最优ai人工智能心得(通用14篇)

格式:DOC 上传日期:2023-10-27 21:10:12
最优ai人工智能心得(通用14篇)
时间:2023-10-27 21:10:12     小编:念青松

对于一段时间内的学习和工作,总结可以帮助我们发现自己的优点和不足,并提出改进的方案。清晰的思路和逻辑框架是写好总结的关键,需要有一个清晰的思维导图或提纲进行引导。感兴趣的话题,如总结的重要性和技巧,可以在这里找到答案。

ai人工智能心得篇一

通过这学期的学习,我对人工智能有了一定的感性认识,个人觉得人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识、自我、思维等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。关于人工智能一个大家比较容易接受的定义是这样的:人工智能是人造的智能,是计算机科学、逻辑学、认知科学交叉形成的一门科学,简称ai。

人工智能的发展历史大致可以分为这几个阶段:

第一阶段:50年代人工智能的兴起和冷落

人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、lisp表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。

第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本1982年开始了”第五代计算机研制计划”,即”知识信息处理计算机系统kips”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。

第四阶段:80年代末,神经网络飞速发展。

1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。

第五阶段:90年代,人工智能出现新的研究高潮

由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。

对人工智能对世界的影响的感受及未来畅想

在当前社会中的呢?

人类正向信息化的时代迈进,信息化是当前时代的主旋律。信息抽象结晶为知识,知识构成智能的基础。因此,信息化到知识化再到智能化,必将成为人类社会发展的趋势。人工智能已经并且广泛而有深入的结合到科学技术的各门学科和社会的各个领域中,她的概念,方法和技术正在各行各业广泛渗透。而在我们的身边,智能化的例子也屡见不鲜。在军事、工业和医学等领域中人工智能的应用已经显示出了它具有明显的经济效益潜力,和提升人们生活水平的最大便利性和先进性。

智能是一个宽泛的概念。智能是人类具有的特征之一。然而,对于什么是人类智能(或者说智力),科学界至今还没有给出令人满意的定义。有人从生物学角度定义为“中枢神经系统的功能”,有人从心理学角度定义为“进行抽象思维的能力”,甚至有人同义反复地把它定义为“获得能力的能力”,或者不求甚解地说它“就是智力测验所测量的那种东西”。这些都不能准确的说明人工智能的确切内涵。

虽然难于下定义,但人工智能的发展已经是当前信息化社会的迫切要求,同时研究人工智能也对探索人类自身智能的奥秘提供有益的帮助。所以每一次人工智能技术的进步都将带动计算机科学的大跨步前进。如果将现有的计算机技术、人工智能技术及自然科学的某些相关领域结合,并有一定的理论实践依据,计算机将拥有一个新的发展方向。

个人觉得研究人工智能的目的,一方面是要创造出具有智能的机器,另一方面是要弄清人类智能的本质,因此,人工智能既属于工程的.范畴,又属于科学的范畴。通过研究和开发人工智能,可以辅助,部分替代甚至拓宽人类的智能,使计算机更好的造福人类。

ai人工智能心得篇二

学生们都对刮奖非常感兴趣,通过刮奖环节的设计,学生很快的融入课堂环境中,学生们积极参入,踊跃发言,学习兴趣盎然,在寓教于乐额学习氛围中学习新知识,掌握新技能。

学生们利用之前所学程序可以计算出简单的价格,但是当问题逐渐增多,利用之前的方法就非常麻烦了,这时候引导学生提出问题,教给学生新的知识点-变量。

本节课学生参入度高,动手实践能力强,设计的问题层层递进,环环相扣,过渡环节都处理的非常到位,更多的是让学生自己去探索,把课堂交给学生,不断创新,发挥了学生的主体学习地位,让其自主探索,合作学习,做到真正的掌握一门技能。这也是培养学生不断创新的手段之一。

希望以后能有更多这样的学习机会,以便于在信息技术的教学上有更大的进步和提高。

ai人工智能心得篇三

今天是我研究人工智能的第一堂课,也是我上大学以来第一次接触人工智能这门课,通过老师的讲解,我对人工智能有了一些简单的感性认识,我知道了人工智能从诞生,发展到今天经历一个漫长的过程,许多人为此做出了不懈的努力。我觉得这门课真的是一门富有挑战性的科学,而从事这项工作的人不仅要懂得计算机知识,还必须懂得心理学和哲学。

机器翻译系统我们可以很方便的完成一些语言翻译工作。目前,国内的机器翻译软件有很多,富有代表性意义的当属“金山词霸”,它可以迅速的查询英文单词和词组句子翻译,重要的是它还可以提供发音功能,为用户提供了极大的方便。

ai人工智能心得篇四

最近看了电影《黑客帝国》一系列,对其中的科幻生活有了很大的兴趣,不觉有了疑问:现在的世界是否会如电影中一样呢?人工智能的神话是否会发生。

在当前社会中的呢?

人类正向信息化的时代迈进,信息化是当前时代的主旋律。信息抽象结晶为知识,知识构成智能的基础。因此,信息化到知识化再到智能化,必将成为人类社会发展的趋势。

人工智能已经并且广泛而有深入的结合到科学技术的各门学科和社会的各个领域中,她的概念,方法和技术正在各行各业广泛渗透。而在我们的身边,智能化的例子也屡见不鲜。在军事、工业和医学等领域中人工智能的应用已经显示出了它具有明显的经济效益潜力,和提升人们生活水平的最大便利性和先进性。

智能是一个宽泛的概念。智能是人类具有的特征之一。然而,对于什么是人类智能(或者说智力),科学界至今还没有给出令人满意的定义。

有人从生物学角度定义为“中枢神经系统的功能”,有人从心理学角度定义为“进行抽象思维的能力”,甚至有人同义反复地把它定义为“获得能力的能力”,或者不求甚解地说它“就是智力测验所测量的那种东西”。这些都不能准确的说明人工智能的确切内涵。

虽然难于下定义,但人工智能的发展已经是当前信息化社会的迫切要求,同时研究人工智能也对探索人类自身智能的奥秘提供有益的帮助。所以每一次人工智能技术的进步都将带动计算机科学的大跨步前进。如果将现有的计算机技术、人工智能技术及自然科学的某些相关领域结合,并有一定的理论实践依据,计算机将拥有一个新的发展方向。

个人觉得研究人工智能的目的,一方面是要创造出具有智能的机器,另一方面是要弄清人类智能的本质,因此,人工智能既属于工程的范畴,又属于科学的范畴。通过研究和开发人工智能,可以辅助,部分替代甚至拓宽人类的智能,使计算机更好的造福人类。

ai人工智能心得篇五

1、促进教育方式的变革,培养学生的综合能力

在机器人教育中,课堂以学生为中心,教师作为指导者提供学习材料和建议,学生必须自己去学习知识,构建知识体系,提出自己的解决方案,从而有效培养了动手能力、学生创新思维能力。

2、有效激发学习兴趣、动机“寓教于乐”是我们教育追求的目标。这也是当前教育游戏成为当前研究热点一个原因。学习兴趣是学生的学习成功重要因素。机器人教育可以通过比赛形式,得到周围环境的认可和赞赏,能够激发学生学习的兴趣,激发学生的斗志和拼博精神。

3、培养学生的团队协作能力

机器人教育中大多以小组形式开始,机器人的学习、竞赛实际上是一个团体学习的过程。它需要学习者团结协作,包容小组其他成员的缺点和不足,能够与他人进行有效沟通与交流。在实践锻炼中提高自己的团队协作能力,其效果比普通的教育方式、方法更加有效。

4、扩大知识面,转换思维方式

考虑到中小学生和机器人课程的特点,为培养学生的综合设计能力和创新能力,本人认为机器人教学应该在教学内容、教学方法、教学组织方面一改其它课程的教学模式,走出一条新的路子来。

1、教学内容:机器人教学应注意学生知识广度的学习。虽然仅通过一门课程来扩充学生的知识面效果有限,但是由于机器人的设计涉及到光机电一体化、自动控制、人工智能等多方面问题,既有硬件设计也有软件设计,所以是让学生了解和掌握大量知识的绝好机会。知识不追求深度,只要求广度。例如在确定教学内容时,注意力不要仅放在竞赛用轮式成品机器人上,还应该关注单片机、嵌入式cpu、各种传感器、电机、机械部件等软硬件技术在机器人和自动化技术上的应用。

2、教学方法:应根据学段和学科情况选择不同的综合设计教学方法。如:小学阶段可让学生完成轮式竞赛用机器人的功能模块组装的设计;初中阶段可进行生活与学习中实用机器人的创意设计;高中信息技术课中可重点对机器人智能软件算法进行设计;而高中通用技术课中可重点对机器人的电气部分、传感器部分、动力部分和机械部分进行相关设计。总之,教学方法应该侧重综合设计,而不是放在问题的分析上。

3、教学组织机器人教学应事先营造好供学生动手动脑进行设计活动的环境。提供必要的设备和工具(包括工具软件),组织学生进行探究式学习,特别应注意探究式学习三个要素(任务驱动、协作学习、教师引导)的构成,让学生能够充分化动手。同时,还应提倡设计过程的规范化,用于提高学生的综合设计能力。教学活动不仅在课堂上进行,还应组织学生在课余时间做适当的工作,以保证教学的完整性和有效性。

教育机器人活动受到越来越多的师生欢迎,教育机器人必将为我国的素质教育做出应有的贡献,教育机器人的前途是光明的。

ai人工智能心得篇六

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。

12世纪末13世纪初,西班牙罗门·卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与n形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机),创立了自动机理论。这些都为1945年匈牙利冯·诺依曼提出存储程序的思想和建立通用电子数字计算机的冯·诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机eniac做出了开拓性的贡献。

以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。

现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

2.1逻辑学的大体分类

逻辑学是一门研究思维形式及思维规律的科学。从17世纪德国数学家、哲学家莱布尼兹(niz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。

2.2泛逻辑的基本原理

当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。

泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。

逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。

3.1经典逻辑的应用

人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(lt)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(gps),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。

3.2非经典逻辑的应用

(1)不确定性的推理研究

人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型,1978年查德提出的可能性模型,1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。

归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。

(2)不完全信息的推理研究

常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的nml非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。

此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

人工智能的产生与发展和逻辑学的发展密不可分。

一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。

ai人工智能心得篇七

今天上午线上参加了莱西市信息技术学科人工智能与编程教学研讨会,观摩了张老师《变量》一堂课,本课张老师精湛的业务知识和巧妙的驾驭课堂的能力让我受益匪浅。下面我从几个方面来谈一下感受:

学生们都对刮奖非常感兴趣,通过刮奖环节的设计,学生很快的融入课堂环境中,学生们积极参入,踊跃发言,学习兴趣盎然,在寓教于乐额学习氛围中学习新知识,掌握新技能。

学生们利用之前所学程序可以计算出简单的价格,但是当问题逐渐增多,利用之前的方法就非常麻烦了,这时候引导学生提出问题,教给学生新的知识点—变量。

本节课学生参入度高,动手实践能力强,设计的问题层层递进,环环相扣,过渡环节都处理的非常到位,更多的是让学生自己去探索,把课堂交给学生,不断创新,发挥了学生的主体学习地位,让其自主探索,合作学习,做到真正的掌握一门技能。这也是培养学生不断创新的.手段之一。

希望以后能有更多这样的学习机会,以便于在信息技术的教学上有更大的进步和提高。

ai人工智能心得篇八

随着科技的发展与进步,越来越多的新名词涌入了我们的生活。人工智能就是其中一个,它不仅代表着智能化的方向越来越突出,而且在科技研发以及工程领域都有着很多的价值。

未来的建筑行业可能就会用到人工智能。相比于早期工人的日复一日的劳动,人工智能显得尤为轻松,它可以通过一系列复杂的程序来编制出一些操作流程,使得减轻人们的劳动力,还能更好地完成所要规定的任务。我觉得以后在工地上不会看见辛劳的工人,只会看见一排又一排的机械手臂,他们挥舞着,完成着几年前人们想都不敢想象的画面。

以后的高科技领域也会用到人工智能,他们可以更好地完成精密仪器的测算,以及更快地完成一些高难度的动作,解放双手从而获得更大程度地工作效率。

其实,人工智能的'发展并不仅仅会局限在某个方,在以后或者未来都会有更大的进步以及提升。我们相信我们伟大的祖国一定会在智能化以及自动化这些方面获得更大的研究与发展,更好地展现出一个大国的实力。

我认为在不久的将来,人工智能会越来越涌入我们的生活之中,在我们生活的每个角落都散发着科技之光!

ai人工智能心得篇九

通过学习李开复老师的《人工智能》,我获益良多,很多问题也有了答案。我认为这是一本很好的面向大众的科普读物,介绍了人工智能的基本理念,发展历程和对未来的展望。

下面以问答的形式,记录学习心得。

其实,人工智能已经到处都是,什么都做:可以陪人聊天,可以写标准新闻,能画画,能翻译,能开车,能认出人的样子,能在互联网上搜答案,能在仓库搬货,能送快递到家。

人工智能是什么,众说纷纭,一般有以下五种定义(可能有交叉):1)在某方面特别聪明的计算机程序,比如alphago,下围棋下得特别好,世界冠军也下不过它。

2)试图像人一样思考的计算机程序。但这事儿太难,人的意识,连人自己都搞不清楚,更别说教给自己编出来的程序了。

3)怎么想的不知道,行为方式倒是很像人,比如可以和人聊天的eliza。

4)会自己学习的,刚开始笨笨的,慢慢地就越来越聪明。alphago也是因为头悬梁锥刺股,苦学了海量棋谱才变得这么厉害的。

5)根据对环境的感知,做出合理的行动,并获得最大收益的计算机程序。

这五种定义各有根据和局限,也可以认为人工智能首先是感知,包括视觉、语音、语言;然后是决策,根据识别的信息,做出预测和判断;最后是反馈,就像机器人或自动驾驶。

我的理解:人工智能是高性能的计算机程序,或者使用了人工智能的产品、服务和应用。

人工智能有很多分支,其中之一是机器学习,机器学习里面有一个分支是深度学习,深度学习是当今乃至未来很长一段时间内引领人工智能发展的核心技术。

深度学习是一种神经网络,把计算机要学习的东西看成数据,把数据丢进多个层级的数据处理网络,然后检查经过网络处理的结果数据是否符合要求。如果符合,就保留网络作为目标模型,如果不符合,就反复修改参数,直到符合为止。

书中举了一个例子,非常形象生动:把数据看成水流,深度学习网络看成多层水管网络,通过调节管道和阀门,使输出满足要求。

历史上有过3次ai热潮,第一次因为图灵测试,第二次因为语言识别,都热了一段时间又沉寂下去。

目前,深度学习携手大数据引领的第三次热潮,处于技术曲线的攀升和成熟期,前景极为广阔。

人工智能不仅是技术革命,还与经济变革、教育变革、思想变革、经济变革、文化变革等同步,可能成为下一次工业革命的核心驱动力。主要的商业应用场景:

智慧生活:机器翻译、智能家居、智能超市

智慧医疗:辅助诊断疾病、对疑难病症的医疗科学研究

艺术创作:机器音乐、机器绘画、机器文学创作

会不会失控,威胁人类的安全?可能会引起失业。根据开复老师提出的“五秒钟准则”,一项人从事的工作,如果可以在5秒钟内完成思考并做出决策,那么这项工作很可能会被人工智能取代。如保安、股票交易员、司机、新闻报道、翻译。但人工智能也会带来新的工作。

人工智能分三个层级:

1)弱人工智能:在某方面很聪明,但只在这方面聪明,别的事啥也不会。比如alphago,下围棋世界第一,别的方面就是个弱智,连棋子都得别人帮它拿。

2)强人工智能:人能做什么,它就能做什么。跟美剧《西部世界》里的机器人差不多,但它有没有意识,不好说。

3)超人工智能:比最聪明的人类还要聪明100000000倍。都不止,它的nb,超乎你想象。我们不知道它是谁,不知道它在哪里,不知道它什么时候出现,也不知道它会干什么。

可能在某个时刻(奇点)之后,超人工智能就会天神降临,整个世界笼罩在它无边的法力之下。

也可能,因为物理学和生物学的限制,超人工智能永远不会来。

无论如何,人工智能,或者说,对人工智能的研究和使用,需要受到监管和限制,也需要应对转型过程中对失业的冲击。

1.抽象能力知其然,也知其所以然,了解事物运行的本质规律

2.常识

3.自我意识

4.审美

5.情感

不过,已经有软件可以吟诗作词,而且相当高明。比如这首根据遗传算法生成的《清平乐-黄菊》:

“相逢缥缈,窗外又拂晓.长忆清弦弄浅笑,只恨人间花少.黄菊不待清尊,相思飘落无痕.风雨重阳又过,登高多少黄昏.”平仄相符,语句通顺,很有意境。

ai人工智能心得篇十

今天是我研究人工智能的第一堂课,也是我上大学以来第一次接触人工智能这门课,通过老师的讲解,我对人工智能有了一些简单的感性认识,我知道了人工智能从诞生,发展到今天经历一个漫长的过程,许多人为此做出了不懈的努力。我觉得这门课真的是一门富有挑战性的科学,而从事这项工作的人不仅要懂得计算机知识,还必须懂得心理学和哲学。

人工智能在很多领域得到了发展,在我们的'日常生活和研究中发挥了重要的作用。如:机器翻译,机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。利用这些机器翻译系统我们可以很方便的完成一些语言翻译工作。目前,国内的机器翻译软件有很多,富有代表性意义的当属“金山词霸”,它可以迅速的查询英文单词和词组句子翻译,重要的是它还可以提供发音功能,为用户提供了极大的方便。

通过这堂课,我明白了野生智能开展的汗青和所处的位置,它始终处于计算机开展的最前沿。我相信野生智能在不久的将来将会得到更深一步的实现,会创造出一个全新的野生智能世界。

ai人工智能心得篇十一

首先,自由意识是受者的感受,如果你于一台放在黑屋子里的机器一直对话,并一直以为对方是人,那么,便可以说它或具有自由意识,这也就是所谓的人工智能初期想要达到的效果。

辐射的世界不缺机器人,他们能胜任不同的工作,有的单一,有的复杂,甚至有的还貌似发展出了自己的个性,那么他们是不是具有自我意识的人工智能呢?在辐射宇宙中,这些机器都是编程的产物,程序模拟的思维,和学习方式,并不能和ai(人工智能)比,这就好像要拿把小黄鸡说成是人工智能一样。

个性化最明显的是巧手管家,因为要服务的是人而不是机器,所以良好的用户交互是必要的,这也就是为什么,3代的巧手管家会讲笑话,但却有些生冷。四代中的机器人管家会搞不清真实状况,但却一直能记得猪脚一家,船长是宪兵机器人,但却有一套语言系统,这些机器人会很有个性,然而归根结底,都是程序员的功劳,仔细看,他们都有一个特点,就是对周遭的大变迁不以为然,那是因为它们多是战前的产物,所谓的程序模拟学习,逻辑是固定的,并不能和自由意识挂钩。

2.合成人与机器人的区别

很多人都知道合成人出自学院,但其实机器是大多也是,机器人在战前便已经开始批量生产,而合成人的诞生,或多或少是学院对人类失望的结果,他们分为3代,最原始的和机器无差别,之后,有了合成皮肤,甚至是血肉,这都是因为我开始提到的那个自由意识的定义,也就是所谓的图灵测试,如果受者认为他是个人,那么它就具备了所谓的自由意识,可见,它与编程了服务于人类的机器人的设计创造理念本身就是不同的,在辐射的宇宙中,真正具有自由意识的机器是解开代码枷锁后的合成人,而机器人只是人类的工具而已,这也就是为什么废土客一般都会信任机器人,或者开枪就好,不会咒骂他们,因为没有人会对手中的工具有过多的感情纠葛,而从人类的进化史上看来,每一次更强的自由意识的诞生,都伴随着一个相近但较低智慧的群体的灭绝,智慧性自由意识,意味着威胁。

之后再看看,为什么说机器人的希望只是场梦?

老宪法号是美国服役过的,依旧能够航行的,最受人尊敬的`海军战舰,可以说是美国的爱国标志之一。

并存在于自由之经的“绿色"旅游线路之上,是波士顿的骄傲,之所以机器人背后的程序员会基于某种方式,保护宪法号,并让她升天,更多的是希望能再一次的点燃人们的爱国情绪,然而今日的废土,势力割据,每个都有自己得信仰,能记得宪法号所象征的自由与自豪的,除了几只尸鬼外,还会又有几个人。

执着的是程序,但选择关机否的,确实只能是人类自己,梦很美,但已经时过境迁了。

b社对《辐射4》充满信心销量将超《上古卷轴5》

对于即将在2015年11月10日发售的《辐射4》,bethesda是绝对的信心十足,其营销副总裁在接受外媒采访时甚至表示游戏的销量会超越《上古卷轴5:天际》。

petehines表示:“我认为《辐射4》的销量将会突破《上古卷轴5:天际》,这是一款更加壮观的rpg游戏,出色到无法形容,我的工作是负责推广这款游戏,而游戏自身将决定它能够走多远,能造成多大影响力,这些目前都是不确定的,因为《上古卷轴5:天际》的影响力的确很大,但我们对《辐射4》有信心。”

《上古卷轴5:天际》的全球销量超过2000万份,是rpg界的一个奇迹,首先让我们看看《辐射》系列近期作品的销量,《辐射3》销量为920万套,《辐射:新维加斯》为750万套,前两作的销量已经不错,相信凭借玩家多年对于游戏的期待,游戏大卖是毫无疑问的,但是否能够达到2000万还有待时间为我们公布答案。

《辐射4》是否能击败《老滚5》?

bethesda称《辐射4》好到无法形容销量要创新高

对于即将在2015年11月10日发售的《辐射4》,bethesda是绝对的信心十足,其营销副总裁在接受外媒采访时甚至表示游戏的销量会超越《上古卷轴5:天际》。

petehines表示:“我认为《辐射4》的销量将会突破《上古卷轴5:天际》,这是一款更加壮观的rpg游戏,出色到无法形容,我的工作是负责推广这款游戏,而游戏自身将决定它能够走多远,能造成多大影响力,这些目前都是不确定的,因为老滚5的影响力的确很大,但我们对《辐射4》有信心。”

《上古卷轴5:天际》的全球销量超过2000万份,是rpg界的一个奇迹,首先让我们看看《辐射》系列近期作品的销量,《辐射3》销量为920万套,《辐射:新维加斯》为750万套,前两作的销量已经不错,相信凭借玩家多年对于游戏的期待,游戏大卖是毫无疑问的,但是否能够达到2000万还有待时间为我们公布答案。

ai人工智能心得篇十二

所谓人工智能,是研发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用的一门新的技术科学。它是计算机科学的一个分支,企图凭借了解智能的实质来生产出一个类似于人类智能对事情做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等方面。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科研成果,将会是人类智慧的体现。人工智能可以对人的意识、思维的信息过程的模拟。人工智能指的是虽然不是人的智能,但能像人那样思考、也可能通过发展演变成超过人的智能。

人工智能是研究使计算机来模拟人的某些思维过程和智能行为,比如学习、推理、思考、规划等方式,主要包括通过计算机实现智能的原理或者制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能涉及计算机科学、心理学、哲学和语言学等多门学科,其范围已远远超出了计算机科学的范畴,成为一门综合学科。人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象、灵感思维才能促进人工智能的突破性的发展。数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具。数学进入人工智能学科,它们将互相促进而更快地发展。数学给予人工智能学科计算方法和逻辑思维,人工智能学科给数学计算和发展提供了可靠的未来。

人工智能就其本质而言,是对人的思维的信息过程的模拟。对于人的思维模拟可以从两条道路进行:一是结构模拟,仿照人脑的结构机制,制造出类似人脑一样思考方式的.机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟思考。现代电子计算机的产生便是对人脑思维功能的模拟,是在对人脑思维的信息过程的模拟过程中产生的。人工智能的起源最早要从1955年的一个叫做学习机讨论会的小会开始,然后就是公认的1956年达特茅斯会议,这是人工智能史上最重要的里程碑,被公认为人工智能之开始。达特茅斯会议中的讨论预示了人工智能随后几十年关于“结构与功能”两个阶级,两条路线的斗争。他们讨论着一个主题:用机器来模仿人类学习以及其他方面的智能。他们公布了的“逻辑理论家”是当时唯一可以工作的人工智能软件,引起了会议代表极大的兴趣与关注。会议的召集人麦卡锡给这个活动起了个别出心裁的名字:人工智能夏季研讨会。这是人工智能一词正式在学术会议中亮相,而1956年也就成为了人工智能元年。虽然之后一段时间内对人工智能并没有大规模投入资金和大量科研人员,但是毋庸置疑的打开了新发展的大门,为后来的道路提供了方向和目标。

ai人工智能心得篇十三

也许这个标题应该叫:人工智能无法取代“部分人类”。

人工智能是很长一段时间以来人们喜欢讨论的问题,而且这样的讨论一定还会很长时间地继续下去,因为这关系到我们对自己的认知和对世界的认识。

要回答很多困扰我们的问题,需要从人工智能的基础学起,需要了解技术的发展脉络,需要思考如果人工智能越来越多地渗入我们的生活,对我们的`伦理、道德、社会规范,形成怎样的挑战。

这本书在做这样的努力:梳理脉络、提出问题、探索解决之道,尽管不是那么完美。对于想真正了解人工智能的人来说,是有用的。

ai人工智能心得篇十四

沙特授予机器人索菲亚国籍,将人工智能机器人再次推向议论的浪潮。首先,我很高兴的是,新闻里不再全是一些明星的无聊话题。然后,我再次对人工智能的发展感到惊叹。人类中的某一部分人,实在是太厉害了。

我生在小地方,长在小县城。直到上大学,才第一次接触到电脑。刚对眼前的黑匣子抱以极大的兴趣与热情时,就被深蓝电脑大赢人类高手的新闻给震撼了。尤记得当时与同学一道热烈地讨论人工智能的发展方向时的情景。当时我们都对计算机迟早能在公认最难的围棋上下赢人类抱以乐观的想法。

如今果然实现了。而且远超出了我们当时猜想的水平。

它并不是如深蓝计算机一样穷举计算,而是学会了使用大数据进行分析选择,甚至升级后的“元”已经会通过自己博弈来学习里面的规则,打败之前的自己。

如今,人工智能的应用已与人类密不可分,只不过大多数的它们没有使用完整的人类的外表与语言,只是以机械臂什么的表露在外,我们便以机器视之。即使是已获得了人类国籍的索菲亚,也还没有得到四肢,与一个正常的人类相去甚远。虽然电影科幻很早就在设想机器人统治人类,毁灭世界什么的,大多数人只是看看,并没有感觉到它们有多少的威胁。

在魏晋时期,上品无寒门,下品无士族。贵族们自己享着奢华的生活,高高在上的地位,将一应具体的事物都交给了寒门官吏,以至于在后来的变革中很快被颠覆,散失了权柄。

人类对别的种群高高在上,无非就是自诩智商的碾压嘛。

其实,学计算机的我,即使已离开这个行当许久了,但仍对人工智能对机器人抱以极大的好感与兴趣的,看着它们连画画写毛笔字这样的领域也能胜过大多普通人,至少是胜过我,在觉得自己无用的同时也很好奇人类中最聪明的这些人将准备怎么控制?至于会不会毁灭世界,那个时候我与我所爱的人早已不知魂归何处,最多只能让后人家祭无忘告乃翁了。

【本文地址:http://www.xuefen.com.cn/zuowen/3989500.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档