根据上面的讨论,你打算怎样列式解答这个问题?
学生列式计算后追问:这里得到的125%与刚才得到的25%这两个百分数有什么关系?
联系学生的讨论明确:从125%中去掉与单位“1”相同的部分,就是实际造林比原计划多的百分数。
提出要求:根据上面的讨论,要求“实际造林比原计划多百分之几”,还可以怎样列式?
三、教学“试一试”
1.出示问题:原计划造林比实际少百分之几?
启发:根据例题中问题的答案猜一猜,这个问题的答案是什么?
学生作出猜想后,暂不作评价。
2.学生列式计算后讨论:这个答案与你此前的猜想一样吗?为什么不一样?
小结:“试一试”与例题中的问题都是把实际造林面积与原计划造林面积进行比较,但由于比较时单位1的数量不同,所以得到的百分数也就不同。
四、指导完成“练一练”
1.要求学生自由读题。
学生讨论后,要求他们各自列式解答。
3.根据学生在解答过程中的表现,相机提问:计算中有没有遇到什么新的问题?
学生提出问题后,引导他们自主阅读本页教材的底注,并组织适当的交流。
五、巩固练习
1.指导完成练习一第1~3题
做练习一第1题。
可以鼓励学生独立完成填空。如果有学生感到困难,可启发他们先画出相应的线段图,再根据线段图进行思考。
做练习一第2题。
先让学生说说对问题的理解,再让学生列式解答。可提醒学生把计算的商保留三位小数。
做练习一第3题。
先鼓励学生独立解答,再通过交流让学生说清楚思考的过程。
2.对比练习
学生读题后先独立思考并列式计算,然后指名分析每题的解题思路。同桌间互相查看解答情况。
3.拓展题。
(1)爸爸买的股票“中国石化”上周五收盘价是20元,本周五收盘价是24元。“中国石化”本周上涨了百分之几?(用两种方法解答)
六、全课小结
七、布置作业
1.课内作业:补充习题第1页。
求一个数比另一个数多(少)百分之几的实际问题
例题1 (线段图略)
4÷16=0.25=25% 125%-100%=25%
苏教版数学六年级教案全册篇八
教学内容:
教学目标:
1、过程与方法:结合具体事例,经历综合运用所学知识解决合理购物问题的过程。
2、知识与技能:了解合理购物的意义,能自己做出购物方案,并对方案的合理性作出充分的解释。
3、情感态度与价值观:体验数学在解决现实问题中的价值,丰富购物经验。
教学重点:
学会理财,能对自己设计的理财方案作出合理的解释。
教学难点:
能对自己设计的理财方案作出合理的解释。
教学过程:
一、创设情境、设疑激趣
师:同学们知道的可真多,日常生活中,我们如何利用商家的促销手段,学会合理
购物呢?这节课,我们就来研究购物问题。(板书:学会购物)
二、引导探究、自主建构
活动一:促销
(一)观察情境图,先了解方便面的三种包装和一袋的价格,计算出其他两种包装的价格写在书上,再了解三个商店的优惠条件。
1、学生自学
2、交流
(预设)
生:我发现甲店是“买一包送一袋,买一箱送一包。”乙店是打九折优惠;丙店是购物达到30元就能打八折优惠。
(这里不需学生能精确计算每个商店的优惠额度,但大体上能了解每个商店更适合
2怎样购物。)
(二)提出问题(1):买1袋这种方便面去哪家商店合适?买2袋、3袋呢?
1、思考
2、全班交流
(预设)师:作为消费者,买同样的东西肯定愿意买便宜的,也就是少花钱。同学
们不计算,你能判断出买1袋方便面去哪家店合适吗?
生:在乙店合适,因为买一袋在甲店、丙店都得不到优惠。
师:那买2袋、3袋呢?
生:买2袋、3袋也不行。
师:买几袋才能享受到甲店的优惠条件呢?
生:买5袋或5袋以上就可以得到甲店的优惠条件。
(三)提出问题(2):买7袋这种方便面去哪家商店合适?买8袋、9袋、10袋呢?
1、自己独立思考、计算
2、全班交流
(预设)
师:现在如果想买7袋方便面,在甲店可以怎样买?
生:只买6袋就行了。因为商店会送一袋。
板书:
甲店:1.5×6=9(元)
乙店:1.5×7×90%=9.45(元)
结论:甲店合适。
(按以上方法交流买8、9、10袋的结果)
10袋情况预设:
甲店1、1.5×9=13.5(元)
13.5÷10=1.35(元)
甲店2、1.5×10=15(元)
10+2=12(袋)
1.5÷12=1.25(元)
乙店:
1.5×10×90%=13.5(元)
(这里面甲店的第二种购买方法,虽花了15元,但能得到12袋,有的学生会认为这是一种较便宜方案,现实生活中也如此。所以不应按错误定论。)
(四)提出问题(3)买多少袋方便面才能达到丙店的优惠条件?
学生计算后汇报
30÷1.5=20(袋),买20袋才能达到丙店的优惠条件。
(五)提出问题(4)
1、学生独立计算
2、小组内交流
3、全班汇报
师:谁能解释这到底是为什么?
(预设)
生1:李明只花了27元不够丙店的优惠条件。
生2:因为王强买了20袋,20×1.5=30(元),可以打八折优惠,所以只花了24元,20×1.5×80%=24(元)
师:通过这两位同学的经历,你们有什么收获?
生:在购物时,一定要先算一算在哪家购物合适,才去买,就能充分利用商家的促销手段,少花钱多购物。
继续探究:出示“议一议”问题,启发学生可以算一算,然后,交流解决问题的方法和结果。
师:比较这几位同学的方案,哪一种比较合适?
结论:在丙店买最合适。
师:所以购物时我们要根据购物多少的不同,选择不同的商店,充分利用商家的优
惠政策,就能够少花钱多购物,这叫“合理购物”。
活动二:有奖销售
(一)师:为了促进销售,商家还会搞另外一种促销方式——有奖销售。现在让我们到购物广场去看一看吧。打开书81页,读一读上面的销售广告,了解广告中的数学信息。
学生阅读“有奖销售”上的销售广告。交流一下广告中的信息。
(二)出示问题(1),计算奖金额和中奖率。
学生独立思考并计算。然后全班交流。
1、奖品总金额
500×10+100×20+50×60=10000(元)
2、中奖率:(60+20+10)÷1000=9%
(三)出示问题(2),学生计算销售额,并分析奖金额与销售额之间的关系,进一步认识“有奖销售”的意义。
师:谁知道如果奖券已经全部发出,商家至少卖出了多少元的商品?
1000×100=100000(元),商家至少卖出10万元的商品。
师:那么奖金额至多占销售额的百分之几?
学生计算后汇报。
生:奖金额是10000元,而销售额是100000元,10000÷100000=10%,奖金额最多占销售额的10%。
(四)提出问题(3)
学生独立思考、计算。
继续探究:分别提出“议一议”的两个问题,让学生充分发表自己的意见。教师进行正确引导。
师:请同学们对比一下这两种结果,你有什么感想?
师:那么如果你是顾客,你会选择哪种销售方式?为什么?
师:大家都可以有不同的想法,但是,我们还是小学生,不能单独参与抽奖活动。如果要做,也要在大人的带领下去做。
三、强化训练、应用拓展
请你算一算,再比一比,为学校拿个主意:到哪个商家购买更便宜?
甲:一次购买20台以上(含20台)的,按七五折优惠
乙:“买十送三”,即每买10台另外免费送3台同样的电视机,不满10台仍按原价计算。
四、自主反思、深化体验
师:通过本节课的学习,你有哪些收获想与大家交流一下?
【本文地址:http://www.xuefen.com.cn/zuowen/3707782.html】