最优因数与倍数教案(模板19篇)

格式:DOC 上传日期:2023-11-01 01:20:19
最优因数与倍数教案(模板19篇)
时间:2023-11-01 01:20:19     小编:FS文字使者

教案的编写需要充分地调研和了解教材内容和学生背景。教案的编写应考虑到学生的思维习惯和学习方式,以提高学习效果。《化学》教案范文

因数与倍数教案篇一

教学内容:

苏教版义务教育教科书《数学五年级下册第47~48页整理与练习“回顾与整理”和“练习与应用”第1~7题。

教学目标:

1.使学生加深认识因数和倍数,能找一个数的因数或倍数,进一步认识质数和合数;掌握2、5、3的倍数的特征,进一步认识偶数和奇数;加深理解质因数,能正确分解质因数。

2.使学生能整理因数和倍数的知识内容,感受知识之间的内在联系;能应用相关概念进行分析、判断、推理,进一步掌握思考、解决数学问题的方法,积累数学思维的初步经验,提高分析、推理、判断等思维能力;加深对数的认识,进一步发展数感。

3.使学生主动参与回顾、整理知识和分析、解决问题等活动,培养乐于思考的品质和与同伴互相交流、倾听等合作意识和能力;感受数学方面的知识积累和进步,提高学好数学的自信心。

教学重点:

整理、应用因数和倍数的知识。

教学难点:

应用概念正确判断、推理。

教学过程:

一、揭示课题

谈话:最近的数学课,我们学习了哪方面的内容?回忆一下,都学到了哪些知识?

揭题:我们已经学完了因数和倍数这一单元的内容,今天开始主要整理与练习这一单元内容。(板书课题)通过整理与练习,我们要进一多认识因数与倍数,2.5.3的倍数的特征,能熟练掌握找一个数的因数或倍数的方法;能判断偶数和奇数、质数和合数,了解这些概念之间的联系与区别,能正确分解质因数,提高对数的特征的认识,加深对数的认识。

二、回顾与整理

1.回顾讨论。

出示讨论题:

(1)你是怎样理解因数和倍数的?举例说明你的认识。

(2)2、5、3的倍数有什么特征?我们是怎样发现的?

(3)自然数可以怎样分类,各能分成哪几类?举例说说什么是质因数和分解质因数。

(4)什么是两个数的公因数和最大公因数,公倍数和最小公倍数?

让学生在小组里讨论,结合讨论适当记录自己的认识或例子。

2.交流整理。

围绕讨论题,引导学生展开交流,结合交流板书主要内容。

(1)提问:能说说什么是因数和倍数吗?可以用例子说明。(结合交流板书一两个乘法或除法算式)

(指名学生说一说,再集体说一说)

你能找出6的因数吗?(板书因数)6的倍数呢?(板书倍数)

能说说找一个数的因数或倍数的方法吗?

说明:一个数的因数可以从小到大一对一对地找,到中间两个因数之间没有因数为止;一个数的倍数可以用依次乘1、2、3……这样的方法找,注意一个数的倍数是无限的,写一个数的倍数要注意用省略号。

(2)提问:2、5、3的倍数各有什么特征?我们是怎样发现的?

自然数可以怎样分类,各可以分成哪几类?

你能举出偶数和奇数、质数和合数的一些例子吗?(学生举出各类数的例子)

说明:按是不是2的倍数可以把自然数分成偶数和奇数两类,是2的倍数的是偶数,不是2的倍数的是奇数;按因数的个数可以把自然数分成1和质数、合数三类,只有两个因数的是质数,有两个以上因数的是合数,1既不是质数也不是合数。

什么是质因数和分解质因数?6有哪些质因数?怎样把6分解质因数?(板书式子,并说明其中的质因数)

(3)提问:什么是公因数和最大公因数,什么是公倍数和最小公倍数?

说明:两个数公有的因数叫公因数,其中最大的叫最大公因数;两个数公有的倍数叫公倍数,其中最小的叫最小公倍数。

结合交流内容,逐步板书成:

l

质数质因数

合数分解质因数

因数公因数最大公因数

(互相依存)

倍数公倍数最小公倍数

2、5、3的倍数的特征

偶数

奇数

(4)引导:请同学们现在观察我们整理的这一单元学过的内容,了解知识之间的联系,同桌互相说说知识是怎样发展的。

学生互相交流,教师巡视、倾听。

交流:哪位同学能看黑板上整理的内容,说说我们怎样逐步认识这些知识的,知识是怎样发展起来的。

三、练习与应用

1.做“练习与应用”第1题。

指名学生交流,说说每组里因数和倍数关系。

提问:3和7有没有因数和倍数关系?为什么没有?

2.做“练习与应用”第2题。

(1)让学生独立写出前四个数的所有因数,指名两人板演。

交流:你是怎样找它们的因数的?(检查板演题)

(2)口答后三个数的因数。

引导:能说出后面每个数的全部因数吗?(学生口答,教师板书)

提问:一个数的因数有什么特点?

说明:一个数因数的个数是有限的,最小的是1.最大的是它本身。

3.分别说出下面各数的倍数。

581217

分别指名学生说出各数的倍数,教师板书。

提问:为什么要写省略号?一个数的倍数有什么特点?

说明:一个数倍数的个数是无限的,最小的是它本身,没有最大的倍数。

4.做“练习与应用”第3题。

(1)让学生独立完成填数。

交流:题里各是怎样填的?(呈现结果)填数时怎样想的?

提问:哪些数既是3的倍数,又是5的倍数?你是怎样想的?

同时是2和5的倍数的数有什么特征?

哪些数既是2的倍数,又是5和3的倍数?说说你的判断方法。

(2)这里哪些数是偶数?奇数呢?

你是怎样判断偶数和奇数的?

5.做“练习与应用”第4题。

要求学生独立思考,自己选出两张卡片,按各题的要求分别组成两位数,把能组成的数记录下来。

交流:同时是5和3的倍数的数有哪些?(板书:30)如果是三位数呢?

(板书:180810)

组成的两位数中最大的偶数是多少?(板书:80)最小的奇数呢?(板书:13)

6.做“练习与应用”第5题。

让学生把质数圈出来,在合数下面画线。

交流:哪些是质数,哪些是合数?(板书成两类)质数和合数是按什么分的?

说明:质数只有2个因数,合数至少有3个因数。

7.做“练习与应用’’第6题。

让学生选出质数和偶数。

交流、呈现结果。

提问:观察表里选出的质数和偶数,所有的质数都是奇数吗?请举出一个具体例子。

所有的合数都是偶数吗?你能举例子说明吗?

指出:如果要说明一个结论是错误的,只要举一个反例。比如,要判断质数都是奇数的说法是错的,只要举出质数2是偶数这个例子。这里质数2是偶数就是一个反例。要判断合数都是偶数是错的,也只要举一个反例,比如合数9就是奇数。

8.下面的说法正确吗?

(1)大于0的自然数不是奇数就是偶数。

(2)大于0的自然数不是质数就是合数。

(3)奇数都是质数,偶数都是合数。

(4)自然数中最小的偶数是2,最小的合数是4。

(5)一个数本身既是它的因数,又是它的倍数。

9.做“练习与应用”第7题。

(1)让学生填空,指名板演。交流并确认结果。

提问:这里填写的质数都叫积的什么数?为什么称它是积的质因数?

说明:这里把合数写成这种质数相乘的形式,叫什么?

(2)把30、42分别分解质因数。

学生完成,交流板书,检查订正。

四、全课总结

提问:这节课主要复习的哪些内容?你有哪些收获?

将本文的word文档下载到电脑,方便收藏和打印

推荐度:

点击下载文档

搜索文档

因数与倍数教案篇二

7--16页的学习内容。

1.进一步学习求一个数的所有因数和倍数;掌握一般方法,学会用常见的几种形式表达。

2.经过多次的求解经历过程,在事实面前让学生进一步明确因数是可数的,自然得出因数的个数是有限的,其中最大的因数自己;而倍数是无法写完全,也就是说倍数的个数是无限的,其中最小的倍数也是自己。

掌握求一个数的因数和倍数的常用方法及常用的几种书写表达形式。

完整地求出一个数的因数和倍数。

实物投影。

口答:

根据下面算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数?

4×9=3625×40=100032×7=224。

解答题:

18的因数有哪些?10是哪些数的倍数?

典型例题:

1.教学:

(1)你还能找出18的因数码?并说出你的找法(要板书)。

(2)小比赛。看谁既快又能完整地把30和36所有因数找出来(基础练习)?

(3)分享冠军经验(介绍方法)。

(4)我们再来一次寻找32和48的所有因数的比赛(基础练习)?

(5)请你试着把18所有找出的因数表述出来。(如果学生能用常见的两种表达最好;如果不能需要教师的引导)。

第一种习惯书面表达形式。18的'因数有(有可能是乱的):

第二种集合图的书面表达形式。18的因数。

(6)通过眼看,自我感觉调整这些因数最好按序排列。

第一种习惯书面表达形式。18的因数有(按大小顺序):

第二种集合图的书面表达形式。18的因数。

(7)做基础练习第2题。

小结:

1.寻找的方法。

2.能否找全?

3.教学。

(1)让学生自己尝试找。

(2)有没有发什么问题?如何解决?

(3)如何表达?

(4)找出3和5的倍数。

小结:

1.寻找的方法。

2.能否找全?

基础练习:

1.用尽快的速度找出30、36、32和48的所有因数?

2.填空。30的因数有:36的因数有:

3.5的倍数有:3的倍数。

提高练习:

1.分别写出17的因数和倍数,再写出28。

拓展练习:数学小知识:了解完全数。

有的学生认为某个数的最小倍数是0倍,因此最小倍数是0。要向学生强调,小学阶段学倍数不涉及到0,因此,某个数的最小倍数应该是它的1倍。

因数与倍数教案篇三

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

:掌握找一个数的因数和倍数的方法。

:能熟练地找一个数的因数和倍数。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)

齐读p12的注意。

(一)找因数:

1、出示例1:18的因数有哪几个?

学生尝试完成:汇报

(18的因数有:1,2,3,6,9,18)

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有:1,2,3,4,6,9,12,18,36

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的'是几,最大的是几?

看来,任何一个数的因数,最小的一定是(),而最大的一定是()。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如

18的因数

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:

1、我们一起找到了18的因数,那2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……

师:为什么找不完?

你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、…)

那么2的倍数最小是几?最大的你能找到吗?

2、让学生完成做一做1、2小题:找3和5的倍数。

汇报3的倍数有:3,6,9,12

师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……

你是怎么找的?(用3分别乘以1,2,3,……倍)

5的倍数有:5,10,15,20,……

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示

2的倍数3的倍数5的倍数

师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

完成练习二1~4题

因数与倍数教案篇四

课本第15页,练习二第一题前半题15的因数有哪些?,第二题,第4题前半题填在书上。

设计意图:本节课主要的学习目标一是使生明白因数和倍数的意义,二是让生掌握求一个数因数的方法,作业中巩固了学生今天的数学技能。

因数与倍数教案篇五

1、通过“活动建构”,使学生领会因数和倍数的意义;通过独立思考、交流谈论,初步掌握求一个数所有因数的方法。

2、在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。

3、通过教学,让学生从中感受到数学思考的魅力,体验到数学学习的乐趣。

因数与倍数教案篇六

师:谁愿意把自己摆长方形的方法和列出的算式讲给大家听?

师:还有其它摆法吗?还有不同的乘法算式吗?猜一猜,他是怎样摆的?

学生交流几种不同的摆法。随着学生交流一一演示。

师:12个同样大小的正方形能摆出不同的的长方形,可以用乘法算式来表示。千万别小看这些乘法算式,我们这节课的研究就从这些算式中开始。我们就以最后一道乘法算式为例,(板书:3×4=12,3和4在乘法算式叫(因数),那12呢?(积)因为:3×4=12,我们可以说3是12的因数,那4(也是12的因数,),3和4都是12的因数,反过来呢?12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力。这就是我们今天所要研究的两个重要的概念:因数与倍数。(板书课题)(齐说3、4、12)。

师:刚才这位同学的发言就象绕口令,你们听明白了吗?谁再来说说?

(4)质疑:如果我说12是倍数,1是因数,行吗?引导学生说出12是谁的倍数,1是谁的因数。

小结:倍数和因数是指两个数之间的关系,所以不能单独说谁是倍数,谁是因数。一定要说“谁是谁的倍数,谁是谁的因数。”

(5)举例内化。

1、同桌出题互说。

师:你能写一道乘法算式,让同桌说说( )是( )的倍数,(  )是(  )的因数吗?生汇报。

2、老师根据学生出的一道乘法算式随机得到一道除法算式让学生说一说:(  )是(  )的倍数,( )是(  )的因数。

小结:看来,乘法算式和除法算式中都存在着倍数和因数关系。

师指明:,为了研究方便,我们在说倍数和因数时,所说的数一般指不是0的自然数。因此以后小数与分数就不讨论因数倍数关系。

(3)、小结:好了,刚才我们已经初步研究了因数和倍数,下面我们进一步来研究因数和倍数。

二、创设情境,自主探究找因数和倍数的方法.

(一)探索找因数的方法。

生说略。还有补充的吗?能不能说3是20的因数?

师:3、18、36都是36的因数,只有这3个吗?(1、2、……)。

师:看来要找出36的一个因数并不难,难就难在你能不能把36的所有因数既不重复又不遗漏地全部找出来呢?因为这个问题有点难度,你可以独立完成也可以同桌合作完成,请你选择你喜欢的方式,找出36的所有因数,想一想怎么找不会遗漏?如果你全部找到了,填在作业纸的横线上。同时将你找因数的方法写在横线的下方框内。

生写后小组内交流。学生填写时师巡视搜集作业。

2、交流作业。(略)。

出示学生的不同作业。交流找因数的方法。

师:出示36的因数有:1、36;2、18;3、12;4,9;6。

你知道这个同学是怎样找出36的因数的吗?看着这个答案你能猜出一点吗?

生:他是有规律,一对一对找的,哪两个整数相乘得36,就写上。

师:找到什么时候为止?那为什么算到6,你们就不往后找了呢?相同的只写一个6。

师:他是用乘法找的,其他同学还有补充吗?  。

师:老师发现不管是用乘法还是用除法,你们都是从几开始的啊?为什么?(板书:有序)。

师:36的因数还可以这样表示。(小黑板:板书集合圈图)。

4、启迪思考。

师:现在你找一个数的因数有办法了吗?怎样才能有序地、既不重复、又不遗漏地找出一个数的所有因数呢?在小组里说一说。

学生想到的方法可能是:从小到大找;一对一对找;找到两个数接近为止。

3、学生小结。好,我们已经说了那么多,谁能完整地说一说?

4、尝试练习:

5、发现一个数因数的特征。

师:刚才我们找了36、20、18和5的因数,请大家仔细观察这4个数的所有因数。你发现这些数的因数有什么共同的特点?把你的发现告诉小组里的同学。

(先思考,再交流)还有吗?36的因数除了这些还有吗?说明一个数因数的个数是(有限的)(板书)。

四、巩固练习。

1、判一判。(小黑板出示)。

2、填一填。

因数与倍数教案篇七

1.使学生初步掌握2、5的倍数的特征。

2.使学生知道奇数、偶数的概念。

能力目标

1.会判断一个数是否能被2、5整除。

2.会判断奇数、偶数。

3.培养类推能力及主动获取知识的能力。

情感目标

激发学生的学习兴趣。

因数与倍数教案篇八

(非零自然数中)

1×36=3636÷1=3636÷36=1

2×18=3636÷2=1836÷18=2

3×12=3636÷3=1236÷12=3

4×9=3636÷4=936÷9=4

6×6=3636÷6=6

36的因数有:1、2、3、4、6、9、12、18、36.

因数与倍数教案篇九

1.理解因数和倍数的意义以及两者之间相互依存的关系,掌握找一个数的因数和倍数的方法。

2.在探究的过程中体会数学知识之间的内在联系,在解决问题的过程中培养学生思维的有序性和条理性。

3.培养学生的探索意识以及热爱数学学习的情感。

因数与倍数教案篇十

第6课时。

1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。

1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。

活动1:利用数的奇偶性解决一些简单的实际问题。

让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。

本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。

活动2:探索奇数、偶数相加的规律。

[板书设计]。

数的奇偶性。

12+34=48偶数+偶数=偶数。

11+37=48奇数+奇数=偶数。

12+11=23奇数+偶数=奇数。

因数与倍数教案篇十一

由于学生对辨析、理清除尽和整除的关系、整除的两种读法等易混淆的概念,使学生明确一个数是否是另一个数的倍数或因数时,必须是以整除为前提,因数和倍数是相互依存的概念,不能独立存在。所以本节课的教学我把重点定位于理解因数和倍数的含义。

因数与倍数教案篇十二

教学目标:

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

教学重点:

掌握找一个数的因数和倍数的方法。

教学难点:

能熟练地找一个数的因数和倍数。

教学过程:

一、引入新课。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)

齐读p12的注意。

二、新授

(一)找因数

1、出示例1:18的因数有哪几个?

学生尝试完成:汇报

(18的因数有:1,2,3,6,9,18)

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

师:18的因数中,最小的是几?的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有:1,2,3,4,6,9,12,18,36

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的是几,的是几?

看来,任何一个数的因数,最小的一定是(),而的一定是()。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自己的练习本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如

18的因数

1、2、3、6、9、18

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数

1、我们一起找到了18的因数,那2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……

师:为什么找不完?

你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、…)

那么2的倍数最小是几?的你能找到吗?

2、让学生完成做一做1、2小题:找3和5的倍数。

汇报3的倍数有:3,6,9,12

师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……

你是怎么找的?(用3分别乘以1,2,3,……倍)

5的倍数有:5,10,15,20,……

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示

2的倍数3的倍数5的倍数

2、4、6、8……3、6、9……5、10、15……

师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它本身,没有的倍数)

三、课堂小结

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

四、独立作业

完成练习二1~4题

因数与倍数教案篇十三

教学年级:五年级

设计者 :李庆辉(沈阳市大东区辽沈街第三小学) 一、教学内容分析本节课是《新世纪(版)义务教育课程标准实验教科书•数学》(新世纪小学数学教材)五年级上册第一单元《倍数与因数》的第5小节《找质数》。本节课的主要内容是使学生掌握质数与合数的意义,并能正确判断一个数是质数或合数;使学生掌握一定的学习方法,从中感受数学文化的魅力。

本节课是在学生掌握了2,3,5的倍数特征以及如何找一个数的因数的基础上进行教学的。通过本节课的学习,可以为后续学习公因数、约分、公倍数、通分等打下坚实的基础。所以,本节课起到了承前启后的作用。教材在编写上提供了具有丰富现实背景的题材,使学生体会到数学与生活的紧密联系;在分类中认识质数与合数并关注知识、方法的形成过程;通过开展有特色的实践活动,提高学生解决问题的综合能力。

本教学设计结合了本地区的学生特点,对教材进行了大胆的改革,以“栏目录制”为切入点,以“快乐40分”为主线,其目的是为学生创设良好的学习情境。在教学质数与合数的意义时,我采用了按因数个数的不同进行分组的方法,并以“起名字”的方式使学生对抽象的概念产生一种亲切感,以充分体现学生的主体地位,同时采取“分组竞争”的方式,提高学生的参与意识,并通过小组交流的方式分析问题、解决问题,使数学核心思想得到充分体现。 二、 学生分析通过调查发现,学生课前已经掌握了2,3,5的倍数的特征以及熟练找一个数的因数的方法,初步掌握了合作交流的学习方法。

学生都非常喜欢看与本节课相类似的电视节目,如“七星大擂台”“非常6+1”等,可以说学生具备了一定的这方面的生活经验,同时学生的主动参与意识都比较强,在趣中学、在乐中学是学生所追求的。

质数与合数的概念比较抽象,因此学生接受起来会很困难,再有找质数不像找奇数、偶数,不像找因数那样规律性较强,因此在教学时要注重找质数的方法的多样性及灵活性。

通过课前调查发现,学生对于数学的学习兴趣不是很浓,原因是数学不同于其他学科,比较抽象,他们总以为数学是不可捉摸的“天外来物”,学生学习数学的方式比较单一,同时学生虽然已初步掌握了合作交流的学习方法,但大部分都是浮于表面,没有做到切实有效。

基于以上几点,在教学设计上我根据学生已有的知识经验,抓住了学生日常生活中喜闻乐见的事物,把抽象的数学概念与学生的生活实际紧密相连,这样大大地激发了学生的学习兴趣,使学生感受到数学并不陌生,它就在我们身边,就在我们的生活中。学生积极参与的同时,也使抽象的数学简单化了,同时也就减轻了接受上的难度。在找1~50中的质数这一环节,我给学生以充足的时间和空间,让学生独立思考,然后同桌、组内、组间充分交换意见,这样学习方式就变得多样化了,同时也使学生感受到了合作交流的重要性,从而自发地掌握了学习方法。

三、 学习目标

1. 能够理解质数与合数的意义,能正确判断一个数是质数或合数。

2. 掌握独立思考、合作交流的学习方法。

3. 在研究过程中感受数学文化的魅力。

三、 学习目标

1. 能够理解质数与合数的意义,能正确判断一个数是质数或合数。

2. 掌握独立思考、合作交流的学习方法。

3. 在研究过程中感受数学文化的魅力。

《3的倍数特征》教学案例研讨

〖教学过程〗

生1:个位上是3、6、9的数是3的倍数。

生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。

生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。

师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)

师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)

师:请观察这个表格,你发现3的倍数什么特征呢,把你的发现与同桌交流一下。

学生同桌交流后,再组织全班交流。

生1:我发现10以内的数只有3、6、9能被3整除。

生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。

生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。

师:个位上的数字没有什么规律,那么十位上的数有规律吗?

生:也没有规律,1~9这些数字都出现了。

师:其他同学还有什么发现吗?

生:我发现3的倍数按一条一条斜线排列很有规律。

师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。

师:这时一个重大发现,其他斜线呢?

生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。

师:现在谁能归纳一下3的倍数有什么特征呢?

生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。

学生先自己写数并验证,然后小组交流,得出了同样的结论。

〖案例点评〗

本案例主要有以下几个特点。

1.以学生原有认知为基础,激发学生的探究欲望。教师利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到解决“3的倍数特征”的问题,产生认知冲突,萌发疑问,激发强烈的探究欲望。本案例中,学生很快进入问题情境,猜测、否定、反思、观察、讨论,大部分学生渐渐进入了探究者的角色。

2.以问题为中心组织学生展开探究活动。在上面案例中,教师注意突出学生的主体地位,教师依据学生年龄特征和认知水平设计具有探索性的问题,引导学生紧紧围绕“3的倍数有什么特征”这个问题来开展学习活动,指导学生围绕问题展开探究活动,并不断组织师生之间、生生之间的交流和讨论,逐步发现、归纳规律、得出结论,培养了学生的探索意识和分析、概括、验证、判断等能力。

〖讨论与思考〗

1.在学生探究问题中“碰壁”或遇到困难时,教师如何发挥“导”的作用?

2.如何为学生提供有利于观察、探索的学习材料?

因数与倍数教案篇十四

(1)能直接在方格图上,数出相关图形的面积。

(2)能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。

2、过程与方法

(1)在解决问题的过程中,体会策略、方法的多样性。

(2)学会与人交流思维过程与结果。

3、情感态度与价值观

积极参与数学学习活动,体验数学活动充满着探索、体验数学与日常生活密切相关。

1、重点是指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。难点是灵活运用方法。

2、借助图形,让学生动手,自主探索、合作交流解决问题的方法。

一、创设情境、揭示新课。

我要说班里每位同学都是优秀的设计师!因为大家都在设计着自己美好的将来,所以在很用功的学习。希望大家继续努力,使自己美好的设计成为现实。下面我们来看一看,我们的同行——一位地毯图案设计师,设计的图案。

展示地毯上的图形,让学生仔细观察图形特点,说发现。

地毯是正方形,边长为14米蓝色部分图形是对称的,……

师:看这副地毯图,请你提出数学问题。

根据学生的回答展示问题:“地毯上蓝色部分的面积是多少?”

师板书课题:地毯上的图形面积

二、自主探索、学习新知

如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?

1、学生独立解决问题

要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。

2、小组内交流、讨论

3、班内反馈

请学生汇报蓝色部分面积,重点汇报求蓝色面积的方法。对于每一种方法,只要学生说得合理都给以肯定。

学生的答案也许有:

(1)直接一个一个地数,为了不重复,在图上编号;(数方格法)

(2)因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4;(化整为零法)

(3)用总正方形面积减去白色部分的面积;(大减小法)

(4)将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)

4、学生总结求蓝色部分面积的方法。

三、巩固练习、拓展运用(课本第19页练一练)

1、第1题

(1)学生独立思考,求图1的面积。

(2)说一说计算图形面积的方法。引导学生了解“不满一格的当作半格数”。

2、第2题

独立解决后班内反馈。

3、第3题

(1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。

(2)学生观察结果,说发现。

第(1)题的4个图形面积分别为1、2、3、4的平方数;第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形 面积的一半。

四、全课小结,课后拓展

今天我们进行了那些活动,你收获了什么?

师:对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。如果没有方格图,我们该怎样解决一些图形的面积呢?明天的数学课上我们将继续学习。课后,有兴趣的同学可以在空白方格纸上设计一些你喜欢的图案,让你的同桌帮你算一算图案的面积。

因数与倍数教案篇十五

一个数因数的求法和一个数倍数的求法(教材第6页例2、例3,教材第7~8页练习二第2~8题)。

1.通过学习使学生掌握找一个数的因数,倍数的方法;

2.学生能了解一个数的因数是有限的,倍数是无限的;

3.能熟练地找一个数的因数和倍数;

4.在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。

掌握找一个数的因数和倍数的方法,能熟练地找一个数的因数和倍数。

说出下列各式中谁是谁的因数?谁是谁的倍数?20÷4=56×3=18。

在上面的算式中,6和3都是18的因数,你知道还有哪些数是18的因数吗?18是3的倍数,你知道还有哪些数是3的倍数吗?这节课我们就来学习如何找一个数的因数和倍数。

(一)找因数:

1.出示例1:18的因数有哪几个?

一个数的因数还不止一个,我们一起找找18的因数有哪些?

学生尝试完成后汇报。

(18的因数有:1,2,3,6,9,18)教师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)。

教师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2.用这样的方法,请你再找一找36的因数有哪些?

举错例(1,2,3,4,6,6,9,12,18,36)。

教师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)。

仔细看看,36的因数中,最小的是几,最大的是几?

教师板书:一个数的最小因数是1,最大因数是它本身。

3.你还想找哪个数的因数?(18、42……)请你选择其中的一个在自练本上写一写,然后汇报。

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:

教师:这样写可以吗?为什么?应该怎么改呢?

教师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示2的倍数,3的`倍数,5的倍数。

教师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)。

1.完成课本第7页练习二第2~5题。

2.完成教材第8页练习二第6~8题。

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

一个数的因数的个数是有限的,最小的是1,最大的是它本身。一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

本节课是在学生认识因数和倍数的基础上进行教学的,在找一个数的因数时,如何做到既不重复又不遗漏,对于刚刚对因数和倍数有感性认识的学生来说有一定的困难,教学时充分发挥小组学习的优势,在小组交流的过程中,学生对自己的方法进行反思,吸取同伴的好方法,很好的体现了自主探索和合作交流的教学理念。

因数与倍数教案篇十六

苏教版义务教育教科书《数学五年级下册第47~48页整理与练习“回顾与整理”和“练习与应用”第1~7题。

1.使学生加深认识因数和倍数,能找一个数的因数或倍数,进一步认识质数和合数;掌握2、5、3的倍数的特征,进一步认识偶数和奇数;加深理解质因数,能正确分解质因数。

2.使学生能整理因数和倍数的知识内容,感受知识之间的内在联系;能应用相关概念进行分析、判断、推理,进一步掌握思考、解决数学问题的方法,积累数学思维的初步经验,提高分析、推理、判断等思维能力;加深对数的认识,进一步发展数感。

3.使学生主动参与回顾、整理知识和分析、解决问题等活动,培养乐于思考的品质和与同伴互相交流、倾听等合作意识和能力;感受数学方面的知识积累和进步,提高学好数学的自信心。

整理、应用因数和倍数的知识。

应用概念正确判断、推理。

一、揭示课题

谈话:最近的数学课,我们学习了哪方面的内容?回忆一下,都学到了哪些知识?

揭题:我们已经学完了因数和倍数这一单元的内容,今天开始主要整理与练习这一单元内容。(板书课题)通过整理与练习,我们要进一多认识因数与倍数,2.5.3的倍数的特征,能熟练掌握找一个数的因数或倍数的方法;能判断偶数和奇数、质数和合数,了解这些概念之间的联系与区别,能正确分解质因数,提高对数的特征的认识,加深对数的认识。

二、回顾与整理

1.回顾讨论。

出示讨论题:

(1)你是怎样理解因数和倍数的?举例说明你的认识。

(2)2、5、3的倍数有什么特征?我们是怎样发现的?

(3)自然数可以怎样分类,各能分成哪几类?举例说说什么是质因数和分解质因数。

(4)什么是两个数的公因数和最大公因数,公倍数和最小公倍数?

让学生在小组里讨论,结合讨论适当记录自己的认识或例子。

2.交流整理。

围绕讨论题,引导学生展开交流,结合交流板书主要内容。

(1)提问:能说说什么是因数和倍数吗?可以用例子说明。(结合交流板书一两个乘法或除法算式)

(指名学生说一说,再集体说一说)

你能找出6的因数吗?(板书因数)6的倍数呢?(板书倍数)

能说说找一个数的因数或倍数的方法吗?

说明:一个数的因数可以从小到大一对一对地找,到中间两个因数之间没有因数为止;一个数的倍数可以用依次乘1、2、3……这样的方法找,注意一个数的倍数是无限的,写一个数的倍数要注意用省略号。

(2)提问:2、5、3的倍数各有什么特征?我们是怎样发现的?

自然数可以怎样分类,各可以分成哪几类?

你能举出偶数和奇数、质数和合数的一些例子吗?(学生举出各类数的例子)

说明:按是不是2的倍数可以把自然数分成偶数和奇数两类,是2的倍数的是偶数,不是2的倍数的是奇数;按因数的个数可以把自然数分成1和质数、合数三类,只有两个因数的是质数,有两个以上因数的是合数,1既不是质数也不是合数。

什么是质因数和分解质因数?6有哪些质因数?怎样把6分解质因数?(板书式子,并说明其中的质因数)

(3)提问:什么是公因数和最大公因数,什么是公倍数和最小公倍数?

说明:两个数公有的因数叫公因数,其中最大的叫最大公因数;两个数公有的倍数叫公倍数,其中最小的叫最小公倍数。

结合交流内容,逐步板书成:

l

质数质因数

合数分解质因数

因数公因数最大公因数

(互相依存)

倍数公倍数最小公倍数

2、5、3的倍数的特征

偶数

奇数

(4)引导:请同学们现在观察我们整理的这一单元学过的内容,了解知识之间的联系,同桌互相说说知识是怎样发展的。

学生互相交流,教师巡视、倾听。

交流:哪位同学能看黑板上整理的内容,说说我们怎样逐步认识这些知识的,知识是怎样发展起来的。

三、练习与应用

1.做“练习与应用”第1题。

指名学生交流,说说每组里因数和倍数关系。

提问:3和7有没有因数和倍数关系?为什么没有?

2.做“练习与应用”第2题。

(1)让学生独立写出前四个数的所有因数,指名两人板演。

交流:你是怎样找它们的因数的?(检查板演题)

(2)口答后三个数的因数。

引导:能说出后面每个数的全部因数吗?(学生口答,教师板书)

提问:一个数的因数有什么特点?

说明:一个数因数的个数是有限的,最小的是1.最大的是它本身。

3.分别说出下面各数的倍数。

581217

分别指名学生说出各数的倍数,教师板书。

提问:为什么要写省略号?一个数的倍数有什么特点?

说明:一个数倍数的个数是无限的,最小的是它本身,没有最大的倍数。

4.做“练习与应用”第3题。

(1)让学生独立完成填数。

交流:题里各是怎样填的?(呈现结果)填数时怎样想的?

提问:哪些数既是3的倍数,又是5的倍数?你是怎样想的?

同时是2和5的倍数的数有什么特征?

哪些数既是2的倍数,又是5和3的倍数?说说你的判断方法。

(2)这里哪些数是偶数?奇数呢?

你是怎样判断偶数和奇数的?

5.做“练习与应用”第4题。

要求学生独立思考,自己选出两张卡片,按各题的要求分别组成两位数,把能组成的数记录下来。

交流:同时是5和3的倍数的数有哪些?(板书:30)如果是三位数呢?

(板书:180810)

组成的两位数中最大的偶数是多少?(板书:80)最小的奇数呢?(板书:13)

6.做“练习与应用”第5题。

让学生把质数圈出来,在合数下面画线。

交流:哪些是质数,哪些是合数?(板书成两类)质数和合数是按什么分的?

说明:质数只有2个因数,合数至少有3个因数。

7.做“练习与应用’’第6题。

让学生选出质数和偶数。

交流、呈现结果。

提问:观察表里选出的质数和偶数,所有的质数都是奇数吗?请举出一个具体例子。

所有的合数都是偶数吗?你能举例子说明吗?

指出:如果要说明一个结论是错误的,只要举一个反例。比如,要判断质数都是奇数的说法是错的,只要举出质数2是偶数这个例子。这里质数2是偶数就是一个反例。要判断合数都是偶数是错的,也只要举一个反例,比如合数9就是奇数。

8.下面的说法正确吗?

(1)大于0的自然数不是奇数就是偶数。

(2)大于0的自然数不是质数就是合数。

(3)奇数都是质数,偶数都是合数。

(4)自然数中最小的偶数是2,最小的合数是4。

(5)一个数本身既是它的因数,又是它的倍数。

9.做“练习与应用”第7题。

(1)让学生填空,指名板演。交流并确认结果。

提问:这里填写的质数都叫积的什么数?为什么称它是积的质因数?

说明:这里把合数写成这种质数相乘的形式,叫什么?

(2)把30、42分别分解质因数。

学生完成,交流板书,检查订正。

四、全课总结

提问:这节课主要复习的哪些内容?你有哪些收获?

因数与倍数教案篇十七

【知识点】:

1、认识自然数和整数,联系乘法认识倍数与因数。

像0,1,2,3,4,5,6,…这样的数是自然数。

像-3,-2,-1,0,1,2,3,…这样的数是整数。

2、我们只在自然数(零除外)范围内研究倍数和因数。

3、倍数与因数是相互依存的关系,要说清谁是谁的倍数,谁是谁的因数。

补充【知识点】:

一个数的倍数的个数是无限的。

探索活动(一)2,5的倍数的特征。

【知识点】:

1、2的倍数的特征。

个位上是0,2,4,6,8的数是2的倍数。

2、5的倍数的特征。

个位上是0或5的数是5的倍数。

3、偶数和奇数的定义。

是2的倍数的数叫偶数,不是2的倍数的数叫奇数。

4、能判断一个数是不是2或5的倍数。能判断一个非零自然数是奇数或偶数。

补充【知识点】:

既是2的倍数,又是5的倍数的特征。个位上是0的数既是2的倍数,又是5的倍数。

探索活动(二)3的倍数的特征。

【知识点】:

1、3的倍数的特征。

一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。

2、能判断一个数是不是3的倍数。

补充【知识点】:

1、同时是2和3的倍数的特征。

个位上的数是0,2,4,6,8,并且各个数位上的数字的和是3的倍数的数,既是2的倍数,又是3的倍数。

2、同时是3和5的倍数的特征。

个位上的数是0或5,并且各个数位上的数字的和是3的倍数的数,既是3的倍数,又是5的倍数。

3、同时是2,3和5的倍数的特征。

个位上的数是0,并且各个数位上的数字的和是3的倍数的数,既是2和5的倍数,又是3的倍数。

找因数。

【知识点】:

在1~100的自然数中,找出某个自然数的所有因数。方法:运用乘法算式,思考:哪两个数相乘等于这个自然数。

补充【知识点】:

一个数的因数的个数是有限的。其中最小的因数是1,最大的因数是它本身。

找质数。

【知识点】:

一个数只有1和它本身两个因数,这个数叫作质数。

一个数除了1和它本身以外还有别的因数,这个数叫作合数。

3、判断一个数是质数还是合数的方法:

一般来说,首先可以用“2,5,3的倍数的特征”判断这个数是否有因数2,5,3;如果还无法判断,则可以用7,11等比较小的质数去试除,看有没有因数7,11等。只要找到一个1和它本身以外的因数,就能肯定这个数是合数。如果除了1和它本身找不到其他因数,这个数就是质数。

数的奇偶性。

【知识点】:

1、运用“列表”“画示意图”等方法发现规律:

小船最初在南岸,从南岸驶向北岸,再从北岸驶回南岸,不断往返。通过“列表”“画示意图”的方法会发现“奇数次在北岸,偶数次在南岸”的规律。

2、能够运用上面发现的数的奇偶性解决生活中的一些简单问题。

3、通过计算发现奇数、偶数相加奇偶性变化的规律:

偶数+偶数=偶数奇数+奇数=偶数。

因数与倍数教案篇十八

人教版小学数学五年级下册第17、18页。

1.我能掌握2、5的倍数的特征,并利用特征判断一个数是不是2、5的倍数。

2.我知道什么是奇数和偶数。

了解2、5的倍数的特征及奇数和偶数的含义。

能正确地求出符合要求的数。

收集电影票。

1.互动,检查独学部分第1、2题完成情况。

2.质疑探讨。

(一)2、5的倍数的特征。

1.小组合作。

仔细回顾独学题2,再与同伴分享自己的收获。

2.小组代表展示汇报。

3.小组合作交流,验证规律。

我们的想法:

小组代表汇报、总结。

4.试试身手。

(1)独立完成第18页“做一做”。

(2)集体交流。我又发现了:

(二)奇数和偶数。

1.自主阅读教材。根据自学内容,我知道:

根据是否是2的倍数,可把自然数分为和两类。是2的.倍数的数叫做,不是2的倍数的数叫做。

2.组内交流,并讨论:0是不是2的倍数?为什么?

3.汇报总结。

4.我能说出身边的奇数和偶数。

5.做一做(第17页)。

因数与倍数教案篇十九

教科书第25页,练习四第5~8题。

1、通过练习与对比,使学生发现和掌握求两个数最小公倍数的一些简捷方法,进行有条理的思考。

2、通过练习,使学生建立合理的认识结构,形成解决问题的多样策略。

3、在学生探索与交流的合作过程中,进一步发展学生与同伴合作交流的意识和能力,感受数学与生活的联系。

1、我们已经掌握了找两个数的公倍数和最小公倍数的方法,这节课我们继续巩固这方面的知识,并能够利用这些知识解决一些实际问题。

(板书课题:公倍数和最小公倍数练习)。

2、填空。

5的倍数有:()。

7的'倍数有:()。

5和7的公倍数有:()。

5和7的最小公倍数是:()。

3、完成练习四第5题。

(1)理解题意,独立找出每组数的最小公倍数。

(2)汇报结果,集体评讲。

(3)观察第一组中两个数的最小公倍数,看看有什么发现?

每题中的两个数有什么特征呢?(倍数关系)可以得出什么结论?

(4)第二组中两个数的最小公倍数有什么特征?(是这两个数的乘积)。

在有些情况下,两个数的最小公倍数是这两个数的乘积。

4、完成练习四第6题。

你能运用上一题的规律直接写出每题中两个数的最小公倍数吗?

交流,汇报。

说说你是怎么想的?

1、完成练习四第7题。

(1)理解题意,独立完成填表。

(2)你是怎样找到这两路车第二次同时发车的时间的?

你还有其他方法解决这个问题吗?(7和8的最小公倍数是56)。

2、完成练习四第8题。

(1)理解题意。

你能说说,他们下次相遇,是在几月几日吗?(8月24日)。

你是怎样知道的?

要知道他们下次相遇的日期,其实就是求什么?(6和8的最小公倍数)

通过练习,同学们又掌握了一些比较快的求两个数最小公倍数的方法,并能运用这些方法解决一些实际问题。

在小组中互相说说自己本节课的收获。

【本文地址:http://www.xuefen.com.cn/zuowen/6012667.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档