精选分数和整数相乘教案(案例14篇)

格式:DOC 上传日期:2023-10-29 13:36:04
精选分数和整数相乘教案(案例14篇)
时间:2023-10-29 13:36:04     小编:琴心月

教案的编写需要充分考虑教学环境和资源的条件,合理安排教学时间和课堂活动。教案应注重培养学生的自主学习能力和创新思维,引导学生积极参与课堂活动。以下是小编为大家整理的一些教案范本,希望对大家有所帮助。

分数和整数相乘教案篇一

教学目标:通过自主探索理解分数乘整数的意义。

通过有效练习初步理解分数乘整数的计算法则(会分别进行简单的小数、分数(不含带分数)加、减、乘、除运算及混合运算(以两步为主,不超过三步))

体验探索学习的乐趣。

(学生通过经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能)

重点与难点::分数乘整数的意义和计算法则

课前准备:

板块教师活动学生活动教学目标及达成情况

一、

创设情境

二、

组织探究

分乘整数的算理数

复习:1、5个12是多少?怎样列式?(多媒体示题)

2、16+26+36=

29+29+29

教学例1

教师引导学生概括出书上

的结语。(分母不变,只用分子与整数相乘,能约分时,先约分再计算)

通过复习连加巩固乘法的意义及同分母分数加法计算方法及意义

通过乘法算式与连加法算式的联系理解分数乖整数的算理和归纳出分数乖整数的计算方法

三、

练习1、做“练一练”第1题。

2、做“练一练”第2题。

3、做

练习八第3-5题

通过练习明确求几个几分之几相加的和,可以用乘法计算。进一步巩固

分数乖整数的意义和计算方法

四、全课小结今天学习了哪些内容?

反思重建

分数和整数相乘教案篇二

1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。

2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。

分数和整数相乘教案篇三

教学内容:

苏教版教材数学第十一册第三单元第一课时。(教材38页的例1,39页的练一练,43页练习八的第1~5题。)

教学目标:

1.联系整数和小数乘法的意义,在具体情境中帮助学生理解分数与整数相乘的意义,并在探究的过程中理解分数乘整数的算理,掌握算法。

2.增强学生运用已有知识和经验探索并解决问题的过程,体验探索学习的乐趣。

教学重点:

分数与整数相乘的意义和计算方法。

教学难点:

分数与整数相乘的算理。

教学准备:

多媒体课件。

教学过程:

一.复习激欲。

1.计算:

+=++=

学生口答,并说说计算过程。

2.问:还记得下面两个算式表示的意义吗?板书:

5×4

0.8×6

学生口答。

二探究新课

1.感悟意义。

(1)课件出示:做一朵绸花用米绸带。

问:米怎么画图表示?学生回答,教师结合学生回答课件演示:

1米

(2)出示:小芳做3朵这样的绸花,一共用几分之几米绸带?。

问:你能在图中接着涂出3朵绸花的长度吗?

学生独立在课本上涂色,教师巡视指导。

学生涂完后,教师课件演示,学生跟着说出每一步演示的结果和表示的意义。

米米米

1米

(3)演示后问:请同学们观察图形思考,解决这个问题可以怎样列式?

根据学生的回答完善板书:

×3

比较两个算式,追问:你知道×3表示什么意思了吗?

3.探索算法。

观察,思考,交流,汇报。(给足时间)。

(2)汇报后,进一步追问:你觉得×3应该怎样算?

学生再次思考,交流,汇报,板书。

4.解决例题2

(1)课件出示:小华做5朵这样的绸花,一共用几分之几米绸带?

问:还能在图中涂色表示出做5朵绸花所用的绸带吗?不够涂还可以怎么解决这个问题?(列式计算。)

可以怎样列式?表示什么意思?

(2)激情:你能利用刚才学到的计算方法独立列式解答这题吗?指名板演。

(3)结合学生板演,强调书写格式和约分过程。(也可以课件演示。)

三.练习

1.独立做“练一练”第一题.边涂边思考:在涂色的过程中,分数的什么在变化,什么不变?指名回答后,用课件边演示边讲解分子变,分母不变的过程。

2.小结。

今天学习的算式有什么特点?板书:分数与整数相乘。都可以表示什么意思?与整数乘整数和小数乘整数相同吗?会计算了吗?下面一起来做几题。

3.做“练一练”第二题。

独立计算,指名板演。

五..错题医院:下列计算正确吗?不对的请改正过来。

111

2

六..生活与运用

在我们的生活中,有分数与整数相乘的计算吗?

问:一节课用分数表示是多少小时?那么一天六节课一共是多少小时?课件演示。

七.延伸。

分数和整数相乘教案篇四

周次7课次(本周第几课时)1

授课课题分数除以整数

教学基本

教学

目的

和要

求1、引导学生根据需要解决的实际问题,理解“把一个分数平均分成几份,求每份是多少”用除法计算的算理。

2、使学生经历探究分数除以整数的计算过程,掌握分数除以整数的计算方法。

3、培养学生观察、比较、分析推理和概括等思维能力。

教学重点

及难点理解、掌握分数除以整数的计算法则,并能根据具体情况灵活地进行计算。

教学方法

及手段使学生经历探索分数除以整数的计算方法和应用分数知识解决简单实际问题的过程,培养分析、比较、抽象、概括等能力,增强数感,发展数学思考。

学法指导探索、理解

集体备课个性化修改

预习例1

一、引入新课

上个单元,我们学习了分数乘法,今天开始,我们来学习分数除法。这节课我们先学习分数除以整数。

二、展开新课

1、教学例1

(1)出示例题,

(2)提问:量杯里有45升果汁,平均分给2个小朋友喝,怎样列式?为什

么?(板书45÷2=)

(4)提问学生:你是怎样想的?

当学生在阐述第一种思路时教师可以配合着画图进行说明。

教师提问:谁能再说一说,45除以2为什么可以用45×12来计算?12是2的什么数?(倒数)

2、教学“试一试”。

(1)提问:如果45升果汁平均分给3个小朋友喝,每人喝多少升?怎样列式?(板书:45÷3)

(2)45÷3怎么计算呢?能不能直接用分子除以整数算出得数?为什么?可以怎么算?

3.总结方法。

提问:你觉得分数除以整数,可以怎么算?怎样算比较方便?

教学环节设计三、巩固练习

1、做“练一练”第1题。

2、做“练一练”第2题。

练习后问:分数除以整数,可以转化成分数乘法来计算,用这个分数与谁相乘?

3、做“练一练”第3题。

各自练习后,指名说一说,每一题是怎么想怎么算的。

4、做练习十一第2题。

提问:每组题有什么相同和不同的地方?计算时有什么不同?

四、小结

作业

板书

设计

分数除以整数,可以转化成分数乘法来计算

执行

情况

与课

后小

周次7课次(本周第几课时)2

授课课题整数除以分数

教学基本

内容

教学

目的

和要

求1、使学生经历探索整数除以分数计算方法的过程,理解并掌握整数除以分数的计算方法,能正确计算整数除以分数的试题。

2、使学生在探索整数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。

3、进一步感受数学学习的挑战性,体验成功的乐趣,培养学好数学的自信心。

教学重点

及难点掌握整数除以分数的计算方法,能灵活地进行应用。

教学方法

及手段

使学生经历探索整数除以分数的计算方法和应用分数知识解决简单实际问题的过程,进一步培养分析、比较、归纳、类推能力,增强数感,发展数学思考。

学法指导分析、比较

集体备课个性化修改

预习例2、例3

一、复习铺垫

1、口算:

38÷345÷4

95÷6413÷2

2、揭题:整数除以分数。

二、教学新知

教学

环节

设计

追问:为什么用4÷2?

继续提问:如果每人吃1个,可以分给几个小朋友?

2、出示第(2)题。

问:解答这个问题,为什么也是用除法计算?

出示挂图,请根据图的意思想一想:可以怎样计算4÷?

把4个橙子每个分成一份,可分成几份?4÷是几?

板书:4÷=4×2

看到这个等式,你能想到什么?

3、出示第(3)题。

(1)提问:你能在图中分一分,再想出计算结果吗?

(2)出示:4÷=4×()

4÷=4×()

提问:从这两个式子中,你又想到了什么?

1、出示例3

2、教师要求学生请根据每米剪一段,在图上分一分,看看结果是多少。

3、想一想:4÷可以怎么算,为什么?

板书:4÷=4×=6

4、归纳和总结:想一想,整数除以分数可以怎么算?

三、巩固练习

四、小结

作业

板书

设计

把分数除法转化成分数乘法后,能约分的可以先约分,再计算

执行

情况

与课

后小

分数和整数相乘教案篇五

教学准备:12厘米、16厘米、20厘米、24厘米的纸条若干;课件等

教学重点:整数与分数相乘的意义和计算方法

教学难点:

教学过程:

一、复习引入

1.复习分数乘整数的意义和计算方法。

2.复习求一个数是另一个数的几分之几。

二、展开

1.操作活动。出示活动内容和小组活动要求

(1)拿出纸条,先折出它的,再用涂色表示它的的`长度。

(2)用尺量一量涂色部分的长度是多少厘米。

(3)想一想可以怎样列式来验证你的结果。

(4)组内交流你的想法

2.汇报

(1)因为9÷12=,所以12×=9。

(2)根据汇报得到算式:16×=12、20×=15、24×=18

(3)仔细观察这四个算式,各表示什么意义?

(4)这几个算式都有什么特点?

3.揭题:今天我们就来研究整数乘分数

三、教学例【1】、【2】

1.教学例【1】

(1)出示例【1】。用线段图来表示数量关系

(2)汇报、交流线段图

(3)根据线段图列对应关系

(4)要求所对应的具体量,就是求什么?

(5)列出算式

(6)如何计算(写出过程,说明算理)

2.小结:求一个数的几分之几用乘法计算

3.教学例【2】

(1)试列式

(2)比较算式的区别

(3)补充说明计算过程中能约分要先约分

4.小结分数和整数相乘的计算方法

四、巩固与提高

五、课堂总结

分数和整数相乘教案篇六

1.算一算。

37×2=()211×5=()

2.填一填。

(1)18+18+18+18+18=()×()=()

(2)27×4=()+()+()+()=()

(3)311+311+311=()×()=

3.算一算。

27×25×32018×4

916×247×821310×15

4.一杯牛奶的.质量是34千克,5杯牛奶的质量是多少千克?

6.一根钢管锯成2段需要分钟,如果锯成11段,那么需要多少分钟?

分数和整数相乘教案篇七

分数除法一(分数除以整数)

教学目标和要求

1, 在涂一涂、算一算等活动中,探索并理解分数除法的意义。

2, 探索并掌握分数除以整数的计算方法,并能正确计算。

3, 能够运用分数除以整数解决简单的实际问题。

教学重点

分数除以整数的计算方法。

分数除以整数的计算方法

教学准备

教学时数

1课时

1, 把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

2, 把一张纸的4/7平均分成3份,每份是这张纸的几分之几?

(1)第1题让学生可以先用画图、分数的意义等方法解决这个问题,然后根据除法的意义列出算式4/7÷2。在画图、理解分数的意义的基础上,生得出4/7÷2=2/7。因此,学生可能会得到“分母不变,被除数的分子除以除数得到商的分子”。

(2)鼓励学生探索第2题,联系分数乘法的意义,说明把4/7平均分3份,也就是求4/7的1/3,从而理解其基本算理。让学生在第1题的基础上来引导学生发现此时被除数的分子不能被除数整除,从而总结出分数除以整数的一般方法,即用分数乘以除数的倒数。

2, 师导学生根据前面的三个活动,总结算法。3,

3, 让学生先列举出分数除法算式,并利用手中的学具具体地分一分,涂一涂,借助图形语言进行理解。

练习分数除以整数的计算方法,沟通起分数除法与分数乘法的联系。

1,第26页第2,3题,让学生独立解决。

教学内容(课题)

分数和整数相乘教案篇八

“分数乘整数”在练习中,50%的学生喜欢用分数加法的计算方法来做分数乘法。学生利用式题,不但总结出了分数乘整数的计算方法,而且知道了算理,真正做到了算理与算法相结合。

基于这两者天壤之别,笔者有了深深的感触,上述两个案例让我想到一个相同的问题,就是我们常说的备课之先“备学生”到底备到什么程度?对于学生的知识前测,教师心中有多大的把握?没有对学情准确的侦察”,便绝对不会”打赢”有效教学乃至高效教学这一胜仗。很多教师在备学生的时候,是借用别人的眼光来估计自己的学生,看教参上是怎么说的。教参说这时的学生应该具有什么样的知识经验,教师便坚信自己的学生也定是如此了。没有或者很少考虑到虽然是同一个年龄段的孩子,但还有诸多不同的因素:也许你的学生是后进的,他的基础没你想象的那么牢固;也许他是绝顶聪明的,学习进度已经超过好多课业了。

如上述案例中,关注学生转化的思想就是本课时教学的重中之重.数学知识有着本身固有的结构体系,往往是新知孕伏于旧知,旧知识点是新知识点的生长点,数学教学如何让知识体系由点到线,线到面,使知识结构“见木又见林”是十分必要的.。案例1从整数乘法迁移到分数乘整数,想法是可取的,但整数乘法的意义在二上年级就已经出现,而且教材中没有出现整数乘法的抽象表达方式(即整数乘法表示求几个相同加数的和),对于五下年级的学生来说,遗忘程度可想而知。而案例2中,以五上年级的分数加法为基础,让学生自由探索,效果是非常明显的。转化是需要条件的,只要“跳一跳”,就能摘到“桃子”,学生才会去尝试。

今天这节课的算理看似简单,其实理解还是有困难的.根据学生的认知心理,在遇到一个陌生的问题,如”1/5×3=?”时,学生对算法的兴趣远远胜于算理.因为算法可以直接得到结果。一旦知道算法,多数学生会对算理失去兴趣。甚至为了考试成绩去死记硬背算理,算法与算理完全脱离。那么我们实际上不是教数学,而是在教一门计算程序:不是在培养研究者,而是在训练操作工。这与”学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的思想方法和必要的应用技能”相违背的。

数学思想方法内容十分丰富,学生一接触到数学知识,就联系上许多数学思想方法。寓理于算的思想就是小学数学中的基本思想方法。在教学时,把重点放在让学生充分体验由直观算理到抽象算法的过渡和演变过程,从而达到对算理的深层理解和对算法的切实把握。小学是打基础的教育,有了算理的支撑,算法才会多样化,课堂才会更开放。

课标中,原来讲“双基”,现在变成“四基”,多了基本思想、基本活动经验,笔者认为,只有具备了基本思想、基本活动经验,才能在思维上促进基本知识、基本技能的发展。不但教给学生一个表层的知识,更要给学生思维的方法与思想。

分数和整数相乘教案篇九

《分数除以整数》这节课的关键在于学生是通过自主探究获得分数除以整数的计算方法的。学生对新知识的学习必须以已有的知识和学习经验作为基础,因此正确分析学生的知识基础和学习经验就显得格外重要。我认为分数除以整数的学习基础在于以下几点:分数与小数的转化;分数的意义;分数乘法的意义;倒数的知识;商不变的性质等。这些知识在以前的学习中,学生都有了足够的掌握,有了上面的基础保障,我觉得把研究新知识的权力交给学生是完全可以的。

整节课通过学生自己动手设计板书,上台展示,自我总结,发现方法,其中必要的操作是比不可少的。本节课中理解分数除以整数的计算方法的算理是这节课的重点和难点,学生经过动手操作,将实验中的图与式子对应起来,通过图形,学生直观感知了“4/5÷2”可以表示为“4/5里有4个1/5,把4个1/5平均分成2份,每份就是2/5,从而理解计算方法。同时也直观感知了”4/5÷2就是把4/5平均分成2份,每份是多少,可以理解为求4/5的1/2是多少,即4/5×1/2,真正理解“分数除以整数(0除外)等于分数乘这个整数的倒数“的计算方法。由于理解算理,学生能正确地掌握计算法则,课堂上表现在学生顺利完成4/5÷3的计算。

整节课,孩子们情绪比较激动,课堂纪律不太好,讲解的过程缺乏详细,只会照板书读下来,对于质疑环节,孩子们不太会提问,这在以后的课堂中要加以锻炼。

《分数和整数相乘》

将本文的word文档下载到电脑,方便收藏和打印

推荐度:

点击下载文档

搜索文档

分数和整数相乘教案篇十

一、引入,明确今后主要的学习内容。鼓励学生相信自己能学好。

二、口算,感受分数乘整数的含义

1、读出算式,并口算出结果:

1/5+2/5= 1/4+1/4= 2/6+3/6+1/6= 1/16+3/16= 2/9+2/9= 2/9+2/9+2/9+2/9+2/9+2/9= 2/9+2/9......2/9(30个)

2、感受分数乘整数的意义

30个2/9相加读起来太麻烦了,(让学生读时,很多学生都笑了。)有没有简单的表示方法?(学生会想到用乘法表示成2/9×30)然后让学生说一说2/9×30表示的含义。让学生再说一些分数乘整数的算式,教师板书,然后从中选则一些让学生说一说意义。

三、尝试计算,归纳方法

1、尝试计算。

让学生试着计算2/9×4=、说一说计算方法,允许有不同的方法。(这是课的一个重点)再计算2/9×5=,然后让学生自己思考分数乘整数的计算方法。

2、自己选择练习

自己选则的内容,学生计算的积极性会更高,让学生从上面学生说出的算式中选择两道题进行计算。

3、概括分数成整数的计算方法

让学生自己归纳计算方法,并尝试用字母表示这个计算方法如:b/a×c=b×c/a。

总之,给学生发现的机会,他们能自己做的我们不告诉他们。如1、他们会发现几个相同分数相加用乘法比较简便,能发现分数乘整数的意义。2、他们能自己计算分数乘整数的式题。3、他们会自己概括出分数乘整数的计算方法。这些方面我们都要给学生机会。

同时我感觉到,这节课是六年级数学的第一课,在教学时还要注意以下几点:

一、给孩子鼓劲儿,让孩子看到希望

告诉他们“我们这一学期数学课主要学习的都是有关分数的知识,六个单元中有四个单元都是有关分数的知识。这部分知识和以前联系不大,只要从现在开始,加油,都能把这部分知识学好!”老师也要满怀信心的对待每一个孩子,给不同层次的孩子以机会,真正在课堂上关注他们,让他们学得幸福,感受到成功,感受到付出之后的快乐,相信自己能越来越好!

二、别让孩子掉队,给接受能力稍慢的孩子吃一吃偏饭

我们的老师都很敬业,这一点我从来都不怀疑,但是有时后我们的方法不够合适。就拿给学困生辅导来说吧,很多老师都要面临这个问题,不管是否课改,一些基本的东西都是要孩子会的。在给学困生补习的时候,要注意(1)及时,有些教师总是快考试的时候才想到要给差生辅导,那时侯内容太多,他们已经接受不了了。所以要及时给他们辅导。(2)要让他们自己说解题的思路,说做某一类题的时候应该注意什么,不要让他们光做题,不要让他们死记硬背一些东西,要让他们理解。

三、理解分数乘法含义、尝试计算

从分数加法的口算引入,2/5+1/5=、3/7+2/7=,从2/9+2/9+2/9.......2/9(30个2/9相加)让学生感受到这样的算式非常罗嗦,不好读,而且不好计算。让学生自然想到用乘法算,2/9×30让学生自己说一说表示的含义,理解分数乘法的意义。

同时让学生说出另外一个分数乘以整数的算式,丛中选择一些算式让学生说一说表示的含义。然后试着计算2/9×4,鼓励学生自己想办法计算,可以用不同的方法。2/9×5,让学生独立计算,并试着用自己的话概括分数乘整数的计算方法。练习,从学生自己说出的算式中选择两道计算。

分数和整数相乘教案篇十一

计算教学的课注重的是讲明算理,掌握算法,一般对于学生来说,是比较单调和枯燥的,为了避免单纯的机械计算,教者创设了学生做绸花的实际情境,将计算教学与解决问题有机结合。学生通过观察涂色的方格图,列出算式,从而有利于理解分数乘法的意义。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数的简便运算,又可以启发学生用加法算出×3的结果。但在教学中,教者对一米绸带的这幅图没有充分地利用好,教者只是在导入时让学生说了说,怎样在图中表示3个米,其实在这里,应该依据图形结合,借助图形来说明算理,最后教师再归纳到分数乘整数的意义角度,让学生理解分数乘法的意义与整数乘法的意义是相同的,就是求几个相同分数的和。

2.连续追问,深入理解算理

在计算教学中,往往有很多教师只关注教会学生如何算,对为什么可以这样算缺乏足够的重视。因此,造成由于算理不清而导致的只会机械算,不会灵活运用的状况。因此,在这部分的教学中,教者通过连续追问,让学生深入理解算理,让学生明白分数乘整数为什么分母不变,分子与整数相乘作分子的道理。这样做能够很好的突出重点,突破难点,让学生知其然,知其所以然。

3.关注细节,注重数学的严谨

在教学先约分再计算的算法时,教者改编了教材,设计了一道比较大的整数与分数相乘的题目,对比之下简单与复杂一目了然,起到了很好的效果。但是在展示的学生计算过程中,出现了约分格式不规范的情况,有些同学在约分时,把约好的数写在原来数的右边,教者忘了提醒学生要把约好的数写在原来数的上方,这个细节的不经意导致了学生在后面的计算过程中,总会忘了将这个约好的数与前面一个分子相乘。这个细节处理得有所缺憾。

4.一些不成熟的想法

(1)从乘法的意义上来说,也就是因为++=,所以×3=或者说是3个,所以3个是9个,结果是。

(2)从观察这幅图中,也可以知道象三个这样的涂色部分的和是3个,结果是。

(3)学生可以根据米到分米的进率,把米化成分米,也就是把米化成3分米,用整数乘法来解决,再把结果9分米化为分数米。

(4)学生学过了分数与小数的互换,所以也可以直接把米化为0.3米,0.3×3=0.9米=米。这样就能更好地体现出算法的多样性和学生学法的多样性,而不仅仅局限于单一的算法。所以用书本上的米,可以说给学生的思考留了很大的空间。学生在说算理时也不仅仅用加法与乘法的关系来解释。

如果用加法来理解分数乘法的含义,思考乘法算理学生还是比较容易想到,也是比较易于理解的方法。

分数和整数相乘教案篇十二

1.经历总结规律和探索分数除以整数的计算方法的过程。

2.掌握分数除以整数的计算方法,会计算分数除以整数。

3.积极参与数学活动,感受数学与生活的密切联系,激发数学学习的兴趣。

学生们在前面的学习已经知道了整数除法的意义及其计算方法,在本册知道了分数乘法的意义、计算方法和求一个数的倒数的方法,这些已有的知识为学生探索本课新知打下了坚实的基础。,学生运用折纸的方法探索分数除以整数的计算方法。学生在“玩”的过程中能够感知分数除以整数的基本算理,进而归纳出分数除以整数的计算方法。

教学重点:分数除法的计算方法,会计算分数除以整数的除法。

教学难点:探索分数除以整数的计算方法。

活动一(复习探索)

通过上面的练习老师知道同学们的本事真不小,接下来老师要考考你,看看你有没有和孙悟空火眼金睛的本事。

2观察规律:观察每一组的两个算式,你发现了什么?(给学生观察的时间)

学生小组内谈谈你的发现。(教师倾听巡视)

学生谈发现,试着用一句话概括一下发现。

3教师小结:一个数除以另一个数(师板书)0除外,就等于数这个乘另一个数的倒数。

你们果真有火眼金睛的本事,发现了数学中的一个规律。

我们刚才发现整数除以整数,就等于整数乘这个数的倒数.那这个规律适用于分数除法吗?

活动二(发现规律)

探索新知

1、学生猜一猜。到底是不是像同学们想得那样呢?我们以分大饼饼为例,试着想一想。(出示,指生读题)

2、二分之一张是什么意思?把它平均分成3份又是什么意思?(生:二分之一张就是半张;把它平均分成3份就是把半张披萨平均分成3份。)?教师提问:把半张披萨平均分成3份,每份是整张披萨的几分之几?你能列出算式吗?生列式。

3、请大家拿出课前准备好的圆形纸片,折一折涂,看看每份是整张的几分之几?开始。

4、生动手操作。教师巡视。集体交流(找几人说说想法。)

师:刚才,我们通过动手操作,知道了,那计算你会吗?。师生共同交流,教师板书。

做到这,咱们看看,刚才咱们发现的规律适用于分数除法吗?生说。

5、总结:分数除以一个数(0除外)等于分数乘这个数的倒数。(出示)

读一读,记一记你的发现

活动三(练习巩固)

1、初步练习(两道基本的习题巩固所学)

2、趣味练习(通过打气球的游戏进一步加深练习)

3、你是不是会利用今天学到的知识解决生活中的问题。

第1题,学生读题,师生一起借助线段图分析题意,然后学生自己列式计算,并交流计算过程。

第2题六一儿童节期间,学校用了

活动四(课堂小结)

通过今天的学习,你有什么收获?

分数和整数相乘教案篇十三

一、利用已有知识引导学生实现正迁移。

《分数乘整数》是分数乘法单元的第一课时,本课主要让学生通过自主探索,了解分数与整数相乘的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数与整数相乘的计算方法。而分数与整数相乘的意义与整数相乘的意义相同,所以这节课在引入课题时我设计了下面的两道习题:(1)做一朵绸花要30厘米绸带,小丽做3朵这样的绸花,一共用多少厘米绸带?(2)做一朵绸花要0.3米绸带,小红做3朵这样的绸花,一共用多少米绸带?通过让学生列式并追问为什么都用乘法计算,激活学生已有的对整数乘法意义的认识。然后再通过改题呈现例1:做一朵绸花要米绸带,小芳做3朵这样的绸花,一共用几分之几米绸带?学生顺理成章地列出了例1的乘法算式,通过我追问这题为什么也用乘法计算?学生自然地将整数乘法的意义迁移到分数乘整数的意义中,实现了知识的正迁移。

二、尊重学生的“数学现实”,加强算法的探究。

在学习本课之前,其实班里已经有许多学生大概知道了分数乘整数的计算方法,但对于为什么要这样算就不清楚了。如果再按照一般的教学程序(呈现问题——探讨研究——得出结论)进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去探究的兴趣。教师的主导作用在于设计恰当的教学形式,调动不同层次的学生的学习兴趣。于是在教学时×3的算法时直接问:你知道怎么乘吗,你认为整数3与分数的什么相乘呢?我重点在让学生明白为什么要这样乘。我抓住这一质疑点,提出:“为什么只把分子与整数相乘,分母不变”接下来的教学就引导学生带着“为什么”去探索。由质疑开始的探索是学生为满足自身需要而进行的主动探索,因此学生在课堂上迫不及待地,积极主动地进行讨论,从不同的角度解决疑问。

三、实现教学的个性化,发展学生的思维。

每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,我放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过计算分数单位的个数来理解;有的学生讲清了分母不能与整数相乘,只能将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了正确的结果。由此我深深地体会到,包括教师在内的任何人,都不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。

分数和整数相乘教案篇十四

《分数乘整数》是义务教育课程标准实验教科书小学数学六年级上册第二单元的内容。从学生已有的知识经验出发合理地使用教材,本课教学重点是让学生理解算理、掌握计算法则。

本课是在整数乘法和分数加法的基础上学习的,通过直观操作帮助学生理解算理并正确进行计算,在此基础上拓宽学生的知识面。

知识与能力:

在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

过程与方法:

通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

情感态度与价值观:

引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:引导学生总结分数乘整数的计算法则。

教学过程

【本文地址:http://www.xuefen.com.cn/zuowen/4808409.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档