最热高等数学的体会(案例21篇)

格式:DOC 上传日期:2023-11-02 19:23:03
最热高等数学的体会(案例21篇)
时间:2023-11-02 19:23:03     小编:念青松

坚持是实现目标和梦想的关键,只有坚持不懈,才能收获成功。总结时可以参考一些范文或优秀的案例,以提升自己的写作水平。请参考下文给出的总结示例,理解如何全面评价自己的工作。

高等数学的体会篇一

1.极限思想:是一种渐进变化的数学思想。利用有限描述无限,由近似到精确的一种过程。极限思想是高等数学必不可少的一种重要方法,是高等数学与初等数学的本质区别。利用极限思想方法解决了许多初等数学无法解决的问题,例如,求瞬时速度、曲线弧长、曲边形面积、曲面体体积等问题。

2.函数思想:是通过构造函数,利用函数的概念、图象和性质去分析问题、转化问题和解决问题的思想方法。中学数学和大学数学中都有用到函数思想,而大学中是将函数进一步深化,更复杂一些,例如,函数的极限、连续性、极值等。

3.化归思想:化归思想的中心是转化。原则是陌生问题熟悉化,复杂问题简单化,抽象问题具体化,命题形式的转化,引入辅助元素等。

4.数形结合思想:数学是以数和形为主干,划分为代数和几何两个方向,而数和形又常常结合在一起,内容上相互联系,方法上相互渗透,并在一定条件下相互转化。例如,平面向量的数量关系、解析几何中曲线与方程的关系等。

5.逻辑思想:逻辑思想依赖于严谨的数学推理。推理是多样的,其中归纳和类比是两种应用极广的推理。

a.归纳推理的过程:“发现问题”-“观察问题”-“归纳问题”-“推广问题”-“猜想”-“证明猜想”,例如,在某些证明中所使用的数学归纳法等。

b.类比:是根据两个或两类对象有部分属性相同,推出它们的其它属性也相同。类比方法有不同的类型:概念间的类比、形式间的类比、有限与无限间的类比等。

高等数学的体会篇二

高等数学是大学必修课程之一,是数学学科的重要组成部分。在我小学和初中的数学课上,我一直都是数学的优等生,但是对于高等数学,我却感到了困惑和挑战。在大学一年级的时候,我开始接触高等数学课程,刚开始觉得不太适应,因此在此期间感觉相当压抑。随着时间的推移,我开始更深入地研究这门学科,并尝试各种不同的学习方法,以便提高自己的成绩。最终,在经过无数次的努力后,我克服了困难,考出了令人满意的高等数学成绩。

第二段:回顾高等数学的考试经验

在学习高等数学的过程中,我不仅学到了许多知识和技能,也经历了很多考试。这些考试无疑是对我学习成果的检验,也让我有机会去发现自己的弱点,找到不足之处,并尝试改进和克服它们。另外,这些考试还让我体会到了竞争的压力和紧张气氛,这些因素都激发了我更深入地学习高等数学的热情。

第三段:总结高等数学的重要性

高等数学的学习不仅仅关乎学习数学知识,更重要的是培养了我学习的能力。在学习过程中,我不断努力,练习思考和分析的能力,提高了自己的逻辑推理和解决问题的能力。这些都是远远超出课程范围的技能,对我的职业生涯和个人发展有着深远的影响。此外,学习高等数学还让我感受到了知识的博大精深和对未知事物探索的热情,这些元素也能够对我未来的发展起到重要的支持作用。

第四段:点评吴昊的体会和经验

吴昊是我身边一个优秀的同学,在高等数学的学习中他取得了出色的成绩。他的学习经验和体会也对我启发和影响很大。从吴昊的学习经验中,我们可以看到他在学习过程中非常注重理论知识的掌握和实践能力的培养。而且,吴昊非常善于把理论知识和实践技能有机结合起来,不断地总结和反思,从而实现了对高等数学的深入理解。这些学习方法和态度对我指引良多,让我对高等数学的学习也有了更多的信心和动力。

第五段:思考未来发展方向

在未来的学习过程中,我还需要不断地探索和寻求新的机遇和挑战,以提高自己的学习能力和职业素养。高等数学作为一门必修课程,是培养我学习能力和解决问题能力的重要途径。在今后的学习和生活中,我将会更加努力和专注于高等数学的学习,以完成自己的职业规划和个人发展目标。

高等数学的体会篇三

1.提前预习:上课前抽出一个钟或半个钟的时间,预习一下要学习的东西,不明白的做笔记,带着问题有目的的听讲。

2.借助外部力量:可以借助一些辅导书,习题册,帮助自己更好的理解。

3.概念反复研究:概念性的知识缺乏直接的经验,因此需要反复的研究演练。

4.数学语言:多练习运用数学语言进行描述,数学语言是符号语言,简明准确,自成体系,是数学思维的基础。

5.知识系统化:

a.理脉络:极限思想贯穿高等数学始终,其它主要知识体系的建立、主要问题的解决都依赖于它。

b.知基础:例如,导数是微分的基础,牛顿—莱布尼兹公式是积分学的基础。

c.分层次:采用化归的数学思想。例如,定积分、重积分、曲线积分、曲面积分等都是和式的极限,层层深入提高,而解题方法又都归结到不定积分的基础上来。

d.举反例:例如,函数在某点的极限存在,而在该点处却不连续。

e.找特例:采用从特殊到一般的数学思想,再把特例中的条件更换为一般的条件,即可得出一般性的结论。

f.明了知识的交叉点:例如,微分学与解析几何的某些知识点的结合,产生了微分几何的初步知识—曲率、切线、切平面、法线、法平面等。

g.几何直观:采用数形结合的数学思想,使抽象的函数关系变为形象的几何图形,使概念、定理更易于理解和掌握。

6.要适当多做习题,注意积累解题经验,及时总结:

a.分题型:按数学思想及方法的不同分清不同题型,即可达到事半功倍的学习效果。

b.重方法:注意平时做题方法的积累,例如,条件极值问题和部分不等式的证明,引入辅助函数的方法。

c.按步骤:根据步骤一步一步进行解答,不要嫌麻烦,例如,求最值问题。

d.找规律:某些问题可以按照一定的规律解决。

高等数学的体会篇四

经济学是考察社会经济现象、行为及其规律的学科,而计量经济学则是揭示经济学理论所考察的社会经济现象之间的数量规律。计量经济学的学习与应用能力,关键取决于能否运用经济学的思维方式观察理解经济现象,能否构建恰当的经济模型,能否准确进行参数估计与模型检验,使研究结论客观反映经济规律,进而为政策决策提供有意义的参考。目前,虽然计量经济学已被列为高等院校经管类各专业的重要课程,但我国计量经济学教学与研究与发达国家相比还有较大差距,进一步培养好计量经济学人才任重道远。为更好提升学生学习和应用能力,应着重从以下方面入手进行计量经济学人才的培养。

(一)有助于培养学生观察与分析经济现象的能力

计量经济学重在培养学生基于经济学理论观察社会经济现象,勇于提出问题。譬如,在研究通货膨胀时,学生应回顾成本推动型、需求拉动型等通胀形成机制,思考这些理论能否解释现实。以始于2009年下半年的通货膨胀为例,显然,每个人都经历与感知到了该轮通货膨胀对自身的影响,企业家感觉到原材料上涨,居民感觉到菜价上涨,学生发现食堂饭菜价格上升。对于计量经济学的学生来说,首先要思考此轮通胀的原因与货币供给过多是否相关,进而要思考此轮通胀与过去通胀是否存在相同特征。教师要将这些问题引入课堂,适时引导学生思考与研究社会经济现象,这实质就是培养学生学习与研究计量经济学的能力。

(二)有助于培养学生研究社会经济现象的能力

计量经济学教学是引导学生应用经济学理论理解经济问题的过程。由于社会经济现象的形成机制非常复杂,对同一经济现象经济学家存在不同的看法。经济学理论和计量经济学方法发展日新月异,这种快速的知识更新使得师生需要不断学习与研究。此外,经济现象本身也伴随经济体制、运行机制与经济结构的变化而发生复杂变化,对这些日益复杂的现实经济现象的深入考察,也考验着我们运用计量经济模型的能力。因此,深刻理解经济现象及其背后的机制,重在能否正确应用计量经济学。仍以通胀现象为例,学生可能首先联想到的是货币需求函数,此时,教师可以引导学生比较分析消费价格指数(cpi)与广义货币(m2)的时间序列数据。通过观察,m2增速于2009年起快速下降,但与此同时,通胀却表现出持续上涨的态势。该现象提醒我们,若以非线性货币需求函数建模,则可以揭示通胀与货币需求间的复杂关系。为此,适时引导学生针对我国特定的数据,探索性研究通胀与货币需求间的复杂关系,能够培养其学习与解决问题的能力。

(三)有助于培养学生研究计量经济理论的能力

高等教育的重要落脚点是开发学生创新能力。在计量经济学学习中,学生的创新能力体现于能否发展计量经济学理论。比如,通过引导学生观察通胀现象,逐步提出以下问题:如何检验通货膨胀与m2是否是平稳序列?这两个变量是否存在协整关系?该关系是否具有非对称、非线性的特征?怎样检验与估计非对称、非线性的长期均衡关系?要回答以上问题,必须学习与发展计量理论,这需要我们拓展既有非平稳时间序列分析的理论与方法。因此,在研究中准确理解与应用相关理论与方法,特别是针对数据特征拓展计量理论,是培养与提升学生学习与应用能力的重点。

二、计量经济学教学实践改革路径

现代计量经济学的主要内容有:单位根检验与基于非平稳变量的建模技术;描述经济现象复杂动态性的模型;使用面板数据建立的模型。这些理论与方法与之前的经典计量经济学相比存在较大区别,为使教学与现代计量经济学的发展相适应,许多教师从教材改革、教学方法创新、突出实验教学等角度思考了计量经济学的教学方法改革。基于培养学生能力这一角度,借鉴以往教学改革的有益建议,结合我国计量经济学教学的现实状况,在计量经济学教学实践中,尝试从以下方面践行教学活动。

(一)立足引导与启发

首先要清晰讲授相关概念、理论和方法,梳理知识之间的内在联系,适时对学生提出问题,培养其智能。例如,在讲解参数估计量的线性无偏最小方差性质中,应分析估计量是被解释变量的线性样本组合,从而引导学生认识估计量的本质,在理解估计量为一个随机变量的基础上,提出其是否服从特定的分布,最终引导学生理解估计量的方差以及对备选估计量的方差分析比较。基于估计量的有效性,再讲解渐进无偏与渐进最优估计量。接下来,适时展示线性无偏最小方差估计量的仿真结果,以此引导学生理解基本的计量经济理论,把引导学生学习和“教会学生学习”一体化。

(二)贯穿“理论、方法和应用”三位一体

在教学中因势利导,从经典计量经济学适当拓展到现代计量经济学,并据此阐释计量经济学的相关理论,注重学生的学习反应,清晰介绍相关前沿理论。培养学生学习与应用计量经济学的能力重在:一要阐释回归分析的产生背景及其内涵;二是要培养学生根据我国数据构建计量模型的能力;三是要根据学生的实际情况对讲授内容进行延伸。计量经济学前沿的理论与方法集中在文献中,应根据学生的知识基础与结构从教材延伸至文献中。比如,在讲授异方差时,适时引出arch模型及其应用;在讲授面板模型时,适时延伸到动态面板模型与广义矩估计,并结合我国各省市城镇居民收入的面板数据,介绍动态面板模型和广义矩估计的分析思路。这种适时适度地引申新的知识,不但使学生深入理解基础概念,还启发学生拓展知识进行应用研究。

(三)充分利用蒙特卡洛仿真技术

针对学生对计量经济学理论望而生畏的现状,我们利用蒙特卡洛仿真技术,通过编程将计量经济学中晦涩难懂的估计与检验理论转化为仿真结果,使得学生对抽象数学公式的模糊认识,转化为对仿真图形直观深入的理解。比如,线性无偏有效估计量的统计含义,既是参数估计中最基础的知识,又是大多数学生难懂的部分。在教学中采用仿真实验和仿真图形,让学生对抽象的计量理论产生直观的认识。又如,模型的误设定(如随机误差项的异方差性)及其导致的相应后果,是学习传统线性计量模型基本假设的重点,由于需要较强的数理统计学基础,这部分内容不但学生难理解,也是教师难以诠释清楚的问题。通过仿真实验结果能够形象展示违背经典计量经济假设下所导致的结果,促进学生对设定正确模型的重要意义产生深刻理解。这种仿真实验的教学模式不仅避免数学方面繁杂的推导过程,防止学生对计量经济理论“望而生畏”,还培养了其创新性的学习与研究能力。

三、计量经济学教学创新策略

不断创新教学方法,培养学生对计量经济学的学习兴趣与解决问题的能力,是“学生主动学习”与“干中学”这种新型教学理念的出发点与落脚点。在教学实践中,我们采用如下策略。

1.在课堂讲授中有意识地提出问题,与学生互动,共同讨论问题,适时延伸问题,将学生引入到对相关前沿文献的学习。例如,为何采用标准差衡量估计量的精度?ols与广义gmm的估计原理区别在哪?单位根检验统计量的概率分布为何区别于常规分布?通过不断提出类似问题,与学生“互动式”讨论并且解答问题,不仅可以启发学生的思维向深度与广度发展,还有助于激发其学习积极性。

2.在课堂教学中协调理论讲授、案例分析、实验教学之间的关系。课堂教学的核心是模型设定、参数估计与假设检验等,案例分析和实验教学的目的在于帮助学生直观理解理论和方法,并促进其学以致用,能够进行经济学研究,但绝对不应以软件操作教学替代基础理论的教学。在讲解理论的基础上,适时操作相关的计量经济学软件,解释软件输出结果,是实现理论教学和实验教学融合的有效路径。

3.通过案例与数据分析,建立恰当的计量经济学模型,引导学生灵活运用。不管是经济学理论,还是计量经济学的研究,经济现象及其背后的运行规律是学生关注的问题。基于我国的实际例子讲授计量模型,容易激发学生对计量经济学的学习兴趣,能够有效促进学生应用所学知识解决现实经济问题的能力。针对计量经济学“难教、难学、难懂”,上述教学方法体现“学生主动学习”和“干中学”等先进教学理论的精神实质,不仅使学生带着浓厚的兴趣学习计量经济学,也开拓了其知识视野,培养学习、研究与应用计量经济学的能力。

[高等数学经济学论文]

将本文的word文档下载到电脑,方便收藏和打印

推荐度:

点击下载文档

搜索文档

高等数学的体会篇五

高等数学是理工科专业必修的一门重要课程,对于提升数学思维,培养分析和解决实际问题的能力有着重要的作用。在高等数学下册学习的过程中,我深感受益匪浅。下面就是我对高等数学下册的心得体会。

首先,高等数学下册强调的是更深入的数学理论和应用。在上册我们学习了微积分的基础知识,在下册我们进一步学习了微分方程、多元函数、空间解析几何等内容。这些内容对于学习者来说都是比较新颖和抽象的,要求我们更深入地理解和掌握数学的概念和方法。通过学习下册高等数学,我逐渐明白了数学是一门探索自然规律和解决实际问题的学科,数学理论与实际应用是密不可分的。

其次,高等数学下册的学习注重于培养学生的逻辑思维和问题解决能力。数学是一门以逻辑为基础的学科,通过学习高等数学下册,我更加深刻地理解了逻辑思维和问题解决能力的重要性。在解题过程中,我们需要根据所学的数学理论与知识,运用逻辑推理,灵活运用解题方法,从而解决各种复杂的数学问题。通过不断练习和思考,我逐渐提升了我的逻辑思维和问题解决能力,并且在其他学科中也能够得到运用和提升。

第三,高等数学下册的学习培养了我的数学抽象和建模能力。数学作为一门抽象的学科,需要我们学会抽象问题、建立数学模型,并在模型的基础上进行分析和解决问题。在学习下册高等数学的过程中,我有了更多的机会进行数学建模,并且通过实例分析和计算来验证和应用模型。这种训练不仅提高了我的数学抽象思维能力,还培养了我应对实际问题的能力。数学建模能力是未来工作和研究中必不可少的能力,通过学习下册高等数学,我在这方面的能力得到了提升。

第四,高等数学下册的学习强调了数学与实际问题的联系。数学作为一门工具学科,它的应用范围广泛,与物理、化学、经济和工程等学科存在着密切的联系。在学习下册高等数学的过程中,我通过一些实际问题的分析和解决,深刻体会到了数学的实际应用。例如,在学习微分方程时,我们可以通过微分方程来描述一些物理现象、生态系统的变化规律等。这样的学习过程增强了我对数学与实际问题之间联系的认识,也让我更加明确了数学的重要性。

最后,高等数学下册的学习给我带来了很多的快乐。数学是一门极具美感的学科,通过解题和推导,我们可以发现数学之美。在学习下册高等数学的过程中,我常常感受到当成功解答一个困难的问题时的喜悦和成就感,这也激发了我对数学的兴趣和热爱。在解题过程中,我探索、思考和创新,不断挑战自己,这种过程本身就是一种乐趣。

总之,通过学习高等数学下册,我不仅在数学理论和应用上有了更深入的了解和认识,也发现了逻辑思维和问题解决能力在学习和工作中的重要性,培养了数学抽象和建模能力,增强了数学与实际问题之间的联系,同时也感受到了数学学习的乐趣和成就感。这些都使我对高等数学下册留下了深刻的印象和珍贵的回忆。我相信,通过对高等数学下册的学习和体会,我将在今后的学习和工作中更好地运用数学,更好地解决各种实际问题。

高等数学的体会篇六

高等代数学习是大学数学重要的一部分,相较于初等代数,高等代数更为抽象和理论化,对于学生来说大有难度。但是随着时间的推移,我渐渐开始感到了高等代数的魅力,也逐渐发现了学习高等代数的重要性。在这篇文章中,我将分享自己在高等代数学习过程中所得到的心得和体会。

第二段:抵抗初衷

学习高等代数的第一阶段,我感到了很大的挑战和困惑。在不断滑坡中,我内心渴望退出,想要摆脱这门让我疲惫的学科。四年前,我开始学习线性代数,我认为自己已经成功掌握了这种代数学基础,在此基础上学习更高级的代数只需要一点点努力就可以了。然而,我发现自己所拥有的数学知识并没有真正利于我掌握高等代数的本质和更深层的观念。开始的时候,我觉得自己面对了一个难题,无法克服这个阻碍心名字迈出的顽烁。

第三段:不断尝试

然而,随着不断的努力、不断的尝试,我开始慢慢了解到了自己所面对问题的真正本质。我阅读了更多更深的数学论文,掌握了基本概念,进而对所学的东西有了更深刻的理解。我渐渐地意识到,只是单纯地阅读数学问题和相关理论是远远不够的。我也需要进行自己的实践,去亲身探究一些问题。因为只有通过实践,才能够找到真正有效的方法和途径。

第四段:逐渐领悟

在实践之中,我越来越理解到高等代数学的优点。高等代数学的优点在于其极具抽象性以及精致的理论系统。我发现高等代数对数学、物理、工程学以及计算机科学等方面非常重要,而且与其他学科密切相关。在我逐渐习惯、理解和掌握高等代数的过程中,我越来越喜欢它的项目。。我感到,高等代数不仅有助我掌握各种概览和概念,还可以帮助我更精准地理解其他学科的内容。能够被如此深刻的理解事物的方法,我认为是很难得的。

第五段:结论

总之,学习高等代数是一个充满挑战性的过程。如果你认真学习,努力训练,并找到了有效的学习方法,那么这个过程 will将让你受益良多,并且对我们今后的职业生涯和个人思考能力都会受益。我感谢高等代数让我拓宽了我的视野,并让我认识到,对于我的专业及其他方面,学习和钻研决不是终点。相反,它开启了一个探索不断、充满挑战但也充满可能性的新世界。

高等数学的体会篇七

高等代数作为数学基础中的一门重要学科,是我在大学学习生涯中必修的一门课程。在这门课上,我深入学习了向量空间、线性代数、矩阵理论等等,并从中得出了一些心得体会。

第二段:突破自我认知

在学习高等代数的过程中,我发现自己原本对数学的学习方法是缺失的。在以往的学习过程中,我往往会死记硬背定理和公式,而高等代数的学习则需要我不断拓展自己的思路和认知。通过学习高等代数,我突破了自我对数学的认知,从“背诵”到“理解”,从“计算”到“思考”。

第三段:运用于实际生活

高等代数学习对我的实际生活也有很大的帮助。在学习过程中,我不仅掌握了向量、矩阵等基本的数学工具,还学会了如何将这些数学知识应用到生活实践中。在处理各种实际问题时,我能够运用这些学习到的高等代数知识,分析出问题的本质,得到更准确的结论。

第四段:加深对数学基础的理解

高等代数学习也加深了我对数学基础的理解。 我们只有在基础理解的基础上才能建立更深层的学习,高等代数学习在一定程度上巩固了我在初等数学学习中所掌握的知识,特别是空间几何方面的知识,越是基础的知识点就越是能让我对数学产生新的认知和体验。

第五段:总结

在高等代数的学习过程中,我收获了很多。除了掌握一些有用的数学知识外,我还学会了如何更好地应对数学学习,这对我的未来学习、工作、生活都有很大的帮助。高等代数学习让我不断突破自我,提高了对基础数学知识的理解,让我对数学知识拥有更深入的体会和认知。

高等数学的体会篇八

高等数学是大学数学教学中的一门重要课程,它深入探讨了微积分、常微分方程、多元函数等数学领域的理论与应用。作为一名学习高等数学的学生,通过学习本学期下册的高等数学课程,我有了一些心得体会。在这篇文章中,我将分享我对于高等数学下册的认识和体悟,以及它对于我的学习和思维方式的影响。

第一段:高等数学下册的知识体系

高等数学下册是高等数学课程的延续,它包含了微分方程、重积分、无穷级数和场论等内容。与上册相比,下册的内容更加深入和细致。通过学习下册的课程,我对高等数学的整体框架有了更加清晰的认识,同时也加深了对微积分的理解。微分方程是高等数学下册的重点之一,它在科学研究和工程应用中具有重要意义。通过学习微分方程,我对于它在实际问题中的应用有了更深刻的认识,从而增强了我的问题解决能力。

第二段:高等数学下册的逻辑思维

高等数学下册的学习过程强调了逻辑思维的培养。在解题过程中,我学会了运用严密的逻辑推理和抽象思维来分析问题,从而解决复杂的数学问题。在学习重积分和无穷级数时,尤其需要运用逻辑思维进行推导和证明。通过这些习题的解答,我逐渐培养出了逻辑思维的能力,提高了自己的数学素养。我相信,逻辑思维的培养不仅对于学习数学有着重要意义,也对于我们日常生活和职业发展具有积极影响。

第三段:高等数学下册的实践能力

学习高等数学下册的过程中,我发现课本中的理论和知识需要通过实践来加深理解。例如,在学习微分方程时,我们需要通过实际问题的建模和求解,来验证所学知识的正确性和适用性。通过课堂上的实例和作业的练习,我提高了自己的实践能力。而这种实践能力也是在工程和科技领域中所必须具备的。通过实践能力的培养,我相信自己在未来的学习和工作中能够更好地应对各种挑战。

第四段:高等数学下册的学习方法

面对高等数学下册的内容,我深刻体会到了合理的学习方法的重要性。在解决数学问题时,我逐渐掌握了一些学习技巧。例如,在学习微分方程和重积分时,我会先了解和理解基本概念,然后通过刻意练习来掌握解题方法,并在课后复习中加深对知识的理解。这些学习方法的应用使我在高等数学下册的学习中事半功倍。我认为,学习方法的培养是学习高等数学下册的必要过程,也是提高学习效率的关键。

第五段:高等数学下册的启示和反思

通过学习高等数学下册,我认识到高等数学不仅仅是一门课程,更是培养学生综合素质的重要途径。通过学习高等数学,我不仅仅掌握了数学知识,更学会了思考问题、理解问题和解决问题的方法。高等数学下册的学习,培养了我对于数学的兴趣和学术追求。同时,我也反思了自己在学习中存在的不足,例如在理解概念和应用推导方面有待提高。在今后的学业中,我会更加注重培养自己的逻辑思维和实践能力,提高学习方法的灵活应用,以达到更好的学习效果。

总结起来,通过对高等数学下册的学习,我对于高等数学的知识体系、逻辑思维、实践能力和学习方法有了更深入的理解和认识。同时,我也发现高等数学不仅仅是一门学科,更是培养学生思维能力和解决问题能力的过程。通过学习高等数学下册,我不仅提高了自己的数学水平,也增强了自信和对学习的热爱。我相信,在今后的学习和人生中,我会继续努力,追求更高的数学境界和学术成就。

高等数学的体会篇九

高等数学是大学重要的数学基础课程,涉及到微积分、线性代数、概率论与数理统计等多个学科领域,为学生的数学素养和综合能力的提高带来了巨大的帮助。如今,我已经学习高等数学一年多,并考取了高分。在学习中,我积累了一些心得体会,现在愿意分享给大家。

一、认真理解概念

高等数学中包含了大量的数学概念,这些概念是该学科的基础。我们要经常复习、深刻理解这些概念,才能更好地庖阐数学原理,推导出数学公式。对于某些难以理解的概念,可以寻找一些相关的实例进行解释,或者和同学一起讨论,共同掌握这些概念,这样才能更好地理解后面的内容。

二、透彻掌握习题

高等数学的习题类型较多,需要我们不断地练习,从而巩固和提高自己的掌握程度。在做习题时,我们要遵循“由易到难”的原则,先做容易的,逐渐增加难度,提升自身的解题水平。做题时,也要注意拓展视野,不要仅局限于老师讲授的范围,多尝试一些新的方法和角度。

三、整合思维方式

高等数学的学习需要我们具有一定的数学思维能力,这也是高等数学和初等数学一份四的区别所在。在学习中,我们要注重培养自己的数学思考能力,学会用多种方式解决一道问题,整合不同的思维方式,拓展自己的思路。这种能力的培养要靠平时的训练,结合习题、考试和解题课等多种形式进行。

四、注重细节处理

在高等数学课程中,一个小小的细节往往决定着整道题的成败。因此,在学习高等数学时,我们必须将注意力集中在题目的细节上,严谨地对待每一步计算,避免出现计算错误。同时,在做习题和考试时,我们也要注意填写卷面和计算器的使用规范,这样才能避免走弯路,保证高分通过。

五、多方面寻求帮助

高等数学作为一门比较重要的基础课程,难度比较大,我们学习中难免会遇到困难。遇到问题时,我们应该多方面寻求帮助,可以找老师、同学或者其他渠道,与他人交流和探讨,相互帮助提高解决问题的能力。此外,也要注重查找有关的参考书籍和一些网上的研究综述,引领自己更快地掌握课程要点。

总之,高等数学虽然难,但只要认真刻苦,多方寻求帮助,注重方向且扎实整合思维方式,严谨处理学习细节,逐渐提升自己的数学素养和思维能力,就可以取得好成绩,为自己的学业和未来的发展提供坚实的保障。

高等数学的体会篇十

原本以为凭借小学到高中这十余年所总结出的数学学习方法,就能轻松应对大学高等数学的学习。

然而,经过一个多学期的学习,我真正体会到高等数学的学习特点与以往所学习的数学大相径庭。因此,我必须在学习过程中找到高等数学的独特之处,总结出一套新的有效的方法,才能在高等数学的学习中做到游刃有余。

就我个人而言,我认为高等数学有以下几个显著特点:

(1)识记的知识相对减少,理解的知识点相对增加;

(2)不仅要求会运用所学的知识解题,还要明白其来龙去脉;

(3)系实际多,对专业学习帮助大;

(4)教师授课速度快,课下复习与预习必不可少。

以前上数学课,老师在黑板上写满各种公式和结论,我便一边在书上勾画,一边在笔记本上记录。

然后像背单词一样,把一堆公式与结论死记硬背下来。

哪种类型的题目用哪个公式、哪条结论,老师都已一一总结出来,我只需要将其对号入座,便可将问题解答出来。

而现在,我不再有那么多需要识记的结论。

唯一需要记住的只是数目不多的一些定义、定理和推论。

老师也不会给出固定的解题套路。因为高等数学与中学数学不同,它更要求理解。只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路。

所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。

每一次高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。

高等数学的学习目的不是为了应付考试,因此,我们的学习不能停留在以解出答案为目标。

我们必须知道解题过程中每一步的依据。正如我前面所提到的,中学时期学过的许多定理并不特别要求我们理解其结论的推导过程。

而高等数学课本中的每一个定理都有详细的证明。

最初,我以为只要把定理内容记住,能做题就行了。

然而,渐渐地,我发现如果没有真正明白每个定理的来龙去脉,就不能真正掌握它,更谈不上什么运用自如了。

于是,我开始认真地学习每一个定理的推导。有时候,某些地方很难理解,我便反复思考,或请教老师、同学。尽管这个过程并不轻松,但我却认为非常值得。

因为只有通过自己去探索的知识,才是掌握得最好的。

总而言之,高等数学的以上几个特点,使我的数学学习历程充满了挑战,同时也给了我难得的锻炼机会,让我收获多多。

进入大学之前,我们都是学习基础的数学知识,联系实际的东西并不多。在大学却不同了。

不同专业的学生学习的数学是不同的。

正是因为如此,高等数学的课本上有了更多与实际内容相关的`内容,这对专业学习的帮助是不可低估的。

比如“常用简单经济函数介绍”中所列举的需求函数,供给函数,生产函数等等在西方经济学的学习中都有用到。

而“极值原理在经济管理和经济分析中的应用”这一节与经济学中的“边际问题”密切相关。如果没有这些知识作为基础,经济学中的许多问题都无法解决。

当我亲身学习了高等数学,并试图把它运用到经济问题的分析中时,才真正体会到了数学方法是经济学中最重要的方法之一,是经济理论取得突破性发展的重要工具。这也坚定了我努力学好高等数学的决心。希望未来自己可以凭借扎实的数理基础,在经济领域里大展鸿图。

高等数学作为大学的一门课程,自然与其它课程有着共同之处,那就是讲课速度快。

刚开始,我非常不适应。上一题还没有消化,老师已经讲完下一题了。带着几分焦虑,我向学长请教学习经验,才明白大学学习的重点不仅仅是课堂,课下的预习与复习是学好高数的必要条件。

于是,每节课前我都认真预习,把不懂的地方作上记号。课堂上有选择、有计划地听讲。

课后及时复习,归纳总结。逐渐地,我便感到高数课变得轻松有趣。只要肯努力,高等数学并不会太难。

高等数学有其独特之处,但它毕竟是数学,那么一定量的习题自然必不可少。

通过练习,才能更深入地理解,运用。

以上便是本人一个多学期以来,学习高等数学的一些体会。

希望自己能在以后的学习中更上一层楼!

高等数学的体会篇十一

所谓把基本概念搞懂,我想是不是应该从以下几个方面来理解和把握。第一个是这个概念产生的实际背景是什么。然后,定义这个概念所运用到的数学思想和方法是什么。接下来这个概念的定义式,它的数学含义,几何意义和物理意义以及在这个概念上的拓展和延伸等等。对于每个概念我们都要尽可能的从这几个方面来理解把握。把概念学懂了,这是学懂数学的至关重要的一步。

二、基本理论搞透。

这包含三个方面的内容。第一所谓理论性的内容,定理、性质、推论,你首先要清楚它的条件是什么,结论是什么,这是最起码的要求。然后这些定理、性质、条件它的性质和条件要搞清楚,比如说是充分必要的还是充分必要的。我结合07年的考题给大家说。07年数学二第7个选择题,同学可以回去对照题目看。它是考察二元函数在某一点处可微的一个充分条件。你在学习的时候,你刚开始学高等数学的时候,老师都讲,二元函数在某一点处可微的充分条件是一阶偏导连续。

再比如数学一三四考的第十道选择题,是写边缘概率密度是哪个。告诉你一个二维正态分布。我们在辅导的时候告诉同学,我还总结了一条文登语录,你见到了这个,你第一要想到二维正态分布的边缘分布是正态分布,第二个是边缘现象的任意组合仍然是正态分布,第三个是两个随机变量的不相关和独立是充分必要的,也就是等价的。在这样的情况下,你知道了这些就可以做出正确的选择,所以说基本的理论要搞透,首先搞清楚它的条件和结论,这个条件是充分必要的还是充分的,必须要搞清楚。

基本理论的第二个方面就是要尽可能的从几何和数值的角度来理解这些抽象的理论。反映到今年的考题上,比如说一二三四都用到的一个选择题,基本象限函数这道题,f3、f负2、f2哪个选项正确的问题,如果你的基本的理论搞清楚了,只需要算一个f2就可以了。

基本理论搞透的第三个方面是要注意搞清楚相关理论间的有机联系。这一点,在线性代数这门课中更加的突出。在今年的考题中问你两个矩阵的关系是合同还是相似,我们对这些理论和概念,你如果比较熟练和清楚的话,你就知道找什么东西。我们在讲课的时候说,相似有四等,你一看这两个不相等,肯定不相似,必要条件有一个不满足,肯定是不相似的。合同,你需要找两个矩阵的特征值的,正的特征值和负的特征值的个数,这是要搞清楚基本理论第三个方面,相关理论的有机联系。

高等数学的体会篇十二

在我的意识里,但凡数学成绩好的同学,一定都是天资聪颖;而对数学一往情深的同学,都绝非等闲之辈。自从上了高中,数学对我来说就成了软肋,硬伤,成了让我神伤的科目,突然间变得对数学一窍不通,才猛然间发觉自己的思维不知道被什么所禁锢,变得呆板而僵硬,做题犹如啃砖头。

大一的时候,意外地发现我们必须学习高数课,我虽然很敬佩我们的高数老师,他和蔼可亲,对我们关爱有加,把高数讲得清楚易懂,还告诉我们如何学好高数以便更好地发展中医。尽管如此,结局还是悲凉的,我终日以泪洗面,甚至产生了轻生的念头,大一对我来说是不堪重负,不忍回首的一年,期末了,还一道题都不会做,考完了,才发现自己是班上的垫底。高数,让我开始怀疑自己的智商,怀疑我以后能否自食其力。每一次上课,我都像个呆子,钻进耳朵的那些专业术语不知道该怎么去消化,而周围的同学也都还是能回答问题,自信满满,这种强烈的对比让我受挫,我开始重新审视自己。高数,带给我改变的动力,我感谢高数,但仅仅因为它是高“树”,而我被挂在了上面。

在后来的学习中,我再也不敢对专业课掉以轻心,我开始觉得期末考试的内容其实也没有那么难,那么高数呢?究竟是它太难还是我从心里对它产生畏惧,以至我没有勇气相信自己可以认识它?我怕,怕有朝一日终会再次遇到它,因为陌生,所以恐惧。

经历了一年多的成长,我发现其实很多事情都没有想象中那么难,也没有想象中那么简单,关键在于你如何对待它。我想起我可以为了自己做一个笔袋而一动不动坐一下午,并且为了解决出现的不足而把数据计算一遍又一遍,一遍遍拆,一遍遍改,在探索中前进,乐此不疲。而学习高数呢,一开始我怕,遇到不懂了,我更怕,最后呢,我只能逃课,不去听,不去想,以为这样就能躲过一切,我才发现,我是个彻彻底底的懦夫,我只会做逃兵,我并没有尽最大的努力。

在选课的时候,我发现还能选修高数,这次,我不想再错过。我想起了《追风筝的人》的一句话:“那里,有再一次成为好人的路。”是的,我选择重新认识高数,我要为自己过去的罪行赎罪。

再次接触高数,捧着2年前让我头疼的课本,我发现其实真的可以懂,老师讲的比较简单,思路也很清晰。重新认识了牛顿莱布尼兹的微积分,惊叹他们天才般的才智,运用无限的模糊理论,可以解决许多医学上的问题,我才觉得高数真的是充满了魅力和魔力,它能让我们把简单的问题先给复杂化最后再简单化,培养我们的思维,更智慧巧妙地解决生活中的问题。学好了高数,就像给你增添了一双隐形的翅膀,你拥有了更开阔缜密的思维,许多问题突然变得迎刃而解了。

当然,学好高数并非那么简单,但探索其中的奥秘确实非常有价值,我想,如果能把自己学到的高数知识运用到自己的生活,学习,工作上,才算是真正学好了高数,感谢高数,这次不仅仅因为它是高“树”,而是我明白,攀登上这棵高树,我看见了前所未有的迷人风景。

高等数学的体会篇十三

相对于现阶段高等职业教育发展的综合性和终身性趋势来说,高等数学不仅仅是学生掌握数学工具学习其他相关专业课程的基础,更是培养学生逻辑思维严谨性的重要载体,高等数学的重要性是不言而喻的。因此高等数学的有效学习成了高数教师和同学们共同关注的一个重要问题。

通过平时与学生的交流和上课,学生的学习困难一般集中在认为教学内容太抽象听不懂、不会做题,数学概念太抽象,不易理解(如极限、无穷小等)。学生对于接受高等数学的思想、原理、方法非常不适应,对于如何学好高等数学,如何理解它的思想、方法茫然无知。下面我们大家一起讨论一下高数学不好的原因。

首先,对大多数高中生而言,考取大学是最具诱惑力的行为归因,但进人大学后,这一因素就不复存在了,大一新生基本上处于如释重负的解脱状态,缺乏主动进取的精神,学习目标不明确,学习动机不强烈。有些同学则认为学高等数学对将来的工作也没有多大用处,有些同学本来数学的基础就不好,进人大学后一接触高等数学,发现难以与中学数学知识直接衔接,学习高等数学的兴趣荡然无存,对高等数学的学习消极应付。

再次,学生在高中阶段已形成一定的思维方式及学习习惯,解数学题基本上采取模式辨认、方法回忆的思维方式,对解题方法和技巧模仿、记忆、套用,对知识不求甚解,并未真正理解和内化,没有进行数学思考的意识,也没有掌握数学思考的方法。大学课堂上,对高等数学各部分内容的理解支离破碎,自学能力差,缺乏独立思考的意识,没有反思学习过程的习惯,更没有总结、归纳知识和思想方法的习惯,对教师有较强的依赖心理,学生已形成的思维方式及学习习惯直接影响学生接受高等数学。

最后,大学与高中的教学都以讲授法为主,但受高考的影响和制约,高中教师对知识的讲授详细,题型、方法归纳完整,较多的精力用于通过大题量的训练来培养学生的技能技巧,并及时进行辅导和巩固;而大学的教学由于知识点较多,课时有限,课容量大,教师更注重思想方法的深刻理解,和数学思想的培养。

对于上述几个原因建议大家从以下几方面入手:

第一、调整好自己的心态,尽快适应大学生活,对自己有一个准确的定位。

学的学习,根据高数课的特点和自己的学习习惯,尽快总结出适合自己的学习方法。

第三、高数的学习是一个日积月累的过程,不是几天或一段时间的突击成绩就可以上来的。只要你把平时的多努力,那么你的付出一定会有所得。

高等数学的体会篇十四

随着科技日新月异的发展和电脑无孔不入的应用.高等数学课程作为一种数学工具的功能正在逐步缩减.但作为一种思维方法的载体的功能(例如训练学生辩证思维、逻辑推理、发现同题及分析同题的能力)却愈显风采。一个多元线性方程组如何去解?我们可以交给电脑去完成,只要会正确使用数学软件。但一个实际问题如何通过数学建模转化为一个数学同题,除了必须具备许多综合的知识,还需要具备一定的分析推理能力,这种素质自然可以通过生活来积累,但如果能够通过象高等数学这样的课程作为载体来进行系统训练,将是事半功倍的。

以往对工科学生来讲,高等数学的教学比较偏重于计算方法的训练,例如,如何计算极限,计算导数,计算积分,通过熟练掌握计算方法来加深对概念的理解,这是学习高等数学的一条捷便之径。但是从二十一世纪更加需要创新人才的观点看,从高等数学的概念中直接去提炼一种分析推理能力及实际应用能力,将是更加重要的。(当然,在改革的力度还未到位时,由于教学要求及教材等原因.学习高等数学并不能仅偏重于概念,对基本的计算方法必须熟练地掌握。如今就如何学好高等数学的基本概念。提出一些拙见供同学参考。

1)从正反两个层面理解概念

我们观察一个物体,如果仅仅通过平视去进行,那么对这个物体的认识往往是局部的,甚至是扭曲的,只有从正视、俯视、侧视的多角度去观察与综合,方能得到物体正确的空间定位。观察事物尚且如此,要理解一个抽象的概念,如果只有单向的思维方法,肯定只能浅尝辄止.只有从正反两个方向去透视概念,才能较深地抓住概念中一些本质的东西。这里所说的正方向思维应该包含几层意思:一是概念的定义是如何叙述的,二是概念所尉带的条件是必要的.还是充分的?三是概念产生的实际背景是什么?这里所说的反方向思维又应该包含两层意思:一是对一个概念的否定是怎样表达的?二是如果错误的理解了概念中的一些条件会导致什么样的错误结果。

2)学与问

发现问题呢?首先要提倡自学,在自己预习教材(也锻炼了一种自学能力)的过程中很容易发现不懂的同题,带着同题再去听课就会有的放矢。其次是听课之后做习题之前要认真复习消化课上的内容,只要积极地开动脑筋,从中是会发现很多问题的,在这个较深层次上发现问题又去解决问题(可以通过同学与老师的帮助),那么分析问题的能力就会有一个质的提高。

3)做习题与想习题

学习数学,不做习题是绝对不行的.因为耐概念究竟理解与否检验的最后关口是习题。一道习题不会做或者做错了,肯定是某些概念投有消化好,带着习题再来复习理解概念,拄往会摩擦出新的思想火花。学习高等数学的过程中,我们不主张采用中学的题海战,但对每道习题不但要弄懂正确的解法,而且尽量要考虑能否有多种解法。这还不够,进一步的思考是一些似是而非的错误解法究竟错在哪里?必定是对概念理解的偏差才导致的错误结果.经过又一次正反两个层面的开掘.思考深入了,学习的兴趣也会逐步培育起来。

高等数学的体会篇十五

【摘 要】本文根据笔者自身的教学经验,提出大学生在学习高等数学时存在认为学习高等数学没有用、学也学不会、学习思维定式三大误区,并针对三大误区提出端正学习态度、激发学生学习兴趣、提高教师自身素质、创新教师教学方法、建立良好的师生关系等方法,从而提高高等数学教学质量,改善教学效果。

【关键词】高等数学教学;教学质量;心得体会

高等数学作为理工科大学生的一门必修的基础课,具有高度的抽象性、严密的逻辑性和广泛的应用性的特点,可以培养学生的抽象概括能力、逻辑思维能力、解决分析问题的能力,对科技进步也起着基础性推动作用。随着国家高等教育从精英型转入大众型,学生素质呈下降趋势,大部分学生在学习高等数学时感到困难,从而提高高等数学教学质量、改革高等数学教育教学方法已成为一个亟需解决的问题。

1 高等数学教学中学生存在的误区

1.1 误区一很多学生认为学数学没有用

高中阶段学生已经接触到了高等数学中比较简单的极限、导数、定积分,但没有深入学习其概念、定义,高考也只是考了一点点,学生认为自己掌握了高等数学的知识,再学了也没有什幺用,在将来实际工作中也用不到数学。

1.2 误区二高等数学具有很高的抽象性,很多学生觉得学也学不会

现在学生不愿意动脑、动笔,碰到题目就在想答案。往往因为大学的高数题运算步骤比较多,想是想不出来的,不动笔又不画图,学生坐一会就有点困了,自然就认为高等数学非常难。

1.3 误区三学生习惯于用中学的思维来解题

很多学生学习数学的一些简单想法就是来解数学题,愿意用中学的方法去解决高等数学里的题目,只要能做出答案就行。在这种思想的影响下,不愿意去掌握定义、定理,做题少步骤或只有答案,但是有的题目肯本做不出来。随着学习的深入学生发现题目越来越不会做。

2 提高高等数学教学质量的方法

2.1 端正学生学习态度

许多同学认为,考上大学就可以放松了,自我要求标准降低了。只有有了明确的学习目标,端正学习态度,才能增加学习高等数学的动力。教师要以身作则,这要求教师热爱数学,对每节课都要以饱满的激情、对数学美的无限欣赏呈现在学生面前,教师积极地态度从而感染学生学习高等数学的热情。部分同学在应试教育的影响下,应经形成了消极的数学态度,教师还应该全方位、多角度扭转学生学习态度,如课下谈心谈话、建立互助兴趣小组、“一对一”结对子等方法,提高学生学习数学的动力。端正学生的学习态度首先从数学字母的写法、发信做起,很多学生古希腊字母不会写也不会读,上课多练习几遍,老师在做题过程中要注重解题的每一步骤,告诉学生每一步骤的重要性,做题中感受数学题的美。

2.2 激发学生学习兴趣

兴趣是最好的老师,只有有了学习高等数学的兴趣,学生才有了学习动力。在教学过程中,可以穿插一些关于数学的历史,数学家的故事,数学文化,来激发学生的兴趣。如定积分的讲解时,自然引入牛顿、莱布尼茨两位数学家的故事。教师在课堂讲解时,把抽象的问题具体化,通过几何画图提高学生的理解能力,这样学生才更容易接受。

2.3 提高教师自身素质

教师是课堂教育的主导者,是良好课堂氛围的主要营造者,要想学生紧跟教师讲课的思路,教师必须具有良好的人格魅力和深厚的专业功底。这就要求教师一方面要提高自身的文化底蕴,多读一些与另一方面刻苦专研专业知识、完善知识结构、提高教育教学能力,只有做到这样,教师的课堂教育才能吸引学生,课下学生才愿意并主动与教师交流、沟通。教师在上课的时候要身体力行,做题要在步骤上下功夫,解释每一步骤的重要性,既要用最少的步骤把题做完,又要讲解每一步骤的重要性。这样虽然浪费了一点时间,但是学生还是会做的,同时学生也得到了怎样去做题以及真正的理解数学题,并从中发现数学美,时间长了能培养学生良好的数学兴趣、数学能力和创新能力。对所讲授的课程要有深入的了解,知识的内在联系及在学生专业上的应用要有所了解,可以给学生提一提,以便引起学生足够的重视。

2.4 创新教师教学方法

2.5 建立良好的师生关系

在教育教学活动中,良好的师生关系是保证教育效果和质量的前提。新时代的大学生具有自我意识强,个性张扬等特点,要提高课堂教育效果,必须建立良好的师生关系。只有师生间相互了解、相互尊重、相互赏识,把教学过程看做是教师与学生的交流、交往过程,才能建立轻松、和谐的课堂氛围,从而才能提高课堂教育效果和教学质量。教师在教学的过程中,要学会换位思考,站在学生的角度估计讲授问题的难易程度。对学生容易出错或者经常犯错误的地方,上课要强调知识的重要性,举例说明让学生理解知识点及了解出错的原因。

2.6 重视作业中存在的问题

作业是学生学习知识好坏的一面镜子,虽然现在学生有抄袭作业的现象,但是大部分学生还是自己做作业。从作业中可以看出学生对知识掌握的程度,没掌握好的话,想办法用最简单的题目来说明问题。也许作业有可能做的非常好,这就要求教师对知识有很好的理解,对学生容易出错的地方,上课时可以提问学生做过的题目或者让学生课前上黑板重新做。这样一学期下来,学生对难点重点会掌握的很好,考试成绩自然会很好,同时对高等数学理解的程度也会很高。学生取得了好的成绩,对高等数学了解的多了,自然对高等数学学习兴趣提高了。在以后的学习过程中,自然会对各种数学课更加努力的去学习,从而对其本专业课也起到了很好的促进作用。最终学生会发现大学生活是非常快乐的,学到了很多知识,学校也培养出了合格的大学生。

【参考文献】

高等数学的体会篇十六

俗话说,熟能生巧。练习做多了,看到类似的问题就能轻松应付,对症下药。在做练习时,要清楚每一步的思路,上一步为什么会得到下一步,都要了如指掌。对不懂的问题一定要问。说到问,陶行知先生说过:“发明千千万,起点在一问。”学数学也是一样,一定要多动手,动口。在动口之前要先学会思考,因为思考了才会有问题可问。不要以为思考是那些做学问的学者们的专利,只要是有思想的人,任何人都可以步入思考的行列。只有在不断思考探求中才能充实自己的大脑。当然也要避免盲目做习题,改变中学时期“只知道做题”的习惯。要独立思考,不要做太多的难题、偏题。另外要注意数学语言表述的正确性,论证的严密性,养成一种科学严谨的思维习惯。

高等数学的体会篇十七

数学教研室紧紧围绕以提高教学质量,抓好内涵建设为中心,以优化教师业务素质,不断提高教师的教学、教研水平和提高学生运用数学解决实际问题的能力为基本点;始终以应用为目的,以为专业服务为教学重点,充分发挥数学课程在高职教育特色中的基础作用。

二、本学期开展的工作。

1.组织好数学补考以及试卷的批改和成绩上报工作;。

2.配合基础部作好正常的教学及管理工作;。

3.按学院和教务处教学要求完成正常的教学,如听课、公开课听课评课任务,集体备课等活动.

(1)深入开展各专业对高等数学知识点需求的研讨会,真正做到数学为专业课服务;。

(3)为充分调动学生学习《高等数学》课程的积极性,组织一次全院数学调研。

5.定期召开教研室会议,坚持高职高专教育理论的'学习与研究,吸收先进的教学理念与教学经验,改进自己的教学方法、教学思想。要求撰写一篇教学或教研论文。

6.搞好院级研究课题;。

7.进一步完善《高等数学》校本教材、教学课件等工作;。

8.做好教研室本学期的总结、下学期计划等工作;。

9.配合基础部做好一些临时性工作。

三、工作具体时间安排见下表:

第一学期数学教研室具体工作安排。

周次。

时间。

教学活动内容。

8月28至9月30日。

做好教学前准备工作(如教学计划、教案的撰写),要求教师上好每一堂课,确保教育教学质量,并要求没课的教师随机听取有课老师的课。做好学生的补考工作。

6

10月1日至10月7日。

国庆放假,假期间认真备课,撰写论文。

7

10月8日至10月14日。

确定教师举行公开课、组织安排数学教研室教师参加听课、评课活动。检查教案、教学计划的撰写情况。

8

10月17日至10月21日。

组织数学教师召开专题会议:针对学生数学基础差,如何上好高等数学课,如何体现为专业课服务。

9

10月24日至10月28日。

高等数学院级精品课程以及校本教材的进一步完善,公开课按计划开展。教师集体备课。

10。

10月31日至11月4日。

要求每位教师撰写一篇教学或教研论文。作业抽查、公开课、观摩课等活动的监督与实施。

11。

11月7日至11月11日。

期中教学检查,教案检查、作业批改情况抽查,做好数学教研室期中工作小结。

12。

11月14日至11月18日。

组织安排数学调研。

13。

11月21日至。

11月25日。

组织教师集体备课。

14。

11月28日。

至12月2日。

继续开展公开课、观摩课等活动,并召开专题会议:如何提高学生学习高等数学的兴趣;如何提高教学教研质量。

15。

12月5日至。

教案、作业随机抽查,教学进度、教学效果的反馈,做好总结工作.

16。

12月12日至。

12月16日。

根据高数为专业课服务的原则,进一步做好高等数学课程教学改革,上好数学实验课。

17。

12月19日。

至12月23日。

讨论、交流教学心得,总结成功与不足。

18。

12月26日至。

12月30日。

开展教学、教研交流活动;检查实践教学的落实。

19。

公开课、观摩课等教研活动总结。院级课题落实情况的检查与反馈。有关实验、实践教学落实情况的总结。安排期末考试试卷的编制、保密、阅卷注意事项等事宜;本学期教学工作总结。

20。

元月9日至元月13日。

做好数学考试试卷分析与总结;做好本学期教研室工作总结以及下学期教研室工作计划。试卷装订情况检查,并做好有关资料的收集与整理并归档。

高等数学的体会篇十八

学好高等数学是一个长期的过程,要做到边学边巩固,今天的事今天完成,分阶段有目的的复习,学习来不得半点的投机取巧,所以考前突击,临时抱佛脚的做法都是不足取的,只有按照自己的计划,踏踏实实的进行准备,才能以不变应万变,只要自己的综合能力提高了,就能取得好的成绩。

数学是严密的科学。数学是由概念、公理、定理、公式等,按照一定的逻辑规则组成的严密的知识体系,有很强的系统性。因此,在数学的学习中,一定要循序渐进,打好基础,完整地、系统地掌握基本概念和基本原理,这样才能为解题打好坚实的基础。总之,学好高等数学并不是一件难事,只要你付出必要的努力,数学不应是枯燥乏味的符号,只要你钻进去就会感到趣味盎然,数学不是一堆繁琐无用的公式,掌握了它的真谛,就会给你增添知识和力量。

高等数学的体会篇十九

第一段:引言(120字)

高等数学作为大学数学课程中的一门重要学科,不仅是理工科学生的必修课,更是培养学生分析解决问题能力的重要途径。在学习高等数学的过程中,我感受到了数学的美妙与魅力,同时也深刻体会到了数学学习的重要性。通过这门课程的学习,我不仅提高了自己的数学水平,更具备了解决实际问题的能力,下面将分为逻辑推理能力的提升、问题解决能力的培养、批判性思维的养成、严密的思维训练以及团队合作精神的培养五个方面,详细论述我在高等数学学习中的心得体会。

第二段:逻辑推理能力的提升(250字)

高等数学学习需要运用各种公式定理,进行推导证明。在这个过程中,我不断锻炼了自己的逻辑推理能力。老师引导我们学会分析问题,从多个角度去思考,利用数学方法解决问题。通过数学定理的证明,我更加深入地理解了逻辑推理的重要性以及问题求解的思路。此外,在高等数学的学习过程中,我还学会了如何将复杂问题分解为简单子问题,逐步推导出一个完整的解决方案。这一过程的锻炼不仅提高了我的数学素养,还培养了我的逻辑思维能力,使我能够更好地应对其他学科的学习和实际问题的解决。

第三段:问题解决能力的培养(250字)

高等数学学习强调实际问题的建模与求解,培养学生解决实际问题的能力。在课堂上,我亲身体验了数学在解决实际问题中的作用。通过案例分析和问题解决讨论,我学会了将抽象概念和公式与实际问题相结合,找到问题的关键点,提出有效的解决方案。此外,高等数学课程还让我了解了数学与其他学科的交叉点,从而拓宽了视野,帮助我更好地理解和解决其他学科的实际问题。

第四段:批判性思维的养成(250字)

高等数学学习强调学生的批判性思维能力的培养。在学习过程中,我发现数学不仅有固定答案,还有多种解决路径和解释方法。通过解析问题的不同方面,从不同的角度思考,我逐渐养成了批判性思维的习惯。我开始质疑问题是否被正确解决,是否有更好的方法,这种思维方式不仅在高等数学学习中帮助我更好地理解概念和定理,还在其他学科和实际生活中使我更加理性和客观。

第五段:严密的思维训练与团队合作精神的培养(320字)

高等数学中的复杂定理和抽象概念要求学生掌握严密的思维能力。在解题过程中,我不得不重复思考,审查每一个环节,确保每个推导步骤的准确性和严密性。这过程虽然艰辛,但成功地提升了我的思维严密性和细心程度。另外,高等数学学习中的小组讨论和团队合作也给了我很大的启示。通过与同学合作,每个人可以带来不同的思路和见解,我们可以互相学习、互相鼓励,并共同解决问题。这种团队合作精神不仅在高等数学中得到培养,还可以应用到其他学科和实际工作中。

结尾:总结(90字)

总的来说,高等数学的学习不仅提高了我的数学水平,更重要的是培养了我解决问题的能力、批判性思维以及团队合作精神。这些能力将在我的未来学习和工作中发挥重要作用。通过高等数学的学习,我明白了数学不仅仅是一种学科,更是一种思维方式和处理问题的工具。

高等数学的体会篇二十

随着科技日新月异的发展和电脑无孔不入的应用。高等数学课程作为一种数学工具的功能正在逐步缩减。但作为一种思维方法的载体的功能(例如训练学生辩证思维、逻辑推理、发现同题及分析同题的能力)却愈显风采。一个多元线性方程组如何去解?我们可以交给电脑去完成,只要会正确使用数学软件。但一个实际问题如何通过数学建模转化为一个数学同题,除了必须具备许多综合的知识,还需要具备一定的分析推理能力,这种素质自然可以通过生活来积累,但如果能够通过象高等数学这样的课程作为载体来进行系统训练,将是事半功倍的。

以往对工科学生来讲,高等数学的教学比较偏重于计算方法的训练,例如,如何计算极限,计算导数,计算积分,通过熟练掌握计算方法来加深对概念的理解,这是学习高等数学的一条捷便之径。但是从二十一世纪更加需要创新人才的观点看,从高等数学的概念中直接去提炼一种分析推理能力及实际应用能力,将是更加重要的。(当然,在改革的力度还未到位时,由于教学要求及教材等原因。学习高等数学并不能仅偏重于概念,对基本的计算方法必须熟练地掌握。如今就如何学好高等数学的基本概念。提出一些拙见供同学参考。

我们观察一个物体,如果仅仅通过平视去进行,那么对这个物体的认识往往是局部的,甚至是扭曲的,只有从正视、俯视、侧视的多角度去观察与综合,方能得到物体正确的空间定位。观察事物尚且如此,要理解一个抽象的概念,如果只有单向的思维方法,肯定只能浅尝辄止。只有从正反两个方向去透视概念,才能较深地抓住概念中一些本质的东西。这里所说的正方向思维应该包含几层意思:一是概念的定义是如何叙述的,二是概念所尉带的条件是必要的。还是充分的'?三是概念产生的实际背景是什么?这里所说的反方向思维又应该包含两层意思:一是对一个概念的否定是怎样表达的?二是如果错误的理解了概念中的一些条件会导致什么样的错误结果。

发现问题呢?首先要提倡自学,在自己预习教材(也锻炼了一种自学能力)的过程中很容易发现不懂的同题,带着同题再去听课就会有的放矢。其次是听课之后做习题之前要认真复习消化课上的内容,只要积极地开动脑筋,从中是会发现很多问题的,在这个较深层次上发现问题又去解决问题(可以通过同学与老师的帮助),那么分析问题的能力就会有一个质的提高。

学习数学,不做习题是绝对不行的。因为耐概念究竟理解与否检验的最后关口是习题。一道习题不会做或者做错了,肯定是某些概念投有消化好,带着习题再来复习理解概念,拄往会摩擦出新的思想火花。学习高等数学的过程中,我们不主张采用中学的题海战,但对每道习题不但要弄懂正确的解法,而且尽量要考虑能否有多种解法。这还不够,进一步的思考是一些似是而非的错误解法究竟错在哪里?必定是对概念理解的偏差才导致的错误结果。经过又一次正反两个层面的开掘。思考深入了,学习的兴趣也会逐步培育起来。

高等数学的体会篇二十一

数学最需要强调的是基础而不是技巧。很多同学不重视基础的学习,反而只是忙着做题,做难题,就想通过题海战术取胜,这是不行的,选择辅导班一定不要选择一味追求技巧的,可以上有命题组老师的辅导班,从而能够准确把握命题思路,不至于走偏了方向。

善于归纳,学会总结,使知识条理化系统化。

善于总结也是我要十分强调的一点。因为很多同学做题的过程就到对过答案或是纠正过错误就简单的结束了,一套题的价值也就到此为止了。大家在纠正完错误之后,再把这套试题从头看一遍,总结一下自己都在哪些方面出错了,原因是什么,这套题中有没有出现我不知道的新的方法、思路,新推导出的定理、公式等,并把这些有用的知识全都写到你的笔记本上,以便随时查看和重点记忆。对于大题的解题方法,要仔细想一想,都涉及到哪些科目和章节了,这些知识点之间有哪些联系等,从而使自己所掌握的知识系统化,以达到融会贯通。只有这样,才能使你做过的题目实现其的价值,也才算是你真正做懂了一套题。如果你能够这样做了,那么做过的题在以后的复习中如果没有时间了,就不用再拿出来重新看了,因为你已经把要掌握的精华总结好了,只需看你的笔记本就行了。解数学题一定要从思路,原理的角度入手。

要勤于思考,多动脑子。

很多同学学数学就喜欢看例题,看别人做好的题目,分析别人总结好的解题方法、步骤。只这样是远远不够的。只是一味的被动的接受别人的东西,就永远也变不成自己的东西。第一遍复习可以只看题,但以后就必须自己试着做了,先不看答案,完全通过自己的能力做着试试,不管能做到什么程度,起码你自己先思考了,只有启动自己的大脑,才会使知识更深入的得到理解和掌握,才能真正成为自己的知识,也才会具有独立的解题能力。在做题时不要太轻易的选择放弃,想一会儿没有思路就去看答案,一定要仔细开动脑筋想过之后,实在不行再求助于外力。

【本文地址:http://www.xuefen.com.cn/zuowen/6865285.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档