数据化心得体会(精选11篇)

格式:DOC 上传日期:2023-10-30 04:05:05
数据化心得体会(精选11篇)
时间:2023-10-30 04:05:05     小编:纸韵

体会是指将学习的东西运用到实践中去,通过实践反思学习内容并记录下来的文字,近似于经验总结。心得体会是我们对于所经历的事件、经验和教训的总结和反思。下面是小编帮大家整理的心得体会范文大全,供大家参考借鉴,希望可以帮助到有需要的朋友。

数据化心得体会篇一

在当今的信息时代,数据化已经成为一种趋势和必备能力。无论是在工作上还是在生活中,我们都需要依赖数据来分析和决策。数据化不仅是高科技行业的重要工具,也在渐渐应用到其他领域中来。通过对数据的揭示和分析,我们可以更加深刻地了解现实,以此优化生产过程或生活方式,做出更加明智的决策。

第二段:数据化的意义和方法

数据化与统计分析、机器学习、人工智能等概念有所交汇,但还是有其特定的意义。数据化带来的最大好处是,它让我们拥有了更强的预判能力。通过对数据的分类、整理、存储和加工,可以提炼出有用的信息,为企业、政府或个人的决策提供支持。数据化不单纯只是收集数据,还需要下功夫去挖掘数据中蕴含的深层次的价值。而要实现这一点,就需要依靠大数据分析领域的专业技能,包括数据挖掘、数据可视化和机器学习等技术手段。

第三段:数据化的优势和挑战

数据化带来了很多优势,也需要我们面对挑战。数据化可以帮助我们快速了解和掌握生产、营销、交通等方面的信息,让我们对未来趋势有更准确的预测,从而为未来做出更好的决策。但数据化过程中也存在着很多挑战,例如,数据的缺失、失真或无法获取等问题,还有数据安全和隐私的问题等,这些问题都会影响到数据的质量和可信度。如何在保证数据质量的同时,有效地进行分析和利用,是我们需要面对的难题。

第四段:个人心得

推进数据化的过程中,作为从业者或者个人来说都需要注重一些事项。尤其是对于普通人,我们可以通过学习、掌握一些基础的数据分析技能,例如利用 Excel 对数据进行可视化呈现,或者通过一些在线数据分析工具来处理和分析数据。同时,还需要注重数据的质量和可信度,对于不确定的数据需要多加验证和确证。这些都需要个人有自我培养和研究的思想,否则我们会发现,数据化的价值得不到充分的发挥。

第五段:未来趋势和展望

数据化的趋势将会快速发展,更多重要的行业都将涉及数据化,并吸引了越来越多的投资和创业企业,数据分析领域也将催生更多的精英和专家。大家可以多尝试一些新的数据分析工具和技术,探寻新的应用场景和商业模式。同时,对于个人而言,也需要不断创新和孜孜不倦地钻研学习。只有用心去了解和探求数据化的本质,才能更好地跟着时代的步伐前行。

总结:

数据化虽然是一种新型的能力和趋势,但它正日益融入生活和工作中来,我们需要不断学习和探索所需的技能和知识。我们需要注重数据质量和可信度,并时刻关注数据化的未来发展趋势。这样,我们才能真正掌握数据化所带来的巨大价值,并为我们自己和社会创造更多的价值。

数据化心得体会篇二

一、平台搭建

描述小组在完成平台安装时候遇到的问题以及如何解决这些问题的,要求截图加文字描述。

问题一:在决定选择网站绑定时,当时未找到网站绑定的地方。解决办法:之后小组讨论后,最终找到网站绑定的地方,点击后解决了这个问题。

问题二:当时未找到tcp/ip属性这一栏

解决办法:当时未找到tcp/ip属性这一栏,通过老师的帮助和指导,顺利的点击找到了该属性途径,启用了这一属性,完成了这一步的安装步骤。

问题三:在数据库这一栏中,当时未找到“foodmartsaledw”这个文件

问题四:在此处的sql server的导入和导出向导,这个过程非常的长。

解决办法:在此处的sql server的导入和导出向导,这个过程非常的长,当时一直延迟到了下课的时间,小组成员经讨论,怀疑是否是电脑不兼容或其他问题,后来经问老师,老师说此处的加载这样长的时间是正常的,直到下课后,我们将电脑一直开着到寝室直到软件安装完为止。

问题五:问题二:.不知道维度等概念,不知道怎么设置表间关系的数据源。关系方向不对

解决办法:百度维度概念,设置好维度表和事实表之间的关系,关系有时候是反的——点击反向,最后成功得到设置好表间关系后的数据源视图。(如图所示)

这个大图当时完全不知道怎么做,后来问的老师,老师边讲边帮我们操作完成的。

问题六:由于发生以下连接问题,无法将项目部署到“localhost”服务器:无法建立连接。请确保该服务器正在运行。若要验证或更新目标服务器的名称,请在解决方案资源管理器中右键单击相应的项目、选择“项目属性”、单击“部署”选项卡,然后输入服务器的名称。”因为我在配置数据源的时候就无法识别“localhost”,所以我就打开数据库属性页面:图1-图2 图一:

图二:

解决办法:解决办法: 图2步骤1:从图1到图2后,将目标下的“服务器” 成自己的sql server服务器名称行sql servermanagement studio可以)步骤2:点确定后,选择“处理”,就可以成功部署了。

问题七:无法登陆界面如图:

解决方法:尝试了其他用户登陆,就好了

二、心得体会

(1)在几周的学习中,通过老师课堂上耐心细致的讲解,耐心的指导我们如何一步一步的安装软件,以及老师那些简单清晰明了的课件,是我了解了sql的基础知识,学会了如何创建数据库,以及一些基本的数据应用。陌生到熟悉的过程,从中经历了也体会到了很多感受,面临不同的知识组织,我们也遇到不同困难。

理大数据的规模。大数据进修学习内容模板:

linux安装,文件系统,系统性能分析 hadoop学习原理

大数据飞速发展时代,做一个合格的大数据开发工程师,只有不断完善自己,不断提高自己技术水平,这是一门神奇的课程。

2、在学习sql的过程中,让我们明白了原来自己的电脑可以成为一个数据库,也可以做很多意想不到的事。以及在学习的过程中让我的动手能力增强了,也让我更加懂得了原来电脑的世界是如此的博大精深,如此的神秘。通过这次的学习锻炼了我们的动手能力,上网查阅的能力。改善了我只会用电脑上网的尴尬处境,是电脑的用处更大。让我们的小组更加的团结,每个人对自己的分工更加的明确,也锻炼了我们的团结协作,互帮互助的能力。

3、如果再有机会进行平台搭建,会比这一次的安装更加顺手。而在导入数据库和报表等方面也可以避免再犯相同的错误,在安装lls时可以做的更好。相信报表分析也会做的更加简单明了有条理。

总结

,大数据时代是信息化社会发展必然趋势,在大学的最后一学期里学习了这门课程是我们受益匪浅。让我们知道了大数据大量的存在于现代社会生活中,随着新兴技术的发展与互联网底层技术的革新,数据正在呈指数级增长,所有数据的产生形式,都是数字化。如何收集、管理和分析海量数据对于企业从事的一切商业活动都显得尤为重要。

大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代的发展才能在以后的工作生活中中获得更多的知识和经验。

三、

结语

数据化心得体会篇三

在信息时代的今天,数据已经成为我们生活中不可缺少的一部分。而对于数据的准确性和可信度也成为人们越来越关注的问题。为了测试和验证系统的性能,人们经常需要使用一些假数据来模拟真实情况。而我在进行假数据处理的过程中,不仅学到了很多有关数据的知识,也深刻体会到了假数据的重要性。下面将以我在假数据处理过程中的体会为切入点,进行阐述。

首先,假数据的准备是至关重要的。在处理假数据时,准备工作不可忽视。首先需要明确假数据的用途和目的,然后确定所需的字段和数据类型。为了模拟真实情况,假数据应该具有一定的逻辑关系和合理性。例如,在模拟一个用户注册系统时,需要生成一些合法的用户名、密码和手机号码等信息。如果假数据的准备不充分,可能会导致测试结果与实际使用情况差异较大,进而影响系统的性能和稳定性。

其次,假数据的生成要考虑数据分布的特点。在大数据时代,数据的分布特点是非常重要的。假数据的生成应该符合实际数据的分布情况,以保持模拟效果的准确性。例如,对于一组身高数据,正常情况下应该呈现出一个正态分布的特点。在生成假数据时,我们可以使用一些数学方法和算法来模拟正态分布,以确保生成的假数据能够反映出真实数据的特点。另外,还需要考虑到异常数据的生成,以测试系统对异常情况的处理能力。

第三,假数据需要具备一定的随机性。随机是指数据生成的不可预测性和不重复性。为了模拟真实情况,假数据的生成应该具备一定的随机性。在现实世界中,很少有一成不变的数据,所以假数据也应该能够反映出这一特点。为了达到这个目的,我们可以使用随机数生成器来生成随机的数据。同时,还需要考虑到数据的相互依赖关系,以确保生成的假数据之间的关系具有一定的随机性。

第四,假数据的质量和准确性是评估数据模型的关键指标。在进行数据处理和模型验证时,数据的质量和准确性是非常重要的。无论是真实数据还是假数据,都应该保持数据的质量和准确性。在生成假数据的过程中,我们应该对数据进行合理性校验和数据去重。同时,还需要注意数据的完整性,避免生成不完整或重复的数据。只有保证了数据的质量和准确性,才能更好地评估和验证系统的性能和稳定性。

最后,假数据的使用应当谨慎和合理。假数据只是一个工具,它可以用来帮助我们测试和验证系统的性能,但并不代表现实情况。因此,在使用假数据时,应当谨慎对待。首先需要明确假数据的用途和限制,避免过度依赖假数据而忽视真实数据的特点。其次,在进行数据分析和决策时,应当将假数据与真实数据结合起来进行分析和判断。只有在合理的情况下使用假数据,才能更好地指导实际的决策和行动。

综上所述,假数据在测试和验证系统性能时发挥着非常重要的作用。通过对假数据的准备、生成、随机性、质量和使用等方面的探讨和思考,我深刻体会到了假数据的重要性。只有在合理的情况下使用假数据,并结合真实数据进行分析和决策,我们才能更加准确地了解和评估系统的性能和稳定性。因此,在进行假数据处理时,我们应当注重假数据的准备和生成,同时也要注意数据的质量和准确性,以确保得到可靠的测试和验证结果。

数据化心得体会篇四

第一段:引言(150字)

现代社会中,数据已经成为一种宝贵的资源,无论是企业、政府还是个人,都需要依赖数据来进行决策和分析。因此,掌握数据分析的能力变得越来越重要。通过分析数据,我们可以揭示隐藏的规律和趋势,为我们提供更多的信息和见解。在过去的一年中,我从事了一项数据分析的项目,并且在这个过程中积累了一些宝贵的经验和体会。

第二段:数据收集与清洗(250字)

在进行数据分析之前,最重要的第一步是数据的收集与清洗。在项目中,我主要通过调查问卷和网络爬虫这两种方法来收集数据,然后使用数据分析工具对数据进行清洗和筛选。在这个过程中,我体会到数据质量的重要性。有时候,收集到的数据可能存在错误或者缺失,这就需要我们对数据进行逐一核实和修正。另外,数据的格式也要进行统一,以方便后续的分析。在数据清洗过程中,我学会了使用一些常见的数据处理工具,如Excel和Python等,这大大提高了我的工作效率。

第三段:数据分析与挖掘(300字)

在数据清洗完成后,接下来就是进行数据分析与挖掘了。数据分析主要包括描述性统计、相关性分析和预测建模等。其中,描述性统计可以帮助我们了解数据的基本特征和分布情况,相关性分析可以揭示数据之间的关联程度,预测建模则可以通过历史数据来预测未来的情况。在数据分析过程中,我意识到要保持开放的思维,不要过早地做出主观的判断。同时,数据可视化也非常重要,通过绘制图表和图像,我们可以更加直观地了解数据之间的关系,并发现隐藏在数据背后的故事。

第四段:解读与应用(250字)

数据的分析与挖掘只是第一步,关键在于如何解读和应用这些分析结果。在这个过程中,我们要将数据分析的结果与实际情况进行对比,并深入思考其中的意义。有时候,分析结果可能对我们的决策产生重要影响,因此我们需要将这些结果有效地传达给相关人员,并帮助他们理解和接受这些结果。在实际工作中,我发现一个好的数据分析师应该具备良好的沟通能力和解释能力,这样才能将分析结果转化为实际行动。

第五段:持续学习与提升(250字)

数据分析是一个不断学习和提升的过程。在数据分析的过程中,我们要持续关注新的数据分析方法和技术,并不断学习和积累相关知识。通过参加培训课程、阅读书籍和参与实际项目,我们可以不断提升自己的分析能力和技巧。此外,我们还可以通过与其他数据分析师进行交流和分享,互相学习和借鉴。只有不断学习和提升,才能在数据分析的领域中保持竞争力。

总结(100字)

通过这个数据分析项目,我深刻体会到了数据的重要性和分析的价值。通过数据分析,我们可以发现问题、解决问题,并为决策提供科学依据。在未来的工作中,我将继续学习和提升自己的数据分析能力,努力做出更有力量的决策。

数据化心得体会篇五

本次课程设计所用到的知识完全是上学期的知识,通过这次课程设计,我认识到了我对数据结构这门课的掌握程度。

首先我这个课程设计是关于二叉树的,由于是刚接触二叉树,所以我掌握的长度并不深。在编程之前我把有关于二叉树的知识有温习了一遍,还好并没有忘掉。二叉树这章节难度中上等,而且内容广泛,所以我只掌握了百分之六七十。

然后,在编程中我认识到了自己动手能力的不足,虽然相比较大二而言进步很大,但是我还是不满意,有的在编程中必须看书才能写出来,有的靠百度,很少是自己写的。还好,我自己组装程序的能力还行,要不这东拼西凑的程序根本组装不了。在编程中我还认识到了,编程不能停下,如果编程的时间少了,知识忘的会很快,而且动手也会很慢。同时,同学之间的合作也很重要,每个人掌握的知识都不一样,而且掌握程度也不一样,你不会的别的同学会,所以在大家的共同努力下,编程会变得很容易。在这次编程中,我了解到了自己某些方面的不足,比如说链表的知识,虽然我能做一些有关于链表的编程,但是很慢,没有别人编程的快,另外,二叉树和图的知识最不好掌握,这方面的知识广泛而复杂。以前,没动手编程的时候觉得这些知识很容易,现在编程了才发现自己错了,大错特错了,我们这个专业最重视的就是动手编程能力,如果我们纸上写作能力很强而动手编程能力很差,那我们就白上这个专业了。计算机这个专业就是锻炼动手编程能力的,一个人的理论知识再好,没有动手编程能力,那他只是一个计算机专业的“入门者”。在编程中我们能找到满足,如果我们自己编程了一个程序,我们会感到自豪,而且充实,因为如果我们专研一个难得程序,我们会达到忘我的境界,自己完全沉浸在编程的那种乐趣之中,完全会废寝忘食。编程虽然会乏味很无聊,但是只要我们沉浸其中,你就会发现里面的`乐趣,遇到难得,你会勇往直前,不写出来永不罢休;遇到容易的,你会找到乐趣。编程是很乏味,但是那是因为你没找到编程重的乐趣,你只看到了他的不好,而没有看到他的好。其实,只要你找到编程中得乐趣,你就会完全喜欢上他,不编程还好,一编程你就会变成一个两耳不闻窗外事的“植物人”。可以说只要你涉及到了计算机,你就的会编程,而且还要喜欢上他,永远和他打交道,我相信在某一天,我们一定会把他当作我们不可或缺的好朋友。

“数据结构与算法课程设计”是计算机科学与技术专业学生的集中实践性环节之一,是学习“数据结构与算法”理论和实验课程后进行的一次全面的综合练习。其目的是要达到理论与实际应用相结合,提高学生组织数据及编写程序的能力,使学生能够根据问题要求和数据对象的特性,学会数据组织的方法,把现实世界中的实际问题在计算机内部表示出来并用软件解决问题,培养良好的程序设计技能。

当初拿到这次课程设计题目时,似乎无从下手,但是经过分析可知,对于简单文本编辑器来说功能有限,不外乎创作文本、显示文本、统计文本中字母—数字—空格—特殊字符—文本总字数、查找、删除及插入这几项功能。于是,我进行分模块进行编写程序。虽然每个模块程序并不大,但是每个模块都要经过一番思考才能搞清其算法思想,只要有了算法思想,再加上c程序语言基础,基本完成功能,但是,每个模块不可能一次完成而没有一点错误,所以,我给自己定了一个初级目标:用c语言大体描述每个算法,然后经调试后改掉其中明显的错误,并且根据调试结果改正一些算法错误,当然,这一目标实现较难。最后,经过反复思考,看一下程序是否很完善,如果能够达到更完善当然最好。并非我们最初想到的算法就是最好的算法,所以,有事我们会而不得不在编写途中终止换用其他算法,但是,我认为这不是浪费时间,而是一种认识过程,在编写程序中遇到的问题会为我们以后编写程序积累经验,避免再犯同样的错误。但是,有的方法不适用于这个程序,或许会适用于另外一个程序。所以,探索的过程是成长的过程,是为成功做的铺垫。经过努力后获得成功,会更有成就感。

在课程设计过程中通过独立解决问题,首先分析设计题目中涉及到的数据类型,在我们学习的数据存储结构中不外乎线性存储结构及非线性存储结构,非线性存储结构中有树型,集合型,图型等存储结构,根据数据类型设计数据结点类型。然后根据设计题目的主要任务,设计出程序大体轮廓(包括子函数和主函数),然后对每个子函数进行大体设计,过程中错误在所难免,所以要经过仔细探索,对每个函数进行改进。

程序基本完成后,功能虽然齐全,但是程序是否完善(例如,输入数据时是否在其范围之内,所以加入判断语句是很有必要的)还需运行测试多次,如有发现应该对其进行改善,当然要在力所能及的前提下。

课程设计过程虽然短暂,但是使我深刻理解数据结构和算法课程对编程的重要作用,还有“数据结构与算法”还提供了一些常用的基本算法思想及算法的编写程序。通过独立完成设计题目,使我系统了解编程的基本步骤,提高分析和解决实际问题的能力。通过实践积累经验,才能有所创新。正所谓,良好的基础决定上层建筑。只有基本功做好了,才有可能做出更好的成果。

数据化心得体会篇六

第一段:引言(150字)

在如今信息时代的大潮之下,数据已经成为了非常宝贵的资源,被广泛应用于各行各业。而作为数据处理的最初环节,数据的准确性和可靠性对于后续的分析和决策至关重要。在我的工作中,我经常需要进行数据的录入工作,通过这一过程,我积累了一些宝贵的心得和体会。

第二段:添加数据的耐心与细致(250字)

数据录入这一过程并不是一个简单的工作,它要求我们具备一定的耐心和细致的精神。我们需要仰仗旺盛的工作热情,耐心地对每一个数据进行录入,以确保其准确性。在我的工作中,我经常遇到一些数据特别复杂或繁琐的情况,此时我会调整心态,保持耐心,尽量将每一项数据一丝不苟地录入。这些经验让我明白,只有将耐心和细致发挥到极致,才能够保证数据的正确性和完整性。

第三段:注重数据的验证与核对(250字)

数据录入过程中,验证和核对数据是非常重要的环节,它能够有效避免错误数据的出现。在我进行数据录入的同时,我还会定期进行自查和对比,确保数据的准确性。如果发现有错误或不一致的数据,我会及时进行修正和处理,以免影响后续工作。通过这样的验证和核对工作,我发现其中蕴含着科学手段与思考的过程,它能够为我们提供可靠的数据支持,帮助我们做出更加准确的分析和判断。

第四段:掌握数据录入的技术和工具(250字)

现代科技的发展给我们带来了很多便利和工具,也使得数据录入工作变得更加高效和准确。在我的工作中,我不断学习和应用各种录入工具和技术,比如Excel和数据录入软件等。这些工具和技术大大提高了数据录入的速度和准确性。同时,在使用这些工具和技术的过程中,我也发现了它们的潜力和局限性,这让我认识到不仅要掌握数据录入的技术,更要了解其背后的原理和适用范围,以便更好地应对各种工作场景。

第五段:总结与展望(200字)

通过不断的实践和经验积累,我对数据录入工作有了更加深刻的认识。我明白数据录入不仅仅是一个简单的环节,它是构建整个数据处理过程的基石。只有将数据录入工作做好,才能够保证后续的工作能够顺利进行。在未来的工作中,我将进一步深化对数据录入过程的理解和操作技巧,不断提高自身的数据处理能力,为企业决策和业务发展提供更加可靠的数据支持。

总结:

通过数据录入工作的实践,我深刻体会到了其重要性和技巧。只有耐心、细致,并且注重验证与核对,才能够做好数据录入工作。同时,掌握各种数据录入的工具和技术,提高工作效率和准确度也是至关重要的。我相信,在今后的工作中,我会不断学习和提升自己,为数据处理工作做出更大的贡献。

数据化心得体会篇七

这学期开始两周时间是我们自己选题上机的时间,这学期开始两周时间是我们自己选题上机的时间,虽然上机时间只有短短两个星期但从中确实学到了不少知识。上机时间只有短短两个星期但从中确实学到了不少知识。数据结构可以说是计算机里一门基础课程,据结构可以说是计算机里一门基础课程,但我觉得我们一低计算机里一门基础课程定要把基础学扎实,定要把基础学扎实,然而这次短短的上机帮我又重新巩固了c语言知识,让我的水平又一部的提高。数据结构这是一门语言知识让我的水平又一部的提高。数据结构这是一门知识,纯属于设计的科目,它需用把理论变为上机调试。

纯属于设计的科目,它需用把理论变为上机调试。它对我们来说具有一定的难度。它是其它编程语言的一门基本学科。来说具有一定的难度。它是其它编程语言的一门基本学科。我选的.上机题目是交叉合并两个链表,对这个题目,我选的上机题目是交叉合并两个链表,对这个题目,我觉得很基础。刚开始调试代码的时候有时就是一个很小的错觉得很基础。刚开始调试代码的时候有时就是一个很小的错调试代码的时候误,导致整个程序不能运行,然而开始的我还没从暑假的状导致整个程序不能运行,态转到学习上,每当程序错误时我都非常焦躁,态转到学习上,每当程序错误时我都非常焦躁,甚至想到了放弃,但我最终找到了状态,一步一步慢慢来,放弃,但我最终找到了状态,一步一步慢慢来,经过无数次的检查程序错误的原因后慢慢懂得了耐心是一个人成功的必然具备的条件!

同时,通过此次课程设计使我了解到,必然具备的条件!同时,通过此次课程设计使我了解到,硬件语言必不可缺少,要想成为一个有能力的人,必须懂得件语言必不可缺少,要想成为一个有能力的人,硬件基础语言。在这次课程设计中,硬件基础语言。在这次课程设计中,虽然不会成功的编写一个完整的程序,但是在看程序的过程中,个完整的程序,但是在看程序的过程中,不断的上网查资料以及翻阅相关书籍,通过不断的模索,测试,发现问题,以及翻阅相关书籍,通过不断的模索,测试,发现问题,解决问题和在老师的帮助下一步一步慢慢的正确运行程序,决问题和在老师的帮助下一步一步慢慢的正确运行程序,终于完成了这次课程设计,于完成了这次课程设计,虽然这次课程设计结束了但是总觉得自已懂得的知识很是不足,学无止境,得自已懂得的知识很是不足,学无止境,以后还会更加的努力深入的学习。力深入的学习。

数据化心得体会篇八

第一段:引言(字数:150字)

在当今信息化时代,数据成为了重要的资源和驱动力。无论是个人、企业还是社会组织,都会涉及大量的数据收集、整理和分析工作。作为一个数据录入员,我深感自己肩上的责任和压力。在这个主题下,我想分享我在录数据工作中的体验和感悟。录数据不仅是一项机械性的工作,更是需要专注、细致和耐心的工作。在这个过程中,我学会了如何高效地录入数据,也意识到了数据的重要性和价值。

第二段:控制录入速度(字数:250字)

录入数据时,控制录入速度是很重要的。一开始我总是急于完成任务,常常犯错和错漏。后来我意识到,只有保持稳定的速度,才能确保高质量和准确性的数据。在录数据之前,一定要仔细阅读相关的操作指南,熟悉数据字段和录入规则。在实际操作中,我逐渐形成了自己的录入节奏。慢而稳的速度,既保证了数据的准确性,又提高了效率。此外,我还会定期检查我录入的数据,以及时发现和纠正错误。

第三段:注意数据的完整性(字数:250字)

录入数据的另一个重要方面是保持数据的完整性。数据的完整性是指数据不缺失、不重复和不冗余。在录数据过程中,我常常会遇到一些数据字段是必填项的情况。这时我会仔细核对数据,确保没有漏填任何必填字段。同时,我还会注意数据中是否有重复或冗余的信息,及时进行清理和整理。保持数据的完整性不仅能提高数据的可信度和准确性,还有利于后续数据分析和应用。

第四段:数据的重要性和价值(字数:250字)

数据在现代社会已经变得无处不在,且不可或缺。在记录数据的过程中,我深深意识到了数据的重要性和价值。数据是信息的载体,它可以帮助我们了解事实、分析问题、做出决策。因此,准确、完整和可靠的数据对于个人、企业和社会组织都有重要意义。在录数据的同时,我也体会到了责任的沉重。不仅要保证数据的准确性,还要作为数据的守护者,保护数据的隐私和安全。

第五段:对未来的展望(字数:300字)

通过录数据的工作,我不仅学到了很多专业知识和技能,也认识到了数据领域的广阔前景。未来,在数据时代的浪潮下,数据录入员这一职业将越来越重要和受重视。在追求高效和准确的同时,我还希望能进一步学习数据分析和挖掘的知识,提升自己在数据管理和应用方面的能力。我相信,数据会持续地成为推动社会进步和创新的重要力量,而我作为一名数据录入员,将继续发挥自己的作用,为数据的发掘和应用贡献自己的力量。

总结(字数:100字)

录数据心得体会,不仅是对录数据工作的回顾和总结,更是对数据的认识和理解。通过这次经历,我深刻体会到了数据的重要性和价值,也明白了自己在其中的责任和使命。随着社会的发展,数据工作将面临更多的挑战和机遇。我将继续不断学习和提升自己,在这个充满活力和创新的领域中发挥自己的才能。

数据化心得体会篇九

数据已成为当今社会中不可或缺的一部分。随着数码技术的颠覆性发展,我们越来越依赖于数据来支持我们所做的决策。数据合理的统计、分析、处理,不仅有助于我们更清晰地认知现实,也有助于我们更准确地做出决策。

第二段:数据厍对于数据的定义

数据厍是指将原始的数据进行加工处理,形成更有用、更易表示和理解的信息的一个流程。数据厍依据它所要解决的业务和数据特性,对数据进行清洗、整合、转换、计算、筛选等操作,以获取更有价值的数据信息,从而更好地体现数据的应用价值。

第三段:数据厍对于企业管理的影响

数据在企业管理中的重要性不言而喻。数据能够反映产品、客户、市场等方面的有用信息,对企业的决策和发展具有重要意义。数据厍的使用,有助于获取更加准确、完整和及时的数据信息,为企业管理提供更好的数据支持和决策依据。在数据厍的帮助下,企业能够更好的发现自身存在的问题和机遇,并能更加精准地针对问题进行解决。

第四段:数据厍在技术上的表现

技术是数据厍的重要行动工具。数据厍需要具备高效的技术支持,以强化数据的整合、转换和分析等能力。一方面,数据厍需要支持数据挖掘,以发掘数据背后的潜在价值。另一方面,数据厍还需要支持业务指标的监控和工作流程的自动化,以确保数据处理过程的准确、稳定、高效。

第五段:结论

数据是成功决策的基石,而数据厍则是构筑数据基石的不可缺少的环节。在企业的管理过程中,数据厍可以担负起更加细致、全面、准确、高效的数据处理任务,为企业管理提供更佳的数据解决方案。随着技术的不断发展,数据厍在企业管理中的应用前途也将变得更加广阔。

数据化心得体会篇十

大数据的初衷就是将一个公开、高效的政府呈现在人民眼前。你知道数据报告

心得体会

是什么吗?接下来就是本站小编为大家整理的关于数据报告心得体会,供大家阅读!

现在先谈谈我个人在数据分析的经历,最后我将会做个总结。

大学开设了两门专门讲授数据分析基础知识的课程:“概率统计”和“高等多元数据分析”。这两门选用的教材是有中国特色的国货,不仅体系完整而且重点突出,美中不足的是前后内在的逻辑性欠缺,即各知识点之间的关联性没有被阐述明白,而且在应用方面缺少系统地训练。当时,我靠着题海战术把这两门课给混过去了,现在看来是纯忽悠而已。(不过,如果当时去应聘数据分析职位肯定有戏,至少笔试可以过关)。

抱着瞻仰中国的最高科研圣地的想法,大学毕业后我奋不顾身的考取了中科院的研究生。不幸的是,虽然顶着号称是高级生物统计学的专业,我再也没有受到专业的训练,一切全凭自己摸索和研究(不过,我认为这样反而挺好,至少咱底子还是不错的,一直敏而好学)。首先,我尽全力搜集一切资料(从大学带过来的习惯),神勇地看了一段时间,某一天我突然“顿悟”,这样的学习方式是不行的,要以应用为依托才能真正学会。然后呢,好在咱的环境的研究氛围(主要是学生)还是不错滴,我又轰轰烈烈地跳入了paper的海洋,看到无数牛人用到很多牛方法,这些方法又号称解决了很多牛问题,当时那个自卑呀,无法理解这些papers。某一天,我又“顿悟”到想从papers中找到应用是不行的,你得先找到科学研究的思路才行,打个比方,这些papers其实是上锁的,你要先找到钥匙才成。幸运的是,我得到了笛卡尔先生的指导,尽管他已经仙游多年,他的“谈谈方法”为后世科研界中的被“放羊”的孤儿们指条不错的道路(虽然可能不是最好地,the better or best way要到国外去寻找,现在特别佩服毅然出国的童鞋们,你们的智商至少领先俺三年)。好了,在咱不错的底子的作用下,我掌握了科研方法(其实很简单,日后我可能会为“谈谈方法”专门写篇日志)。可惜,这时留给咱的时间不多了,中科院的硕博连读是5年,这对很多童鞋们绰绰有余的,但是因本人的情商较低,被小人“陷害”,被耽搁了差不多一年。这时,我发挥了“虎”(东北话)的精神,选择了一个应用方向,终于开始了把数据分析和应用结合的旅程了。具体过程按下不表,我先是把自己掌握的数据分析方法顺次应用了,或者现成的方法不适合,或者不能很好的解决问题,当时相当的迷茫呀,难道是咱的底子出了问题。某一天,我又“顿悟”了,毛主席早就教育我们要“具体问题具体分析”,“教条主义”要不得,我应该从问题的本质入手,从本质找方法,而不是妄想从繁多的方法去套住问题的本质。好了,我辛苦了一段时间,终于解决了问题,不过,我却有些纠结了。对于数据发分析,现在我的观点就是“具体问题具体分析”,你首先要深入理解被分析的问题(领域),尽力去寻找问题的本质,然后你只需要使用些基本的方法就可以很好的解决问题了,看来“20/80法则”的幽灵无处不在呀。于是乎,咱又回到了原点,赶紧去学那些基础知识方法吧,它们是很重要滴。

这里,说了一大堆,我做过总结:首先,你要掌握扎实的基础知识,并且一定要深入理解,在自己的思维里搭建起一桥,它连接着抽象的数据分析方法和现实的应用问题;其次,你要有意识的去训练分析问题的能力;最后,你要不断的积累各方面的知识,记住没有“无源之水”、“无根之木”,良好的数据分析能力是建立在丰富的知识储备上的。

有人说生活像一团乱麻,剪不断理还乱;我说生活像一团乱码,尽管云山雾罩惝恍迷离,最后却总会拨云见日雨过天晴。维克托迈尔舍恩伯格就把这团乱码叫做大数据,在他的这本书里,试图给出的就是拨开云雾见青天的玄机。

这玄机说来也简单,就是放弃千百年来人们孜孜追求的因果关系转而投奔相关关系。说来简单,其实却颠覆了多少代人对真理探求的梦想。我觉得作者是个典型的实用主义者,在美帝国主义万恶的压迫和洗脑下,始终追逐性价比和利益最大化,居然放弃了追求共产主义真理最基本的要求!不像我们在天朝光芒的笼罩下,从小就开始学习和追求纯粹的共产主义唯心科学历史文化知识啦!这或许就是我们永远无法获得诺贝尔奖、永远无法站在科技最前沿的根本原因吧。其实小学时候,我就想过这个问题,相信所有的人都问过类似的问题,例如现在仍然很多人在问,妈的从来没人知道我每天摆摊赚多少钱,你们他妈的那人均收入四五千是怎么算出来的。中国是抽样的代表,因为中国人最喜欢用代表来表现整体,最典型的例子莫过于公布的幸福指数满意指数各种指数永远都高于你的预期,你完全不清楚他是怎么来的,一直到最后汇总成三个代表,真心不清楚它到底能代表了啥。说这么多显得自己是个愤青,其实只是想表达“样本=总体”这个概念在科技飞速发展的今天,在世界的不同角落,还是会体现出不同的价值,受到不同程度的对待及关注。在大数据观念的冲击下,我们是不是真的需要将平时关注的重点从事物内在的发展规律转移到事物客观的发生情况上。

大数据的出现,必然对诸多领域产生极大的冲击,某些行业在未来十年必将会得到突飞猛进的发展,而其他一些行业则可能会消失。这是废话,典型的三十年河东三十年河西的道理,就像三十年前的数理化王子们,现在可能蜷缩在某工厂的小角落里颤颤巍巍的修理机器;就像三十年前职业高中的学生才学财会学银行,如今这帮孙子一个个都开大奔养小三攒的楼房够给自己做墓群的了;当然也不乏像生物这种专业,三十年前人们不知道是干啥的,三十年后人们都知道没事别去干,唯一可惜的是我在这三十年之间的历史长河中却恰恰选了这么一个专业,这也是为什么我现在在这写

读后感

而没有跟姑娘去玩耍的原因。其实乍一看这个题目,我首先想到的是精益生产的过程控制,比如六西格玛,这其实就是通过对所有数据的分析来预测产品品质的变化,就已经是大数据的具体应用了。

而任何事物都会有偏差,会有错误,也就是说,这全部的数据中,肯定是要出现很多与总体反应出的规律相违背的个体,但是无论如何这也是该事件中一般规律的客观体现的一种形式,要远远好过从选定的样本中剔除异常值然后得到的结论。换句话说,也大大减少了排除异己对表达事物客观规律的影响。就好比是统计局统计中国人民的平均收入一样,这些数怎么这么低啊,这不是给我们国家在国际社会上的形象抹黑么,删掉删掉;这些数怎么这么高啊,这还不引起社会不满国家动荡啊,删掉删掉。所以说,大数据至少对反应客观事实和对客观事实做预测这两个方面是有非常积极地意义的。而这个新兴行业所体现的商机,既在如何利用数据上,又在如何取得数据上。

先说数据的利用,这里面表达的就是作者在通书中强调的对“相关关系”的挖掘利用。相关关系与因果关系便不再赘述,而能够对相关关系进行挖掘利用的企业其实缺不多,因为可以相信未来的大数据库就像现在的自然资源一样,必将因为对利益的追逐成为稀缺资源,而最终落在个别人或企业或部门的手中。想想无论当你想要做什么事情的时候,都有人已经提前知道并且为你做好了计划,还真是一件甜蜜而又令人不寒而栗的事情。

而对于数据的获取,我觉得必然是未来中小型企业甚至个人发挥极致的创造力的领域。如何在尽可能降低成本的情况下采集到越多越准确的数据是必然的发展趋势,鉴于这三个维度事实上都无法做到极致,那么对于数据获取方式的争夺肯定将成就更多的英雄人物。

现在回头从说说作者书中的观点中想到的,p87中关于巴斯德的疫苗的事件,描述了一个被疯狗咬伤的小孩,在接种了巴斯德的狂犬疫苗后成功幸存,巴斯德成了英雄的故事。这是个非常有意思的案例,因为小孩被狗咬伤而患病的概率仅为七分之一,也就是说,本事件有85%的概率是小孩根本就不会患病。那么小孩的生命到底是不是巴斯德救的,而这疫苗到底是有效没效,通过这个事件似乎根本就没有办法得到验证。这就好比某人推出个四万亿计划,但实际上国际经济形势就是好转,哪怕你只推出个二百五计划,gdp都会蹭蹭的往上涨,而且又不会带来四万亿导致的严重通胀、产能过剩、房价泡沫等问题。那你说这四万亿到底是救了国还是误了国?回到我自己的工作领域上来,安全工作,我们一直遵循的方向都是寻找因果关系,典型的从工作前的风险评估,到调查事故的taproot或者五个为什么,无一不是逻辑推理得到结果的产物。而事实上,如果能做到信息的丰富采集和汇总的话,找出事物之间的相关性,对提高工作环境的安全系数是极为有利的。这个点留着,看看可不可以在未来继续做进一步研究。

关于软件

分析前期可以使用excel进行数据清洗、数据结构调整、复杂的新变量计算(包括逻辑计算);在后期呈现美观的图表时,它的制图制表功能更是无可取代的利器;但需要说明的是,excel毕竟只是办公软件,它的作用大多局限在对数据本身进行的操作,而非复杂的统计和计量分析,而且,当样本量达到“万”以上级别时,excel的运行速度有时会让人抓狂。

spss是擅长于处理截面数据的傻瓜统计软件。首先,它是专业的统计软件,对“万”甚至“十万”样本量级别的数据集都能应付自如;其次,它是统计软件而非专业的计量软件,因此它的强项在于数据清洗、描述统计、假设检验(t、f、卡方、方差齐性、正态性、信效度等检验)、多元统计分析(因子、聚类、判别、偏相关等)和一些常用的计量分析(初、中级计量教科书里提到的计量分析基本都能实现),对于复杂的、前沿的计量分析无能为力;第三,spss主要用于分析截面数据,在时序和面板数据处理方面功能了了;最后,spss兼容菜单化和编程化操作,是名副其实的傻瓜软件。

stata与eviews都是我偏好的计量软件。前者完全编程化操作,后者兼容菜单化和编程化操作;虽然两款软件都能做简单的描述统计,但是较之spss差了许多;stata与eviews都是计量软件,高级的计量分析能够在这两个软件里得到实现;stata的扩展性较好,我们可以上网找自己需要的命令文件(.ado文件),不断扩展其应用,但eviews就只能等着软件升级了;另外,对于时序数据的处理,eviews较强。

综上,各款软件有自己的强项和弱项,用什么软件取决于数据本身的属性及分析方法。excel适用于处理小样本数据,spss、stata、eviews可以处理较大的样本;excel、spss适合做数据清洗、新变量计算等分析前准备性工作,而stata、eviews在这方面较差;制图制表用excel;对截面数据进行统计分析用spss,简单的计量分析spss、stata、eviews可以实现,高级的计量分析用stata、eviews,时序分析用eviews。

关于因果性

早期,人们通过观察原因和结果之间的表面联系进行因果推论,比如恒常会合、时间顺序。但是,人们渐渐认识到多次的共同出现和共同缺失可能是因果关系,也可能是由共同的原因或其他因素造成的。从归纳法的角度来说,如果在有a的情形下出现b,没有a的情形下就没有b,那么a很可能是b的原因,但也可能是其他未能预料到的因素在起作用,所以,在进行因果判断时应对大量的事例进行比较,以便提高判断的可靠性。

有两种解决因果问题的方案:统计的解决方案和科学的解决方案。统计的解决方案主要指运用统计和计量回归的方法对微观数据进行分析,比较受干预样本与未接受干预样本在效果指标(因变量)上的差异。需要强调的是,利用截面数据进行统计分析,不论是进行均值比较、频数分析,还是方差分析、相关分析,其结果只是干预与影响效果之间因果关系成立的必要条件而非充分条件。类似的,利用截面数据进行计量回归,所能得到的最多也只是变量间的数量关系;计量模型中哪个变量为因变量哪个变量为自变量,完全出于分析者根据其他考虑进行的预设,与计量分析结果没有关系。总之,回归并不意味着因果关系的成立,因果关系的判定或推断必须依据经过实践检验的相关理论。虽然利用截面数据进行因果判断显得勉强,但如果研究者掌握了时间序列数据,因果判断仍有可为,其中最经典的方法就是进行“格兰杰因果关系检验”。但格兰杰因果关系检验的结论也只是统计意义上的因果性,而不一定是真正的因果关系,况且格兰杰因果关系检验对数据的要求较高(多期时序数据),因此该方法对截面数据无能为力。综上所述,统计、计量分析的结果可以作为真正的因果关系的一种支持,但不能作为肯定或否定因果关系的最终根据。

科学的解决方案主要指实验法,包括随机分组实验和准实验。以实验的方法对干预的效果进行评估,可以对除干预外的其他影响因素加以控制,从而将干预实施后的效果归因为干预本身,这就解决了因果性的确认问题。

关于实验

在随机实验中,样本被随机分成两组,一组经历处理条件(进入干预组),另一组接受控制条件(进入对照组),然后比较两组样本的效果指标均值是否有差异。随机分组使得两组样本“同质”,即“分组”、“干预”与样本的所有自身属性相互独立,从而可以通过干预结束时两个群体在效果指标上的差异来考察实验处理的净效应。随机实验设计方法能够在最大程度上保证干预组与对照组的相似性,得出的研究结论更具可靠性,更具说服力。但是这种方法也是备受争议的,一是因为它实施难度较大、成本较高;二是因为在干预的影响评估中,接受干预与否通常并不是随机发生的;第三,在社会科学研究领域,完全随机分配实验对象的做法会涉及到研究伦理和道德问题。鉴于上述原因,利用非随机数据进行的准试验设计是一个可供选择的替代方法。准实验与随机实验区分的标准是前者没有随机分配样本。

通过准实验对干预的影响效果进行评估,由于样本接受干预与否并不是随机发生的,而是人为选择的,因此对于非随机数据,不能简单的认为效果指标的差异来源于干预。在剔除干预因素后,干预组和对照组的本身还可能存在着一些影响效果指标的因素,这些因素对效果指标的作用有可能同干预对效果指标的作用相混淆。为了解决这个问题,可以运用统计或计量的方法对除干预因素外的其他可能的影响因素进行控制,或运用匹配的方法调整样本属性的不平衡性——在对照组中寻找一个除了干预因素不同之外,其他因素与干预组样本相同的对照样本与之配对——这可以保证这些影响因素和分组安排独立。

转眼间实习已去一月,之前因为工作原因需要恶补大量的专业知识并加以练习,所以一直抽不开身静下心来好好整理一下学习的成果。如今,模型的建立已经完成,剩下的就是枯燥的参数调整工作。在这之前就先对这段时间的数据处理工作得到的经验做个小总结吧。

从我个人的理解来看,数据分析工作,在绝大部分情况下的目的在于用统计学的手段揭示数据所呈现的一些有用的信息,比如事物的发展趋势和规律;又或者是去定位某种或某些现象的原因;也可以是检验某种假设是否正确(心智模型的验证)。因此,数据分析工作常常用来支持决策的制定。

现代统计学已经提供了相当丰富的数据处理手段,但统计学的局限性在于,它只是在统计的层面上解释数据所包含的信息,并不能从数据上得到原理上的结果。也就是说统计学并不能解释为什么数据是个样子,只能告诉我们数据展示给了我们什么。因此,统计学无法揭示系统性风险,这也是我们在利用统计学作为数据处理工具的时候需要注意的一点。数据挖掘也是这个道理。因为数据挖掘的原理大多也是基于统计学的理论,因此所挖掘出的信息并不一定具有普适性。所以,在决策制定上,利用统计结果+专业知识解释才是最保险的办法。然而,在很多时候,统计结果并不能用已有的知识解释其原理,而统计结果又确实展示出某种或某些稳定的趋势。为了抓住宝贵的机会,信任统计结果,仅仅依据统计分析结果来进行决策也是很普遍的事情,只不过要付出的代价便是承受系统环境的变化所带来的风险。

用于数据分析的工具很多,从最简单的office组件中的excel到专业软件r、matlab,功能从简单到复杂,可以满足各种需求。在这里只能是对我自己实际使用的感受做一个总结。

excel:这个软件大多数人应该都是比较熟悉的。excel满足了绝大部分办公制表的需求,同时也拥有相当优秀的数据处理能力。其自带的toolpak(分析工具库)和solver(规划求解加载项)可以完成基本描述统计、方差分析、统计检验、傅立叶分析、线性回归分析和线性规划求解工作。这些功能在excel中没有默认打开,需要在excel选项中手动开启。除此以外,excel也提供较为常用的统计图形绘制功能。这些功能涵盖了基本的统计分析手段,已经能够满足绝大部分数据分析工作的需求,同时也提供相当友好的操作界面,对于具备基本统计学理论的用户来说是十分容易上手的。

spss:原名statistical package for the social science,现在已被ibm收购,改名后仍然是叫spss,不过全称变更为statistical product and service solution。spss是一个专业的统计分析软件。除了基本的统计分析功能之外,还提供非线性回归、聚类分析(clustering)、主成份分析(pca)和基本的时序分析。spss在某种程度上可以进行简单的数据挖掘工作,比如k-means聚类,不过数据挖掘的主要工作一般都是使用其自家的clementine(现已改名为spss modeler)完成。需要提一点的是spss modeler的建模功能非常强大且智能化,同时还可以通过其自身的clef(clementine extension framework)框架和java开发新的建模插件,扩展性相当好,是一个不错的商业bi方案。

r:r是一个开源的分析软件,也是分析能力不亚于spss和matlab等商业软件的轻量级(仅指其占用空间极小,功能却是重量级的)分析工具。官网地址:支持windows、linux和mac os系统,对于用户来说非常方便。r和matlab都是通过命令行来进行操作,这一点和适合有编程背景或喜好的数据分析人员。r的官方包中已经自带有相当丰富的分析命令和函数以及主要的作图工具。但r最大的优点在于其超强的扩展性,可以通过下载扩展包来扩展其分析功能,并且这些扩展包也是开源的。r社区拥有一群非常热心的贡献者,这使得r的分析功能一直都很丰富。r也是我目前在工作中分析数据使用的主力工具。虽然工作中要求用matlab编程生成结果,但是实际分析的时候我基本都是用r来做的。因为在语法方面,r比matlab要更加自然一些。但是r的循环效率似乎并不是太高。

matlab:也是一个商业软件,从名称上就可以看出是为数学服务的。matlab的计算主要基于矩阵。功能上是没话说,涵盖了生物统计、信号处理、金融数据分析等一系列领域,是一个功能很强大的数学计算工具。是的,是数学计算工具,这东西的统计功能只不过是它的一部分,这东西体积也不小,吃掉我近3个g的空间。对于我来说,matlab是一个过于强大的工具,很多功能是用不上的。当然,我也才刚刚上手而已,才刚刚搞明白怎么用这个怪物做最简单的garch(1,1)模型。但毫无疑问,matlab基本上能满足各领域计算方面的需求。

数据化心得体会篇十一

读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。

“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。

近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。

当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!

《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。

可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。

其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。

还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。

所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。

大数据的心得体会篇4

【本文地址:http://www.xuefen.com.cn/zuowen/5103153.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档