最优数学等差数列教案(通用18篇)

格式:DOC 上传日期:2023-11-01 13:29:55
最优数学等差数列教案(通用18篇)
时间:2023-11-01 13:29:55     小编:琉璃

教案是教师教学的依据,也是教学的重要组成部分。教案的编写需要考虑教学资源的充分利用,合理安排教学时间和教学设备的使用。以下是小编为大家整理的一些优秀教案范文,供大家参考。这些教案涵盖了不同学科和不同年级的教学内容,其中包括了清晰的教学目标、详细的教学步骤和多样化的教学方法。大家可以借鉴其中的设计思路和教学策略,提高自己的教学水平。希望这些教案能对大家有所帮助,让我们一起来学习吧!

数学等差数列教案篇一

3.基本要求:(1)要有板书;(2)试讲十分钟左右;(3)条理清晰,重点突出;

(4)学生掌握等差数列的特点与性质。【教学设计】

教学目标【知识与技能】能够复述等差数列的概念,能够学会等差数列的通项公式的推导过程及蕴含的数学思想。

【过程与方法】在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,提高知识、方法迁移能力;通过阶梯性练习,提高分析问题和解决问题的能力。

【情感态度与价值观】通过对等差数列的研究,具备主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

二、教学重难点【教学重点】

等差数列的概念、等差数列的通项公式的推导过程及应用。【教学难点】

等差数列通项公式的推导。

三、教学过程环节一:导入新课教师ppt展示几道题目:

1.我们经常这样数数,从0开始,每隔5一个数,可以得到数列:0,5,15,20,252.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92。

3.2000年,在澳大利亚悉尼举行的奥运会上,女子举重正式列为比赛项目,该项目共设置了7个级别,其中交情的4个级别体重组成数列(单位:kg):48,53,58,63。

教师提问学生这几组数有什么特点?学生回答从第二项开始,每一项与前一项的差都等于一个常数,教师引出等差数列。

环节二:探索新知1.等差数列的概念

学生阅读教材,同桌讨论,类比等比数列总结出等差数列的概念

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

问题1:等差数列的概念中,我们应该注意哪些细节呢?

环节三:课堂练习

小结:1.等差数列的概念及数学表达式。

关键字:从第二项开始它的每一项与前一项之差都等于同一常数。

作业:现实生活中还有哪些等差数列的实际应用呢?根据实际问题自己编写两道等差数列的题目并进行求解。

数学等差数列教案篇二

2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;

归纳——猜想——证明的数学研究方法;

3、数学思想:培养学生分类讨论,函数的数学思想。

重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;

难点:等比数列的性质的探索过程。

前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?

(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(第一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)

1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。

师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

公式的推导:(师生共同完成)

若设等比数列的公比为q和首项为a1,则有:

方法一:(累乘法)

3)等比数列的.性质:

下面我们一起来研究一下等比数列的性质

通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。

问题4:如果{an}是一个等差数列,它有哪些性质?

(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:

例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。——

答案:1458或128。

例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3…a20=_10____.

(本题为开放题,没有的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)

今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习

我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。

p129:1,2,3

1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。

2、教学设计过程:本节课主要从以下几个方面展开:

1)通过复习等差数列的定义,类比得出等比数列的定义;

2)等比数列的通项公式的推导;

3)等比数列的性质;

有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧

知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。

在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。

在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。

通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。

等比性质的研究是本节课的——,通过类比

关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。

数学等差数列教案篇三

掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。

掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。

等比数列性质请同学们类比得出。

1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题。方程观点是解决这类问题的基本数学思想和方法。

2、判断一个数列是等差数列或等比数列,常用的方法使用定义。特别地,在判断三个实数

a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)

3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决。

例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为。

(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=.

例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数。

例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项。

数学等差数列教案篇四

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

一、片头

(30秒以内)

前面学习了数列的概念与简单表示法,今天我们来学习一种特殊的数列-等差数列。本节微课重点讲解等差数列的定义,并且能初步判断一个数列是否是等差数列。

30秒以内

二、正文讲解(8分钟左右)

第一部分内容:由三个问题,通过判断分析总结出等差数列的定义60秒

第二部分内容:给出等差数列的定义及其数学表达式50秒

三、结尾

(30秒以内)授课完毕,谢谢聆听!30秒以内

本节课通过生活中一系列的实例让学生观察,从而得出等差数列的概念,并在此基础上学会判断一个数列是否是等差数列,培养了学生观察、分析、归纳、推理的能力。充分体现了学生做数学的过程,使学生对等差数列有了从感性到理性的认识过程。

读书破万卷下笔如有神,以上就是为大家带来的4篇《高中数学数列教案:等差数列》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在。

数学等差数列教案篇五

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

一、片头

(30秒以内)

前面学习了数列的概念与简单表示法,今天我们来学习一种特殊的数列-等差数列。本节微课重点讲解等差数列的定义, 并且能初步判断一个数列是否是等差数列。

30秒以内

二、正文讲解(8分钟左右)

第一部分内容:由三个问题,通过判断分析总结出等差数列的定义 60 秒

第二部分内容:给出等差数列的定义及其数学表达式50 秒

三、结尾

(30秒以内)授课完毕,谢谢聆听!30秒以内

本节课通过生活中一系列的实例让学生观察,从而得出等差数列的概念,并在此基础上学会判断一个数列是否是等差数列,培养了学生观察、分析、归纳、推理的能力。充分体现了学生做数学的过程,使学生对等差数列有了从感性到理性的认识过程。

数学等差数列教案篇六

高中数学学习是中学阶段承前启后的关键时期,不少学生升入高中后,能否适应高中数学的学习,是摆在高中新生面前的一个亟待解决的问题,除了学习环境、教学内容和教学因素等外部因素外,同学们应该转变观念、提高认识和改进学法,本文就此问题谈点看法。

1、认识高中数学的特点。

高中数学是初中数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象.

2、要提高自我调控的“适教”能力。

一般来说,教师经过一段时间的教学实践后,因自身对教学过程的不同理解和知识结构、思维特点、个性倾向、能力品质、教学观念、职业经历等原因,在教学方式、方法、策略的采用上表现出一定的倾向性,形成自己独特的、鲜明的、一贯的教学风格或特点。作为一名学生,让老师去适应自己显然不现实,我们应该根据教的特点,从适应教的目的出发,立足于自身的实际,优化学习策略,调控自己的学习行为,使自己的学法逐步适应老师的教法,从而使自己学得好、学得快。

3、正确对待学习中遇到的新困难和新问题。

在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。

4、要将“以老师为中心”转变为“以自己为主体,老师为主导”的学习模式。

数学不是靠老师教会的,而是在老师引导下,靠自己主动思维活动去获取的,学习数学就是要积极主动地参与教学过程,并经常发现和提出问题,而不能依着老师的惯性运转,被动地接受所学知识和方法。

5、要养成良好的预习习惯,提高自学能力。

课前预习而“生疑”,“带疑”听课而“感疑”,通过老师的点拨、讲解而“悟疑”、“解疑”,从而提高课堂听课效果。

6、要养成良好的审题和解题习惯,提高阅读能力。

审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到目要“宁停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。

7、要养成良好的演算、验算习惯,提高运算能力。

学习数学离不开运算,初中老师往往一步一步在黑板上演算,因时间有限,运算量大,高中老师常把计算留给学生,这就要同学们多动脑,勤动手,不仅能笔算,而且也能口算和心算,对复杂运算,要有耐心,掌握算理,注重简便方法。解后要反思,提高分析问题的能力。解完题目之后,要不失时机地回顾:解题过程中是如何分析联想探索出解题途径的?使问题获得解决的关键是什么?在解决问题的过程中遇到了哪些困难?又是怎样克服的?这样,通过解题后的回顾与反思,就有利于发现解题的关键所在,并从中提炼出数学思想和方法,只有勤反思,才能“站得高山,看得远,驾驭全局”,才能提高自己分析问题的能力。

8、要善于交流,提高表达能力,养成纠错订正的习惯。

在数学学习过程中,对一些典型问题,同学们应善于合作,各抒己见,互相讨论,取人之长,补己之短,也可主动与老师交流,说出自己的见解和看法,在老师的点拨中,他的思想方法会对你产生潜移默化的影响。因此,只有不断交流,才能相互促进、共同发展,提高表达能力。如果固步自封,就会造成钻牛角尖,浪费不必要的时间。

9、要勤学善思,提高创新能力。

“学而不思则罔,思而不学则贻”。在学习数学的过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,进行独立思考,注重新旧知识的内在联系,把握概念的内涵和外延,做到一题多解,一题多变,不满足于现成的思路和结论,善于从多侧面、多方位思考问题,挖掘问题的实质,勇于发表自己的独特见解。因为只有思索才能生疑解疑,只有思索才能透彻明悟。一个人如果长期处于无问题状态,就说明他思考不够,学业也就提高不了。

10、要养成做笔记的习惯,提高理解力。

为了加深对内容的理解和掌握,老师补充内容和方法很多,如果不做笔记,一旦遗忘,无从复习巩固,何况在做笔记和整理过程中,自己参与教学活动,加强了学习主动性和学习兴趣,从而提高了自己的理解力,也养成归纳总结的习惯。

总之,要养成良好的学习习惯,勤奋的学习态度,科学的学习方法,充分发挥自身的主体作用,不仅学会,而且会学,只有这样,才能取得事半功倍之效。

数学等差数列教案篇七

1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

2.过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

3.情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

1.教学重点:等差数列的概念的理解,通项公式的推导及应用。

2.教学难点:

(1)对等差数列中“等差”两字的把握;

(2)等差数列通项公式的推导。

[教学过程]

一。课题引入

创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)

二、新课探究

(一)等差数列的定义

1、等差数列的定义

如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。

(1)定义中的关健词有哪些?

(2)公差d是哪两个数的差?

(二)等差数列的通项公式

探究1:等差数列的通项公式(求法一)

如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?

根据等差数列的定义可得:

因此等差数列的通项公式就是:,

探究2:等差数列的通项公式(求法二)

根据等差数列的定义可得:

将以上-1个式子相加得等差数列的通项公式就是:,

三、应用与探索

例1、(1)求等差数列8,5,2,…,的第20项。

(2)等差数列-5,-9,-13,…,的第几项是–401?

(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。

例2、在等差数列中,已知=10,=31,求首项与公差d.

解:由,得。

在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

巩固练习

1.等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。

2.一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。

四、小结

1.等差数列的通项公式:

公差;

3.判断一个数列是否为等差数列只需看是否为常数即可;

4.利用从特殊到一般的思维去发现数学系规律或解决数学问题。

五、作业:

1、必做题:课本第40页习题2.2第1,3,5题

2、选做题:如何以最快的速度求:1+2+3+???+100=

数学等差数列教案篇八

1、知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

2、过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

3、情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

1、教学重点:等差数列的概念的理解,通项公式的推导及应用。

2、教学难点:

(1)对等差数列中“等差”两字的把握;

(2)等差数列通项公式的推导。

一。课题引入

创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)

(1)、在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星:

1682,1758,1834,1910,1986,()

你能预测出下次观测到哈雷慧星的大致时间吗?判断的依据是什么呢?

(2)、通常情况下,从地面到11km的高空,气温随高度的变化而变化符合一定的规律,请你根据下表估计一下珠穆朗玛峰峰顶的温度。

(3)1,4,7,10,(),16,…

(4)2,0,-2,-4,-6,(),…

它们共同的规律是?

从第二项起,每一项与前一项的差等于同一个常数。

我们把有这一特点的数列叫做等差数列。

二、新课探究

(一)等差数列的定义

1、等差数列的定义

如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。

(1)定义中的关健词有哪些?

(2)公差d是哪两个数的差?

2、等差数列定义的数学表达式:

试一试:它们是等差数列吗?

(1)1,3,5,7,9,2,4,6,8,10…

(2)5,5,5,5,5,5,…

(3)-1,-3,-5,-7,-9,…

(4)数列{an},若an+1-an=3

3、等差中顶定义

在如下的两个数之间,插入一个什么数后这三个数就会成为一个等差数列:

(1)、2,(),4(2)、-12,(),0(3)a,(),b

如果在a与b中间插入一个数a,使a,a,b成等差数列,那么a叫做a与b的等差中项。

(二)等差数列的通项公式

探究1:等差数列的通项公式(求法一)

如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?

根据等差数列的定义可得:

,,,…。

所以:,

……

由此得,

因此等差数列的通项公式就是:,

探究2:等差数列的通项公式(求法二)

根据等差数列的定义可得:

……

将以上-1个式子相加得等差数列的通项公式就是:,

三、应用与探索

例1、(1)求等差数列8,5,2,…,的第20项。

(2)等差数列-5,-9,-13,…,的第几项是–401?

(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。

例2、在等差数列中,已知=10,=31,求首项与公差d.

解:由,得。

在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

巩固练习

1、等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。

1.等差数列的通项公式:

公差;

3、判断一个数列是否为等差数列只需看是否为常数即可;

4、利用从特殊到一般的思维去发现数学系规律或解决数学问题。

五、作业:

1、必做题:课本第40页习题2.2第1,3,5题

2、选做题:如何以最快的速度求:1+2+3++100=

高斯说:“请同学们预习下一节:等差数列的前n项和。”

数学等差数列教案篇九

3、通过参与编题解题,激发学生学习的兴趣。

教学重点是通项公式的认识;

教学难点是对公式的灵活运用.。

实物投影仪,多媒体软件,电脑。

研探式。

一。复习提问。

等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用。

二。主体设计。

通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求)。找学生试举一例如:“已知等差数列中,首项,公差,求。”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上。

1、方程思想的运用。

(1)已知等差数列中,首项,公差,则-397是该数列的第项。

(2)已知等差数列中,首项,则公差。

(3)已知等差数列中,公差,则首项。

这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量。

2、基本量方法的使用。

若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些等差数列是确定的,由和写出通项公式,便可归结为前一类问题。解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量。

教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定)。

(3)已知等差数列中,求;;;;…。

类似的还有。

以上属于对数列的项进行定量的研究,有无定性的判断?引出。

4、研究项的符号。

这是为研究等差数列前项和的最值所做的准备工作。可配备的题目如。

(1)已知数列的通项公式为,问数列从第几项开始小于0?

(2)等差数列从第项起以后每项均为负数。

三。小结。

1、用方程思想认识等差数列通项公式;

2、用函数思想解决等差数列问题。

数学等差数列教案篇十

例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为.

(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=.

例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数.

例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项.

数学等差数列教案篇十一

分总文段一般有明显特点,尾句或者结尾出现明显的提示词:总之、可见、可得、总而言之、综上所述、从这个意义上讲等,总结句之后,就很可能是文段的主旨。一般分总文段,经常考到的行文有:分析论述-得出结论、提出问题-解决问题。因而,对于分总文段,我们可以结合标志词和行文,重点关注尾句。

【例1】汪曾祺曾说语言不是外部的东西,它是和内在的思想同时存在,不可剥离的。在他看来写小说就是写语言,语文课学的是语言,但语言不是空壳,而是要承载各种各样的思想、哲学、伦理、道德的。怎么做人,如何对待父母兄弟姐妹,如何对待朋友,如何对待民族、国家和自己的劳动等,这些在语文课里是与语言并存的。从这个意义来讲,语文教育必须吸收和继承传统文化,而诗歌无疑是传统文化的集大成者。

这段文字意在说明:

a.诗歌中包含丰富的思想、伦理和道德元素。

b.脱离内在思想的语文教育是空洞无物的。

c.必须重视诗歌在语文教育中的作用。

d.语文教育需要和思想品德教育同步进行。

【答案】c。解析:文段首先指出汪曾祺认为语言与内在思想同时存在不可剥离;接着对此进行了具体阐释,指出语文课学的不仅是语言,还有如何为人处世;最后由“从这个意义来讲”作总结,指出语文教育必须重视吸收和继承传统文化,尤其是诗歌这个传统文化的集大成者。可见,文段最后落脚在语文教育必须重视诗歌,c项表述与此相符,当选。

【例2】外科手术和放、化疗对癌症治疗的效果可以肯定,但不满意。由于存在对自身的损伤,加剧了正不胜邪的矛盾,给癌细胞复活繁殖以可乘之机,一旦复活,卷土重来,而自身正气削弱殆尽,无力抵挡,导致复发率高,存活率低的结果。若能与中医在理、法、方、药实际内涵上切实融合,杜绝形式上的凑合,定能弥补这种不满意,使正不胜邪转化为邪不胜正,则可望获得圆满结果。

这段文字意在说明:

a.癌症有着复发率高、存活率低的特点。

b.中医可能会对癌症的治疗起到意想不到的效果。

c.外科手术等西医的方法并不能从根本上治疗癌症。

d.运用中西医结合的方法可能会从根本上治愈癌症。

【答案】d。解析:文段首先介绍了西医治疗癌症的弊端,接着指出若能把中西医切实融合起来,弥补西医的欠缺,则可能产生良好的治疗效果。由此可知,文段强调的是运用中西医结合方法治疗癌症。d项表述与此相符,当选。a项为问题论述部分。b项文段没有涉及。c项“不能从根本上治疗癌症”说法过于绝对。故本题选d。

数学等差数列教案篇十二

2、利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;

3、通过参与编题解题,激发学生学习的兴趣。

教学重点是通项公式的认识;

教学难点是对公式的灵活运用.

实物投影仪,多媒体软件,电脑。

研探式。

一。复习提问

等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用。

二。主体设计

通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求)。找学生试举一例如:“已知等差数列中,首项,公差,求。”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上。

1、方程思想的运用

(1)已知等差数列中,首项,公差,则-397是该数列的第项。

(2)已知等差数列中,首项,则公差

(3)已知等差数列中,公差,则首项

这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量。

2、基本量方法的使用

(1)已知等差数列中,,求的值。

(2)已知等差数列中,,求。

若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些等差数列是确定的,由和写出通项公式,便可归结为前一类问题。解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量。

教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定)。

如:已知等差数列中,…

(3)已知等差数列中,求;;;;…。

类似的还有

(4)已知等差数列中,求的值。

以上属于对数列的项进行定量的研究,有无定性的判断?引出

4、研究项的符号

这是为研究等差数列前项和的最值所做的准备工作。可配备的题目如

(1)已知数列的通项公式为,问数列从第几项开始小于0?

(2)等差数列从第项起以后每项均为负数。

三。小结

1、用方程思想认识等差数列通项公式;

2、用函数思想解决等差数列问题。

数学等差数列教案篇十三

例:

数列:1,3,5,7,9,11中

a(1)+a(6)=12;a(2)+a(5)=12;a(3)+a(4)=12;即,在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和。

数列:1,3,5,7,9中

a(1)+a(5)=10;a(2)+a(4)=10;a(3)=5=[a(1)+a(5)]/2=[a(2)+a(4)]/2=10/2=5;即,若项数为奇数,和等于中间项的2倍,另见,等差中项。

数学等差数列教案篇十四

教学目标

掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.

教学重难点

掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.

教学过程

等比数列性质请同学们类比得出.

【方法规律】

1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题.方程观点是解决这类问题的基本数学思想和方法.

2、判断一个数列是等差数列或等比数列,常用的方法使用定义.特别地,在判断三个实数

a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)

3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决.

数学等差数列教案篇十五

1、知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

2、过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

3、情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

1、教学重点:等差数列的概念的理解,通项公式的推导及应用。

2、教学难点:

(1)对等差数列中“等差”两字的把握;

[教学过程]。

一。课题引入。

创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)。

二、新课探究。

如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。

(1)定义中的关健词有哪些?

(2)公差d是哪两个数的差?

探究1:等差数列的通项公式(求法一)。

如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?

探究2:等差数列的通项公式(求法二)。

将以上-1个式子相加得等差数列的通项公式就是:,

三、应用与探索。

例1、(1)求等差数列8,5,2,…,的第20项。

(2)等差数列-5,-9,-13,…,的第几项是–401?

(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。

例2、在等差数列中,已知=10,=31,求首项与公差d.

解:由,得。

在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

巩固练习。

1、等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。

2、一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。

四、小结。

公差;

3、判断一个数列是否为等差数列只需看是否为常数即可;

4、利用从特殊到一般的思维去发现数学系规律或解决数学问题。

五、作业:

1、必做题:课本第40页习题2.2第1,3,5题。

2、选做题:如何以最快的速度求:1+2+3+???+100=。

数学等差数列教案篇十六

1、通过使学生理解等差数列的前项和公式的推导过程,并能用公式解决简单的问题。

2、通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特殊的思想方法,通过公式的运用体会方程的思想。

教学重点是等差数列的前项和公式的推导和应用,难点是获得推导公式的思路。

实物投影仪,多媒体软件,电脑。

讲授法。

过程

)“”

这是时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的(由一名学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了。高斯算法将加法问题转化为乘法运算,迅速准确得到了结果。

我们希望求一般的等差数列的和,高斯算法对我们有何启发?

二、讲解新课

()等差数列前项和公式

1、公式推导()

问题(幻灯片):设等差数列的首项为,公差为,由学生讨论,研究高斯算法对一般等差数列求和的指导意义。

思路一:运用基本量思想,将各项用和表示,得,有以下等式,问题是一共有多少个,似乎与的奇偶有关。这个思路似乎进行不下去了。

思路二:

上面的'等式其实就是,为回避个数问题,做一个改写,,两式左右分别相加,得,

于是有:。这就是倒序相加法。

思路三:受思路二的启发,重新调整思路一,可得,于是。

于是得到了两个公式(投影片):和。

2、公式记忆

用梯形面积公式记忆等差数列前项和公式,这里对图形进行了割、补两种处理,对应着等差数列前项和的两个公式。

3、公式的应用

公式中含有四个量,运用方程的思想,知三求一。

例1、求和:(1);

(2)(结果用表示)

解题的关键是数清项数,小结数项数的方法。

例2、等差数列中前多少项的和是9900?

本题实质是反用公式,解一个关于的一元二次函数,注意得到的项数必须是正整数。

三、小结

1、推导等差数列前项和公式的思路;

2、公式的应用中的数学思想。

四、板书设计

数学等差数列教案篇十七

数量关系是行测中的一个重要考察部分,能够快速解决数量关系的考生在考试中基本可以和其他考生拉开较大分差,而比例法是解决数量问题的一个重要方法,在行程、工程以及其他很多题型中都可以能够应用。对于比例法,小编建议大家可以从以下方面来突破。

解析:题干中给出初:中=5:3,中:高=2:1,大家观察这两个比例关系不难发现,两个比例关系中都存在一个相同的量也就是中级技工的人数,那最终我们要求三者之比其实就可以借助中级这个不变量进行统一,把中级人数的份数变为相同份数,这样一份所对应的实际量也就一样了,两个比例关系也就统一到同一个维度上了。那我们可以把中级的人数统一成6分,第一个比例关系扩大2倍,第二个比例关系扩大3倍,最终可以得到初:中:高=10:6:3。

解析:本题中存在两个比例关系,这两个比例关系并没有很明显的不变量,但是其实大家再去认真思考,会发现其实两个比例关系其实隐藏了一个不变量即总量,所以可以借助总量进行统一,第一个比例关系总量为13份,第二个为5份,则可以统一为其最小公倍数65份,第一个扩大5倍,第二个扩大13倍,最终可以得到所求为25:26。

由以上两道例题我们可以得出比例解决的核心思想是什么呢,其实就是找到不同比例关系中都存在且不变量,然后统一为最小公倍数即可。

在数量遇到的题中,常用到的思想为正反比的思想。当乘积为定值时成反比,商为定值时成正比。

a.2b.4c.6d.8。

解析:本题中根据题干不难发现三种车辆行使的时间相同,时间一定,路程和速度存在正比关系。根据摩托车的速度进行比例统一,可得自行车、摩托车、汽车速度之比为4∶6∶15。由汽车15分钟比自行车多走11公里,可知15分钟内三者所走路程分别是4公里、6公里、15公里,则30分钟自行车、摩托车所走路程分别是8公里、12公里,自行车比摩托车少走4公里。故本题答案为b。

数学等差数列教案篇十八

1.能正确计算有关0的加减法。

2..培养学生良好的书写习惯和想像能力。重点难点

弄懂有关0的加减法计算的算理并能正 确计算有关0的加减法。教学准备 课件,口算卡片 教学过程:

3-3=0表示什么意思?(窝里原来有3只小鸟,飞走了3只,窝里现在一只也没有了,用0表示)

先让学生观察,说图意,老师引导:

左边荷叶上有几只青蛙,右边荷叶上有几只?两片荷叶上一共有几只?用什么方法计算,怎样列式?教师一一板书:4+0=4(4)想一想:5-0=0+0=先说算式的含义,再说得数。课堂小结:

提问:今天,我们学习了什么?你有什么收获?

小结:今天,我们认识了0,知道0表示什么也没有,还表示起点,并且学会了0的正确写法。还会正确计算有关0的加减法。教学反思:

1.充分利用教材的资源,将教材静态的图动态化,让学生在生动有趣的故事情节中体会从有到无这个动态的变化过程,更好地理解0的含义。

2.同时提倡算法多样化,学生根据自己不同的理解计算有关0的加减法。

【本文地址:http://www.xuefen.com.cn/zuowen/6259421.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档