正比例教案(汇总18篇)

格式:DOC 上传日期:2023-11-07 10:28:21
正比例教案(汇总18篇)
时间:2023-11-07 10:28:21     小编:翰墨

教案能够提前规划教学内容和教学步骤,帮助教师把握教学进度,更好地组织和管理课堂教学。教案的评价不仅仅是对教师教学效果的评价,更是对教学过程和教材的评价,为教学改进提供有力支持。通过阅读教案范例,可以了解到教学过程的安排和教学环节的设置。

正比例教案篇一

理解正比例的意义,掌握正比例变化的规律。

请同学口述三量关系:

(1)路程、速度、时间;(2)单价、总价、数量;(3)工作效率、时间、工作总量。

(学生口述关系式、老师板书。)

今天我们进一步研究这些数量关系中的一些特征,请同学们回答老师的问题。

幻灯出示:

生:60千米、120干米、180千米……

师:根据刚才口答的问题,整理一个表格。

出示例1。(小黑板)

例1一列火车行驶的时间和所行的路程如下表。

师:(看着表格)回答下面的问题。表中有几种量?是什么?

生:表中有两种量,时间和路程。

师:路程是怎样随着时间变化的?

师:像这样一种量变化,另一种量也随着变化,这两种量就叫做两种相关联的量。

(板书:两种相关联的量)

师:表中谁和谁是两种相关联的量?

生:时间和路程是两种相关联的量。

师:我们看一看他们之间是怎样变化的?

生:时间由1小时变2小时,路程由60千米变为120千米……时间扩大了,路程也随着扩大,路程随着时间的变化而变化。

生:路程由480千米变为420千米、360千米……

师:从上面变化的情况,你发现了什么样的规律?(同桌进行讨论。)

生:时间从小到大,路程也随着从小到大变化;时间从大到小,路程也随着从大到小变化。

师:我们对比一下老师提出的两个问题,互相讨论一下,这两种变化的原因是什么?

(分组讨论)

师:请同学发表意见。

生:第一题时间扩大了,行的路程也随着扩大;第二题时间缩小了,所行的路程也随着缩短了。

师:根据时间和路程可以求出什么?

生:可以求出速度。

师:这个速度是谁与谁的比?它们的结果又叫什么?

生:这个速度是路程和时间的比,它们的结果是比值。

师:这个60实际是什么?变化了吗?

生:这个60是火车的速度,是路程和时间的比值,也是路程和时间的商,速度不变。

驶多少千米,速度都是60千米,这个速度是一定的,是固定不变的量,我们简称为定量。

师:谁是定量时,两种相关联的量同扩同缩?

生:速度一定时,时间和路程同扩同缩。

师:对。这两种相关联的量的商,也就是比值一定时,它们同扩同缩。我们看着表再算一算表中路程与时间相对应的商是不是一定。

(学生口算验证。)

生:都是60千米,速度不变,符合变化的规律,同扩同缩。

师:同学们总结得很好。时间和路程是两种相关联的量,路程是随着时间的变化而变化的:时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。扩大和缩小的规律是:路程和时间的比的比值总是一样的。

师:谁能像老师这样叙述一遍?

(看黑板引导学生口述。)

师:我们再看一题,研究一下它的变化规律。

出示例2。(小黑板)

例2某种花布的米数和总价如下表:

(板书)

按题目要求回答下列问题。(幻灯)

(1)表中有哪两种量?

(2)谁和谁是相关联的量?关系式是什么?

(3)总价是怎样随着米数变化的?

(4)相对应的总价和米数的比各是多少?

(5)谁是定量?

(6)它们的变化规律是什么?

生:(答略)

师:比较一下两个例题,它们有什么共同点?

生:都有两种相关联的量,一种量变化,另一种量也随着变化。

师:对。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是今天我们学习的新内容。(板书课题:正比例的意义)

师:你能按照老师说的叙述一下例1中两个相关联的量之间的关系吗?

生:路程随着时间的变化而变化,它们的比值(也就是速度)一定,所以路程和时间是成正比例的量,它们的关系是正比例关系。

师:想一想例2,你能叙述它们是不是成正比例的量?为什么?(两人互相试说。)

师:很好。请打开书,看书上是怎样总结的?

(生看书,并画出重点,读一遍意义。)

师:你能举出日常生活中成正比例关系的两种相关联的量的例子吗?

生:(答略)

师:日常生活和生产中有很多相关联的量,有的成正比例关系,有的是相关联,但不成比例关系。所以判断两种相关联的量是否成正比例关系,要抓住相对应的两个量是否商(比值)一定,只有商(比值)一定时,才能成正比例关系。

1.课本上的“做一做”。

2.幻灯出示题,并说明理由。

(1)苹果的单价一定,买苹果的数量和总价( )。

(2)每小时织布米数一定,织布总米数和时间( )。

(3)小明的年龄和体重( )。

师:今天主要讲的是什么内容?你是如何理解的?

(生自己总结,举手发言。)

师:打开书,并说出正比例的意义。有什么不明白的地方提出来。

(略)

课堂教学设计说明

第一部分:复习三量关系,为本节内容引路。

第二部分:新课从创设正比例表象入手,引导学生主动、自觉地观察、分析、概括,紧紧围绕判断正比例的两种相关联的两个量、商一定展开思路,结合例题中的数据整理知识,发现规律,由讨论表象到抽象概念,使知识得到深化。

第三部分:巩固练习。帮助学生巩固新知识,由此验证学生对知识的理解和掌握情况,帮助学生掌握判断方法。最后指导学生看书,抓住本节重点,突破难点。安排适当的练习题,在反复的练习中,加强概念的理解,牢牢掌握住判断的方法。合理安排作业,进一步巩固所学知识。

总之,在设计教案的过程中,力争体现教师为主导,学生为主体的精神,使学生认识结构不断发展,认识水平不断提高,做到在加强双基的同时发展智力,培养能力,并为以后学习打下良好的基础。

正比例教案篇二

p47~48,例7、正、反比例的比较。

进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能正确运用。

一、复习

判断下面两种理成不成比例,成什么比例,为什么?

(1)单价一定,数量和总价。

(2)路程一定,速度和时间。

(3)正方形的边长和它的面积。

(4)工作时间一定,工作效率和工作总量。

二、新授。

1、揭示课题

2、学习例7

(1)认识:“千米/时”的读法意义。

(2)出示书中的问题要求学生逐一回答。

(3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的关系式?

(4)填空:用下面的形式分别表示两个表的内容。

当()一定时,()和()成()比例关系。

还有什么样的依存关系?

(5)教师作评讲并。

(6)用图表示例7中的两种量的关系。

指导学生描点、连线

在这条直线上,当时间的值扩大时,路程的对应值是怎样变化的?时间的值缩小呢?

用同样的方法观察右表。

3、正、反比例的特点(异同点)

由学生比、说

三、巩固练习

1、练一练第1、2题

2、p49第1题。

四、课堂:

正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?

五、作业

p49第2题(1)(4)(5)(6)(9)

六、课后作业

1、p49第2题(2)(3)(7)(8)(10)

2、收集生活中正、反比例关系的量并分析。

正比例教案篇三

p47~48,例7、正、反比例的比较。

进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能正确运用。

一、复习。

判断下面两种理成不成比例,成什么比例,为什么?

(1)单价一定,数量和总价。

(2)路程一定,速度和时间。

(3)正方形的边长和它的面积。

(4)工作时间一定,工作效率和工作总量。

二、新授。

1、揭示课题。

2、学习例7。

(1)认识:“千米/时”的读法意义。

(2)出示书中的问题要求学生逐一回答。

(3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的关系式?

(4)填空:用下面的形式分别表示两个表的内容。

当()一定时,()和()成()比例关系。

还有什么样的依存关系?

(5)教师作评讲并小结。

(6)用图表示例7中的两种量的关系。

指导学生描点、连线。

在这条直线上,当时间的.值扩大时,路程的对应值是怎样变化的?时间的值缩小呢?

用同样的方法观察右表。

3、总结正、反比例的特点(异同点)。

由学生比、说。

三、巩固练习。

1、练一练第1、2题。

2、p49第1题。

四、课堂小结:

正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?

五、作业。

六、课后作业。

正比例教案篇四

教学内容:p50第3——8题,正反比例关系练习。

教学目的:进一步认识正、反比例关系的意义,能根据正、反比例关系的意义正确判断,培养学生分析推理和判断能力。

教学过程:

一、揭示课题。

二、基本知识练习。

2、练:950第4题。

先说出数量关系式,再判断成什么比例?

三、综合练习。

1、练习:p50第5题。

想一想:这三种数量之间有怎样的关系式,你能找出哪几种比例关系?

口答并说说怎样想的。

2、做练习十二第6题、第7题。

3、做第8题。

提问:从直线上看,支数扩大或缩小时,钱数分别怎样变化?

四、延伸练习。

下面题里的数量成什么关系?你能列出式子表示数量之间的相等关系吗?

1、一辆汽车从甲地到乙地要行千米,每小时行50千米,4小时到达;如果每小时行80千米,2.5小时到达。

2、某工厂3小时织布1800米,照这样计算,8小时织布x米。

五、课堂。

通过这节课的练习,你进一步认识和掌握了哪些知识?

六、作业。

《练习与测试》p25第五、六题。

正比例教案篇五

1、甲数除以乙数的商是2.8,甲、乙两数的最简比是()。

2、圆的周长与直径的比值是();正方形的周长与边长的比值是()。

3、在24的约数中选出四个数,组成一个比例是()。

4、如果苹果重量的1/6与橘子重量的20%相等,那么苹果重量与橘子重量的比是()。

5、在一个比例中。两个内项互为倒数,其中一个外项是最小的合数,另一个外项是()。

6、用一张长和宽之比为2:1的纸剪两个最大的圆,这张纸的利用率是()。

7、一根钢管长3米,截去1/3后又截去1/3米,比原来短了()米。

8、圆柱体的侧面积一定,()和高成反比例。

9、两个长方形的面积比是8:7,长的比是4:5,宽的比是()。

10、请写出两个内项相等,两个比的比值都是0.4的一个比例。

二、判断题。

2、等第等高的平行四边形与三角形的面积之比为2:1。

4、甲、乙两个足球队的比赛结果是3:0,这个比的前项是3,后项是0。

5、两个正方体的棱长之比为2:3,则他们的体积之比为4:9。

三、选择题。

1、一种长5毫米的零件,画在图纸上长10厘米,这副图的比例尺是()。

a、1/2b、2/1c、1/20d、20/1。

2、圆的面积和()成正比例。

a、半径b、直径c、半径的平方d、

3、一项工程,甲独做5天完成,乙独做6天完成,甲、乙两人的工作效率的比是()。

a、5:6b、6:5c、1/6:1/5d、5/11:6/11。

4、路程一定,所走的路程和剩下的`路程()。

5、xy+2=k(一定),x和y()。

6、下列选项中,()成正比例,()成反比例,()不成比例。

a、比的前项一定,比的后项和比值。

b、比例尺一定,分母和分数值。

c、正方形的边长和面积。

四、计算题(解比例略)。

五、解决问题。

6、一个长方形操场长100米,宽50米,把它画在比例尺是1/2000的图纸上,长和宽各应画多少厘米?请画出这个长方形。

正比例教案篇六

1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

成正比例的量的特征及其判断方法。

理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律.

启发引导法

自主探究法

课件

一、定向导学(5分)

1、已知路程和时间,求速度

2、已知总价和数量,求单价

3、已知工作总量和工作时间,求工作效率

4、导入课题

今天我们来学习成正比例的量。

5、出示学习目标

1、理解正比例的意义。

2、能根据正比例的意义判断两种量是不是成正比例。

二、自主学习(8分)

自学内容:书上45页例1

自学时间:8分钟

自学方法:读书法、自学法

自学思考:

1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?

2、正比例关系式是什么?

(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。

y/x=k(一定)

(4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。

2、归类提升

引导学生小结成正比例的量的意义和关系式。

三、合作交流(5分)

第46页正比例图像

1、正比例图像是什么样子的?

2、完成46页做一做

3、各组的b1同学上台讲解

四、质疑探究(5分)

1、第49页第1题

2、第49页第2题

3、你还有什么问题?

五、小结检测(8分)

1、什么是正比例关系?如何判断是不是正比例关系?

2、检测

1、49页第3题。

六、堂清作业(9分)

练习九页第4、5题。

板书设计:

成正比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

关系式:

y/x=k

正比例教案篇七

正比例这一内容是在学生学习了比和比例知识的基础上进行教学的,着重使学生理解正比例的意义。从内容上看,正比例在整个小学阶段是一个较抽象的概念,学生不仅要理解其意义,还要学会判断两种量是否是成正比例的量,同时还要学会用含有字母的式子来表示正比例关系。

教师要渗透给学生一些函数的思想,为他们以后的初中学习打下基础。在教学图象的同时,我密切联系学生已有的生活经验和学习经验,给学生提供了有利于探索和理解两个量之间变化规律的材料,使学生理解正比例关系图象的特征,并掌握其画法。

新的《数学课程标准》提倡引导学生以自主探索与合作交流的方式理解数学、解决问题。在“探究新知”这一环节,我放手让学生自主讨论学习:怎样利用图象,不计算,由一个量的值直接找到另一个量的值。以上三个教学环节,我紧扣教材,遵循学生的认知规律,在师生互动的过程中,使学生认识正比例关系的图象。

唯有每节课坚持课后反思,寻找教学中出现中出现的问题,并不断改进,我相信我的教学水平会有一个较大的提高!

正比例教案篇八

教科书第52页例1,第55页课堂活动第1题及练习十二1,2,3题。

1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。

2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。

认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。

理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

教具:多媒体课件。

学具:作业本,数学书。

一、联系生活,复习引入

(1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。

(2)揭示课题。

教师:这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的一些规律和特征。

二、自主探索,学习新知

1.教学例1

用课件在刚才准备题的表格中增加几列数据,变成表。

教师:请同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。

教师根据学生的回答将表格完善,并作必要的板书。

教师:同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。

板书:相关联

教师:你们还发现哪些规律?

学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:

教师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。

板书:

2.教学试一试

教师:我们再来研究一个问题。

课件出示第52页下面的试一试。

学生先独立完成。

教师:你能用刚才我们研究例1的方法,自己分析这个表格中的数据吗?

教师根据学生的回答归纳如下:

表中的路程和时间是相关联的量,路程随着时间的变化而变化。

时间扩大若干倍,路程也扩大相同的倍数;时间缩小若干倍,路程缩小相同的倍数。

路程与时间的比值是一定的,速度是每时80 km,它们之间的关系可以写成路程时间=速度(一定)

3.教学议一议

教师:我们研究了上面生活中的两个问题,谁能发现它们之间的共同点呢?

引导学生归纳出这两个问题中都有相关联的量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是一定的。

教师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。

4.教学课堂活动

教师:请大家说一说生活中还有哪些是成正比例的量。

三、夯实基础,巩固提高

(1)完成练习十二的第1题。

教师:请同学们用所学知识判断一下,下面表中的两种量成正比例关系吗?为什么?

学生独立思考,先小组内交流再集体交流。

(2)完成练习十二的第2题。

四、全课小结

教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?

正比例教案篇九

1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。

2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

实物投影。

一、复习。

要求学生说出成正反比例量的关键,根据学生回答板书关系式。

2、判断下面各题中的两种量是不是成比例,成什么比例。

(1)圆锥的体积和底面积。

(2)用铜制成的零件的体积和质量。

(3)一个人的身高和体重。

(4)互为倒数的两个数。

(5)三角形的底一定,它的`面积和高。

(6)圆的周长和直径。

(7)被除数一定,商和除数。

二、练习。

完成练习十三9~13题。

1、第9题。

观察每个表中的数据,讨论表下的问题。要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。

2、第10题。

(1)看图填写表格。

(2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。

(3)启发学生运用有关比例尺的知识进行解答。

3、第11题。

填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。

4、第12题。

引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。

5、第13题。

让学生小组进行讨论,教师指导有困难的学生。

三、补充练习。

1、a与b成正比例,并且在a=1。。时,b的对应值是0。15。

(1)a与b的关系式是a/b=()。

(2)当a=2。5时,b的对应值是()。

(3)当b=9。2时,a的对应值是()。

2、甲、乙两人步行速度的比为5:6,从a地到b地,甲走12小时,乙要走几小时?

正比例教案篇十

教学过程。

谈话导入。

师:谁能用比的知识说一说我们班男女同学的人数情况?

(指名汇报)。

师:今天我们就一起来整理和复习比和比例的有关知识。

回顾与整理。

1.(1)举例说一说什么是比,什么是比例,什么是比例尺以及它们的应用。

预设。

生1:两个数相除又叫作两个数的比,如5÷2,可以写成5∶2。

生2:表示两个比相等的式子叫作比例,如8∶4=24∶12。

生3:图上距离和实际距离的比,叫作这幅图的比例尺,如一幅地图的比例尺是。比例尺可分为数值比例尺和线段比例尺。

生4:配制农药会应用到比的知识;地图上一般都有比例尺。

……。

(2)说一说比与比例有什么区别。

比例。

各部分名称。

0.9∶0.6=1.5。

前项后项比值。

基本性质。

比的前项和后项同时乘或除以相同的数(0除外),比值不变。

在比例里,两个内项的积等于两个外项的积。

(3)出示教材83页“回顾与交流”2题。

学生独立完成,思考比、分数、除法之间的关系,并全班交流。

预设。

生1:除法算式中的被除数相当于分数的分子,相当于比的前项;除法算式中的除数相当于分数的分母,相当于比的后项;除号相当于分数的分数线,相当于比的比号。

生2:除法算式的商相当于分数的分数值,相当于比的比值。

强调:因为0不能作除数,所以所有分数的分母及比的后项都不能为0。

正比例教案篇十一

教学目标:

1。利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。

2。能根据正比例的意义,判断两个相关联的量是不是成正比例。

3。结合丰富的事例,认识正比例。

教学重点:

1、结合丰富的事例,认识正比例。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学难点:

能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学用具:课件

教学过程:

预习书19———21页内容

1、填好书中所有的表格

2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?

3、把不理解的内容用笔作重点记号,待课上质疑解答

活动一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一:

1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

说说从数据中发现了什么?

3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

说说你发现的规律。

(二)情境二:

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

2、请把下表填写完整。

3、从表中你发现了什么规律?

说说你发现的规律:路程与时间的比值(速度)相同。

(三)情境三:

1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。

3、从表中发现了什么规律?

应付的钱数与质量的比值(也就是单价)相同。

4、说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

5、正比例关系:

(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

(2)购买苹果应付的钱数与质量有什么关系?

6、观察思考成正比例的量有什么特征?

一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。

(四)想一想:

1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:

(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

请你也试着说一说。

(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

请生用自己的语言说一说。

2、小明和爸爸的年龄变化情况如下:

小明的年龄/岁67891011

爸爸的年龄/岁3233

(1)把表填写完整。

(2)父子的年龄成正比例吗?为什么?

(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

与同桌交流,再集体汇报

在老师的小结中感受并总结正比例关系的特征

正比例教案篇十二

师:请同学们结合课本上的例题,讨论以下问题。

(1)题目中相关联的两种量是________和________。

(2)________一定,_________和_________成_______比例关系。

(3)______行驶的_____和_____的________相等。

2、学生自学例题后小组讨论。

3、组间交流:小组代表把讨论结果在班内交流。

4、学生尝试解答后评价(指名学生板演)。

5、怎样检验?把检验过程写出来。

6、概括总结。

比例的方法解。

(2)明确解题步骤。(板)。

用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

1.分析判断。

2.找出列比例式所需的相等关系。

3.设未知数列等式。

4.求解。

5.检验写答语。

正比例教案篇十三

1。能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。

2。使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。

3。使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。

正比例教案篇十四

1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。

2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

正比例教案篇十五

2.做练习十一第1题。

让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的正比例的意义,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。

3.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?

一种苹果,买5千克要10元。照这样计算,买15千克要30元。

正比例教案篇十六

1、填好书中所有的表格。

2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?

3、把不理解的内容用笔作重点记号,待课上质疑解答。

二、展示与交流。

活动一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一:

1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

说说从数据中发现了什么?

3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

说说你发现的规律。

(二)情境二:

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

2、请把下表填写完整。

3、从表中你发现了什么规律?

说说你发现的规律:路程与时间的比值(速度)相同。

(三)情境三:

1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。

3、从表中发现了什么规律?

应付的钱数与质量的比值(也就是单价)相同。

4、说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

(2)购买苹果应付的钱数与质量有什么关系?

6、观察思考成正比例的量有什么特征?

一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。

(四)想一想:

1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:

(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

请你也试着说一说。

(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

请生用自己的语言说一说。

2、小明和爸爸的年龄变化情况如下:

小明的年龄/岁67891011。

爸爸的年龄/岁3233。

(1)把表填写完整。

(2)父子的年龄成正比例吗?为什么?

(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

与同桌交流,再集体汇报。

在老师的小结中感受并总结正比例关系的特征。

正比例教案篇十七

例3教学反比例的意义,安排的教学活动线索和例1十分相似。在表格里可以看到笔记本的单价在变化,购买的数量也在变化,而且每组相对应的单价和数量的乘积都是60,这不仅是算得的,还和题目里的用60元买笔记本相一致,因此用数量关系式单价数量=总价(一定)表示这个问题情境里两个变量的变化规律。在此基础上指出单价和数量是两种相关联的量,它们成反比例,是两个成反比例的量。试一试先把表格填写完整,在填表时体会工地要运的72吨水泥是确定的。然后思考三个问题,抓住每天运的吨数与需要的天数的乘积是多少,乘积表示什么数量以及问题情境的数量关系式,从每天运的吨数天数=运水泥的总吨数(一定),理解每天运的吨数和需要的天数成反比例。通过上面四个实例的研究,学生初步感知了反比例的含义,于是用字母x、y表示两种相关联的量,用k表示两个量的乘积,把反比例关系表示成xy=k(一定),形成反比例的概念。

练习十三第6~8题配合例3的教学,重温认识反比例的过程,应用概念进行判断,从而加强对反比例的理解。第8题在方格纸上分别呈现了三个面积都是12平方厘米的长方形、三个周长都是14厘米的长方形,看图在表格里填出各个长方形的长与宽。前三个长方形的长乘宽分别是121=12、62=12、43=12,即长宽=面积(一定),得到的结论是长方形的面积一定,长与宽成反比例。后三个长方形的长乘宽分别是61=6、52=10、43=12,这些周长相等的长方形,长与宽的乘积不相等,所以长方形的周长一定,长与宽不成反比例。教学这道题要让学生经历得出结论的过程,强化对反比例概念的理解。第9~13题是综合练习,练习内容包括成正比例的量与成反比例的量的比较,成比例的量与不成比例的量的比较,比例尺与正比例关系,还要寻找生活中成正比例的量或成反比例的量的实例。编排这些练习,要通过比较与判断进一步使学生清晰地理解概念,掌握成正、反比例的量的变化规律;要联系正比例的概念体会比例尺的意义,形成新的认知结构;要体验生活中经常看到成正比例的量与成反比例的量,培养数学意识。

正比例教案篇十八

本单元在学生具有比和比例的知识,认识常见数量关系的基础上编排,通过对两个数量保持商一定或积一定的变化,理解正比例关系和反比例关系,渗透初步的函数思想。正比例和反比例历来是小学数学里的重要内容之一,与过去的教材相比,本单元进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。全单元编排三道例题和一个练习,前两道例题都是关于正比例的,分别教学正比例的意义和图像,后一道例题教学反比例的知识。

例1让学生初步感知两种相关联的量以及成正比例的量的含义。列表呈现了一辆汽车行驶的路程和时间,通过写出几组对应的路程和时间的比并求比值,发现各个比的比值都是80,理解80是这辆汽车每小时行驶的千米数,由此得出数量关系路程/时间=速度(一定)。在数量关系中,路程比时间等于速度是旧知识,速度一定是这个问题情境里的规律,是正比例概念的生长点。教材先指出路程和时间是两种相关联的量,用时间变化,路程也随着变化具体解释两种量的相关联。再指出这辆汽车行驶的路程和时间的比的比值总是一定,可以说路程和时间成正比例,它们是成正比例的量,学生在这里首次感知了正比例关系。

试一试在另一组数量关系中继续感知正比例关系,购买铅笔数量和总价的表格里有三个空格,先计算买4枝、5枝、6枝这种铅笔的总价,让学生体会铅笔的单价每枝0。3元是不变的,总价是随着数量变化而变化的,总价与数量是两种相关联的量。然后依次回答其他三个问题,得出铅笔总价和数量成正比例的结论,并用式子总价/数量=单价(一定)作出解释。试一试的认知线索与例1相似,留给学生自主活动的空间比例1大,使学生对正比例关系的体验更深刻。

学生在上面两个实例中感知了正比例的具体含义,教材第63页要形成正比例的概念。抽象概括正比例的意义是概念形成的重要环节,也是发展数学思考的极好机会。首先用字母表示数量,每个实例里都有两个相关联的量,分别是路程和时间或者总价与数量,两个量的比的比值分别是速度和单价,因而用字母x和y表示两种相关联的量,用k表示它们的比值;然后把路程/时间=速度(一定)、总价/数量=单价(一定)表示成y/x=k(一定),并指出正比例关系可以用这个字母式子表示。用抽象的字母组成的式子表示正比例关系是认知难点,教学要联系两个实例,引导学生经历字母表示具体的数量?字母式子表示常见数量关系?字母式子表示正比例关系的过程,加强对式子y/x=k(一定)的理解。

练一练判断生产零件的数量和时间成不成正比例,是把正比例概念具体化,利用概念进行演绎推理。具体地说,是分析这个情境里的生产零件数量和所用时间的比的比值是否始终保持一定,如果具备y/x=k(一定)这种关系,两种相关联的量成正比例,否则就不成正比例。学生在第62页试一试里已经进行过这样的分析和判断,那时是依据连续的四个问题进行的,现在要求他们独立开展有条理的推理活动,进一步理解正比例的意义,掌握判断两种量成不成正比例的方法。练习十三第1~3题配合例1的教学,第3题判断正方形的周长与边长、面积与边长成不成正比例。可以根据表格里填的数据进行推理,因为周长与边长的比4/1、8/2、12/3、16/4的比值都是4,面积与边长的比1/1、4/2、9/3、16/4的比值不相等,所以正方形的周长与边长成正比例,面积与边长不成正比例。也可以根据正方形的周长公式和面积公式推理,从边长4=周长可以得到周长与边长的比的.比值是确定的数4,即周长/边长=4(一定),所以正方形的周长与边长成正比例。从边长边长=面积可以知道,面积虽然随着边长的变化而变化,但是面积与边长的比的比值是变化的量,即面积/边长=边长,所以正方形的面积与边长不成正比例。前一种思考对问题进行具体的分析,适宜大多数学生的实际水平,也符合《标准》的要求。后一种思考没有利用数据信息,推理的难度较大,不必对学生提出这样的要求。教材设计这道题的意图是进一步使学生理解正比例的意义,突出正比例概念的内涵:两种相关联量的比的比值保持一定。

像直观表达正比例关系。

例2是按照《标准》的要求根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值编排的,设计的三个问题体现了教学正比例图像的三个步骤。第一步认识图像上的点,按照a点表示1小时行80千米b点表示5小时行400千米说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。了解正比例图像是直线对以后画图能起两点作用:一是画正比例关系的图像(如第64页练一练),可以根据提供的各组数据描出图像的许多个点,再依次连成直线;二是如果按正比例关系画出的点不在同一条直线上,表明画点出现了错误,应及时纠正。第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。要指导学生利用画垂线或画平行线的技能,尽量使得数准确些。如估计2。5小时行驶的千米数,要在横轴上找到表示2。5小时的点,过这点画横轴的垂线,得到垂线与图像的交点,再过交点作纵轴的垂线,根据垂足在纵轴上的位置估计行驶的路程。

练习十三第4、5题配合例2的教学。判断实际问题里相关联的两种量成不成正比例有两种思路,一种是看画成的图像,如果图像是一条直线,那么两种量成正比例;如果图像不是一条直线,那么两种量不成正比例。另一种是根据正比例的意义,利用各组对应的数据写出比、求比值,从比值是否相等作出成不成正比例的判断。教学时要引导学生应用后一种思路,在判断活动中加强对概念的理解。

例3教学反比例的意义,安排的教学活动线索和例1十分相似。在表格里可以看到笔记本的单价在变化,购买的数量也在变化,而且每组相对应的单价和数量的乘积都是60,这不仅是算得的,还和题目里的用60元买笔记本相一致,因此用数量关系式单价数量=总价(一定)表示这个问题情境里两个变量的变化规律。在此基础上指出单价和数量是两种相关联的量,它们成反比例,是两个成反比例的量。试一试先把表格填写完整,在填表时体会工地要运的72吨水泥是确定的。然后思考三个问题,抓住每天运的吨数与需要的天数的乘积是多少,乘积表示什么数量以及问题情境的数量关系式,从每天运的吨数天数=运水泥的总吨数(一定),理解每天运的吨数和需要的天数成反比例。通过上面四个实例的研究,学生初步感知了反比例的含义,于是用字母x、y表示两种相关联的量,用k表示两个量的乘积,把反比例关系表示成xy=k(一定),形成反比例的概念。

练习十三第6~8题配合例3的教学,重温认识反比例的过程,应用概念进行判断,从而加强对反比例的理解。第8题在方格纸上分别呈现了三个面积都是12平方厘米的长方形、三个周长都是14厘米的长方形,看图在表格里填出各个长方形的长与宽。前三个长方形的长乘宽分别是121=12、62=12、43=12,即长宽=面积(一定),得到的结论是长方形的面积一定,长与宽成反比例。后三个长方形的长乘宽分别是61=6、52=10、43=12,这些周长相等的长方形,长与宽的乘积不相等,所以长方形的周长一定,长与宽不成反比例。教学这道题要让学生经历得出结论的过程,强化对反比例概念的理解。第9~13题是综合练习,练习内容包括成正比例的量与成反比例的量的比较,成比例的量与不成比例的量的比较,比例尺与正比例关系,还要寻找生活中成正比例的量或成反比例的量的实例。编排这些练习,要通过比较与判断进一步使学生清晰地理解概念,掌握成正、反比例的量的变化规律;要联系正比例的概念体会比例尺的意义,形成新的认知结构;要体验生活中经常看到成正比例的量与成反比例的量,培养数学意识。

【本文地址:http://www.xuefen.com.cn/zuowen/8785670.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档