经济是社会资源的配置和利用方式。为了写一篇较为完美的总结,我们需要全面地回顾和分析所要总结的内容。以下是一些经典的总结范文,希望能够给大家提供一些写作上的启示和参考。
比的基本性质说课稿篇一
今天我向大家介绍的是数学六年级新教材第一章“分数”中的第二课时“分数的基本性质”。在本堂课的教学设计中,试图突出以下两个特点:
(1)逐步引导学生实现学习方式的转变:由学生习惯于课堂上听教师讲授为主的学习方式,转变为学生自主学习探究的学习方式。教师为学生提供一个发展的空间,引导学生自己通过动手操作、观察猜测、说理验证等学习环节,运用自主探索、合作交流等学习方式,去探索,去发现,去体验,教师作为指导者给予启发、点拨。希望通过这样的设计,能逐步引导学生形成并且正在逐步形成积极思考、自主探索、相互合作、严谨求实的品质。
(2)强调知识发生的过程,加强数学思想方法的渗透:由学生熟悉的给定理、做练习的数学课模式,转变为突出知识发生过程,强调数学思想方法的数学学习过程。通过给学生设置一个具体的情境问题,激起学生的求知欲望,教师引导学生探索发现其中的数学规律,并用已经学过的知识和方法去尝试说理验证。通过这样的数学学习过程,学生能亲身体验科学研究的一般过程,并从中体会科学探索的严谨品质,同时在要求学生说理验证的过程中可以启发学生建立新旧知识之间的联系,实现知识点的增长和迁移的特点。
在前一年我曾执教过六年级数学,通过这次的备课,我发现:在“分数的基本性质”这一课的教学安排中,新老教材对知识的发生和形成过程的处理方法有较大的区别。据我个人的观点,老教材在引入时有针对性的复习分数与除法的关系和除法中商不变的性质,之后通过类比来实现知识点的迁移和增长,这样的设计安排学生能较好的体会到各知识点之间的内在联系,学习的数学概念有较强的系统性;新教材则更强调学生通过自身的努力,经过动手操作实践的过程,来获得亲身探究的直观感受和体验,之后再设法把感性认识上升到理性思考的高度,这样的设计安排突出的特点是学生有更多的动手操作机会,能留下强烈的直观感受,对培养学生逐步形成自主探究的良好的学习方式有很大的帮助。教学目标:在理解分数意义的基础上,通过操作、观察,探索分数的基本性质,体验分数性质的“探究发现——说理检验”的学习过程,并会运用分数的基本性质将一个分数变化为分母(或分子)不同而大小保持不变的分数。学会面对新问题时,敢于面对、积极探索、发现规律,并能从原有知识中找到理论依据,体会新旧知识间的内在联系,通过自身的努力,实现知识点的迁移和增长。通过数学课的学习活动,尽快熟悉新同学,逐步养成认真倾听同学意见、相互合作、相互交流、积极探索的品质。
教学过程:
一创设情境,引出问题,引导探索,猜测规律提出问题:一张涂色的纸,涂色部分占这张纸的3/4。请同学们分别用这样的纸折成不同等分的图案,看看你们能发现什么结论呢?通过教师的引导,学生们可以发现:在这些大小相同、不同等分的纸中,涂色部分分别占纸的3/4、6/8、9/12、12/16,这些分数的大小是相等的,即:3/4=6/8=9/12=12/16。由分数3/4的分子、分母分别同乘以2、3、4可得分数6/8、9/12、12/16。而分数12/16、9/12、6/8的分子、分母分别同除以4、3、2可得分数3/4。鼓励学生大胆猜测。由折纸这样具体的情境问题来引发学生的思考,既能激发学生的学习兴趣,学生又能真切的体会到数学就在我们身边;安排动手操作的学习环节,之后通过观察和找规律来进行探究性学习,符合六年级学生的认知程度,能让他们体会到数学学习的乐趣。折纸这样的操作虽然看似简单,其实能反映出很多数学问题,例如通过折纸可以帮助学生体会图形的翻折对称中隐含的图形特征和边角的数量关系。我们应该尽量挖掘类似的简单有效的方法,让学生的数学学习过程手脑并用、轻松有趣。在探索过程中,教师的引导是非常重要的一个的环节,尤其是如何设问。
在此,我就提出几个设问仅供大家参考。双色纸上有几个小长方形?绿色部分占这张纸的几分之几?你能将它折成几个大小相同的小长方形?绿色部分分别占了几分之几?这些分数有什么关系?这些分数之间有什么规律?在本节课之前,学生对分数的意义、分数与除法的关系已经有了初步的认识,在说理过程中,会很自然的运用到分数和除法的关系,以及除法中商不变的性质。分数和除法的关系就是前一节课的学习内容,学生印象还比较深刻,较易联想起来;除法中商不变的性质可能学生一时之间不容易回想起来,但它和分数的基本性质相似性极高。安排这样的说理环节,可以使学生体会到新旧知识之间的内在联系,体会到学习的过程就是知识点的迁移和增长过程。三运用性质,巩固提高例题1试举出几个与分数18/48大小相等的分数。教材上是“试举出三个与分数2/5相等的分数”。做改动的目的有两个:一是学生可以从中体会分子、分母不但可以同乘一个数而且可以同除一个数;二是不明确写几个,来引发学生思考这样的分数可以写几个?例题2把2/5和8/60分别化成分母是15且与原分数大小相等的分数。练习1在括号内填上适当的数,使等式成立:
(1)9/15=3×()/5×()。
(2)2×()/9×()=8/()。
(3)5×()/2×()=()/14。
(4)15÷()/20÷()=()/42。
试各写出三个与下列分数分母不同而大小相等的分数:
(1)1/4。
(2)5/7。
(3)4/6。
(4)10/43。
分别用数轴上的点表示分数1/2,2/4,4/8,你能得到什么结论?4把2/3和8/30分别化成分母是15且大小相等的分数。5在括号中填上适当的数:
(1)1/4=()/12。
(2)3/7=()/56。
(3)6/5=30/()。
(4)()/10=4/20。
(5)36/24=()/8。
(6)7/35=1/()。
(7)18/()=6/12。
(8)20/16=5/()。
四、课堂小结。
比的基本性质说课稿篇二
1、把握新旧知识的链接点,如商不变的性质、分数的基本性质与比的基本性质之间的联系,从分析它们的相似之处入手,让学生在联想、观察、类比、对比、类推等活动中,探讨比的基本性质。
2、题型设计针对性强,每个题都用心细腻,为课的开展埋下伏笔。如课前的“服从命令听指挥”,1/6除以2/9=(),要求被除数、除数变为整数,这些题既是复习商不变的性质,又将化简分数比、小数比的关键突破了。
3、放手到位,让学生自主学习化简比,善于抓住学生暴露的真实问题,恰当的组织学生交流、讨论,使之成为教学的最佳资源。如:学生将化简比的形式写成了分数形式,教师及时发现,予以纠正,给了学生一个正确的导向。
4、过渡自然,衔接顺畅,尤其是抓住了知识之间的联系点,进行对比教学。如:商不变的性质可使除法简算,分数的基本性质可以将分数化成最简分数,那么比的基本性质可以用来干什么。一下子将前后知识顺利的联系起来。
5、教师一改以往的.从性质中找出关键的字、词的做法,替代这一环节的是不同形式的练习。学生在练中感悟、提炼、掌握性质中的每一个字、词,并且又通过反复的阅读中发现关键信息、有用的数学信息,体现了数学阅读的价值。
6、教师精明干练的教学状态,课堂氛围紧张、充实,教学中不仅教给学生知识,更是教给了学生学习的方法。
板书设计再条理、清楚些更好。
1、把握新旧知识的链接点,如商不变的性质、分数的基本性质与比的基本性质之间的联系,从分析它们的相似之处入手,让学生在联想、观察、类比、对比、类推等活动中,探讨比的基本性质。
2、就地取材,尊重学生,让学生形成自主学习的自豪感,善于抓住学生暴露的真实问题,恰当的组织学生交流、讨论,使之成为教学的最佳资源。
3、学习方法引导准确、到位。如1:2=2:4=3:6教给学生如何观察:从左到右、从右往左,发现比的前项、后项是如何变化的。
4、在反复的阅读中发现关键信息、有用的数学信息,体现了数学阅读的价值。如仔细读分数的基本性质,利用比与分数之间的关系,发现它们的相似之处,推出比的基本性质。另外,又从比的基本性质中,通过阅读,找出关键的字、词。
4、细节处理细。学生对于化简比的书写格式不太熟悉,教师通过板书规范书写,给予了学生正确的格式。
5、教师温文尔雅、亲切可人的状态,为学生营造了一个轻松和谐的教学氛围,教学中不仅教给学生知识,更是教给了学生学习的方法。
1、板书1:2=2:4=3:6前、后项的变化时,应注意一一对应,尤其是箭头的方向。
2、练习设计结合冯老师的题型效果会更好。
比的基本性质说课稿篇三
教学目标:
1.让学生通过经历预测猜想实验分析合情推理探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
3.培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。
教学重点:
教学难点:
让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教学过程:
一、故事情景引入。
好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?奶奶的话刚讲完,小红就嘟着嘴叫了起来:奶奶你不公平!分给小兵的多,分给我的少!小明连忙叫着:奶奶不公平,奶奶偏心!只有小兵在偷着乐。
同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。
讨论完了请举手。
生甲:我觉得不公平,小红分得多。
生乙:我觉得小明分得多。
生丙:我觉得公平,他们三个分得一样多。
师:看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。
二、新授。
师:下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)。
请你们把这三张圆片叠起来,比一比大小,看看怎么样?
生:三张圆片一样大。
1.师:下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。
首先,请在第一张圆片上表示出它的1/3;
再在第二张圆片上表示出它的2/6;
然后在第三张圆片上表示出它的3/9。
好了,大家动手分一分。(教师巡视指导)。
2.师:分完了的请举手?
老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)。
下面请哪位同学说一说,你是怎么分的?
生:把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。
生:把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。
师:那九分之三又是怎么得到的呢?大家一起说。
生:把这块圆片平均分成九份,取其中的三份,就是它的九分之三。
图1。
(学生说的同时,教师操作,分完后把圆片贴在黑板上。)。
3.师:同学们,观察这些圆的阴影部分,你有什么发现?
小结:原来三个圆的阴影部分是同样大的'。
师:现在再来评判一下,奶奶分月饼公平吗?为什么?(请几名学生回答)。
生:奶奶分月饼是公平的,因为他们三个分得的月饼一样多。
生甲:通过图上看起来,这三个分数应该是一样大的。
生乙:这三个分数是相等的。
师:刚才的试验证明,它们的大小是相等的。(板书,打上等号)。
4.研究分数的基本规律。
师:我们仔细观察这一组分数,它的什么变了,什么没变?
生甲:三个分数的分子分母都变了,大小没变。
师:那它的分子分母发生了怎样的变化呢?让我们从左往右看。
第一个分数从左往右看,跟第二个分数比,发生了什么变化?
生乙:它的分子分母都同时扩大了两倍。
师:跟第三个分数比,它又发生了什么变化?(生回答)对了,它的分子分母都同时扩大了三倍。
再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)。
学生发言。
小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。(板题)。
比的基本性质说课稿篇四
1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题。
2.培养学生观察、分析、思考和抽象、概括的能力。
3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育。
教学过程。
一、谈话我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、整数的互化方法。今天我们继续学习分数的有关知识。
二、导入新课例1.用分数表示下面各图中的阴影部分,并比较它们的大小。
1、分别出示每一个圆,让学生说出表示阴影部分的分数。
(1)把这个圆看做单位1,阴影部分占圆的几分之几?
(2)同样大的.圆,阴影部分占圆的几分之几?
(3)同样大的圆,阴影部分用分数表示是多少?
2、观察比较阴影部分的大小:
(1)从4幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等。)。
(2)阴影部分的大小相等,可以用等号连接起来。
3、分析、推导出表示阴影部分的分数的大小也相等:
(1)4幅图中阴影部分的大小相等。那么,表示这4幅图的4个分数的大小怎么样呢?(这4个分数的大小也相等)。
(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来)。
4、观察、分析相等的分数之间有什么关系?
(1)观察转化成,的分子、分母发生了什么变化?(的分子、分母都乘上了2或的分子、分母都扩大了2倍。)。
(2)观察例2.比较的大小。
1、出示图:我们在三条同样的数轴上分别表示这三个分数。
2、观察数轴上三个点的位置,比较三个分数的大小:从数轴上可以看出:
3、观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律,
1、观察前面两道例题,你们从中发现了什么变化规律?“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变。”
2、为什么要“零除外”?
3、教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”(板书:“基本性质”)。
4、谁再说一遍什么叫分数的基本性质?教师板书字母公式:
1、请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?(和除法中商不变的性质相类似。)。
(1)商不变的性质是什么?(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变。)。
(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算。2、分数基本性质的应用:我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解决一些有关分数的问题。例3把和化成分母是12而大小不变的分数。
板书:
教师提问:
(1)?为什么?依据什么道理?(,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以,)。
(2)这个“6”是怎么想出来的?(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)。
(3)?为什么?依据的什么道理?(,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以,)。
(4)这个“2”是怎么想出来的?(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)。
比的基本性质说课稿篇五
11月25日,我有幸听了曾小豆名师工作室成员张xx老师的一堂复习课。张老师展示的是《圆的基本性质复习课》。
课上,张老师以“转”和“折”两个角度引出圆的旋转不变性和轴对称性。并以圆的`旋转性为出发点将弦与圆周角的问题抛出,让学生思考多种求解方法,从而简单的复习圆心角、弧、弦心距、圆周角、弦等知识点的联系以及垂径定理的运用。在老师的引导下,进一步加深了对圆的基本性质的了解和认识。
本节课,张老师设计的综合型较强的圆与动点问题,是本节课的亮点所在,在给定的条件下,老师先让学生尝试性的出题,然后学生自己解决,课堂效果较好,学生乐学其中。最后老师出手,将难题抛出,学生独立思考并分析解决。整堂课,思路清晰,内容循序渐进,符合学生的认知水平。另外,张老师的将圆的知识结构化,问题设计又充分体现着综合性,结合富有新意的板书,使人印象深刻。
比的基本性质说课稿篇六
今天听了丁老师执教的《比的基本性质》一课。丁老师围绕活动主题,注重培养学生的数学思想,注重学生为教学主体,教师为教学的引导者、合作者,教学方法灵活,教学效果良好。
1、课堂教学中都体现了类推的数学思想,转化的`思想,开课伊始对分数基本性质、除法商不变性质的复习,在教学中,由最简分数到最简整数比,这些由旧知的复习到新知的引入与理解,充分体现了数学中的类推思想和转化思想,不仅教会学生学习的方法,更提高了学生的学习能力,教学效果良好。
2、教学中做到了分散难点,抓住重点,突破难点,在课堂教学中,抓住了理解比的基本性质,利用学生课前阅读,各类判断题的判断,让学生对比的基本性质得到了充分的理解,并在教学中,有效建立分数的基本性质、商不变性质与比的基本性质的关系,分散了教学的难点,抓住重点,突破了难点,教学收到良好的效果。
3、课堂容量大,丁老师的教学根据六年级学生的特点,课堂教学容量大,将课堂教学看作是考试一样,引导学生在紧张、高效的情况下学习、了解、巩固、提高。
教学中注重了学生在判断中理解比的基本性质,化简比与求比值的区别,但缺乏学生亲自动手化简的过程,如果让学生自己亲自去化简,会充分理解比的基本性质,会应用比的基本性质。
比的基本性质说课稿篇七
本周学校举行关于数学学科的联片教研活动,活动主题是“在数学阅读中体验和掌握数学思想方法”,我有幸聆听冯老师执教的六年级数学上册《比的基本性质》,主要有以下收获:
1、本次活动紧扣活动主题,尝试践行落实数学课程中的阅读教学,注重在课堂教学中向学生渗透一定的数学思想方法。冯老师的课堂教学体现了对应思想、类比思想、转化思想。
2、紧扣教材重难点,精心设计教学环节,教学语言精炼,引导恰到好处。
3、练习设计独具匠心,从名称就可见一斑如“服从命令听指挥”、“擦亮眼睛辨真伪”、“众人划桨开大船”
尤其是对于比的基本性质中的关键词如“同时”、“相同的数”、“0除外”等都是通过习题判断来引导学生知道出错的原因,找出理由,从而加深对比的基本性质关键词的理解,这种形式比对这几个词进行单纯的强调效果要好得多。
比的基本性质说课稿篇八
教学内容:
课本第57页的内容及例1,完成做一做题和练习十四的第5~9题。
教学目的.:
教学过程:
一、复习。
1.除法中的商不变规律是什么?
3.比与除法有什么关系?
4.比与分数有什么关系?
二、新授。
将本文的word文档下载到电脑,方便收藏和打印。
比的基本性质说课稿篇九
1.使学生掌握整除、约数和倍数、质数和合数等概念,知道它们之间的联系和区别。掌握能被2、5、3整除的数的特征。会分解质因数。会求最大公约数和最小公倍数。
2.使学生在理解的基础上掌握分数、小数的基本性质。
一、数的整除。
1.整除的意义:
教师:。想一想.“什么叫做整除?”指名回答,
教师进一步强调:。“整除中说的数是什么数?”(整数。)。
“商是什么数?”(整数。)“有没有余数?”(没有余数:)。
教师:“什么叫除尽?”。“两数相除.余数是0。)。
“整除和除尽有什么联系和区别?”指名回答。教师根据学生的回答,整理出下表:
教师:“可以看出整除是除尽的一种特殊情况。”
2.能被2、5、3整除的数的特征。
教师:“我们已经学过能被2、5、3整除的数的特征。同学们还记得吗冲指名说一说。然后提问:
“能被2、5整除的数,在判别方法上有什么共同的地方?”(都根据个位数进行判别。)。
“能被3整除的数。在判别方法上与能被2、5整除的数有什么不同?”(根据各个数值上的数之和进行判别。)。
教师:“什么叫做奇数?什么叫做偶数:”
“根据什么来判断—一个数是奇数还是偶数?”
3.约数和倍数:
教师:“据整除的概念可以得到约数和倍数的概念:什么叫做约数?什么叫做倍数?”指名就一说。(如果a能被b整除。a就叫做b的倍数。b就叫做a的约数。)为了使学生进一步明确约数和倍数是相互依存的,教师可以接着提问:
“能说6是约数.15是倍数吗:应该怎么说?”
教师说明:在研究约数和倍数时.我们所说的数一般只指自然数,不包括0。
教师:“一个数的约数的'个数是怎样的:”(有限的。)。
“其中最小的约数是什么数:最大约数是什么数?”(1.这个数本身。)。
“一个数的倍数的个数是怎样的:”(无限的。)。
“其中最小的倍数是什么数?”(这个数本身。)。
做练习十九的第:题。让学生直接做在书上。教帅可以说明做的方法:在含有约数2的数”下面写“2”,在3的倍数下面写“3”。在能被5整除的数下面写“5”,然后再进行判断。集体订正。
4.质数和合数。
教师指名说一说质数、合数的概念。可有意识地让学习有困难的学生说,其他同学进行补充。
教师:“怎样判断——个数是质数还是合数?”(检查这个数约数的个数.或查质数表。)指名说—说30以内有哪些质数。
让学生进行判断:—个自然数如果不是质数,那么一定是合数。学生判断后,教师说明:1既不是质数.也不是合数。
5.分解质因数。
指名说一说质因数、分解质因数的含义。
做练习十九的第5题。学生独立解答。教师巡视.集体订正。
6。公约数、最大公约数和公倍数、最小公倍数。
(1)复习概念。
教师:“什么叫做公约数?什么叫做最大公约数?”(几个数公有的约数,叫做这几个数的公约数;其中最大的—个叫做这几个数的最大公约数。)“怎样求几个数的最大公约数?”让学生举例说明。
“什么叫做公倍数?什么叫做最小公倍数?怎样求几个数的最小公倍数?”让学生举例说明。
教师:“什么样的数叫做互质数/(公约数只有l的两个数叫做互质数,)。
“质数和互质数有什么区别:”(质数足一个数。只有1和它本身两个约数;互质数是两个数.只有公约数1。)。
“两个不同的质数一定互质吗?”(两个不同的质数—定互质。)。
“互质的两个数一定都是质数吗?”(不一定,如4和9互质,4,9都是合数。)。
(2)课堂练习。
做练习十九的第1题、先让学生独立判断,集体订正时。让学生说—说判断的理由。
做练习十九的第4题。学生独立解答。教师巡视,集体订正。
教师根据前面的教学.整理出教科书第86页的概念联系图。也可以把该图变化成如下形式。
比的基本性质说课稿篇十
自主学习、合作探究。
学生自主活动材料。
一、前置自学(自学课本7-8页内容,并完成下列问题)。
1.判断下列约分是否正确:
(1)=(2)=(3)=0。
2.通分。
和、和。
明确:(1)分式的通分与分数的通分类似;。
分式通分的依据——。
(2)最简公分母的确定:(1)系数取最小公倍数;(2)字母取所有不同字母;(3)所有字母的最高次幂。特别强调,当分母是多项式时,应先将各分母分解因式,在确定最简公分母。
二、合作探究。
1、下列分式的`最简公分母是()?
(1)(2)。
(3)(4)。
2、通分:
(1);(2);(3)。
三、拓展提升。
通分:
(1)和(2)和。
(3)和(4)和。
四、当堂反馈。
1.不改变分式的值,把分式中分子、分母各项系数化成整数为________.
2.分式的最简公分母是_________.
3.通分:
(1)、
(2)、
(3)、
4.某人骑自行车匀速爬上一个斜坡后立即匀速下坡回到出发点,若上坡速度为v1,下坡速度为v2,求他上、下坡的平均速度为()。
(1)(2)(3)(4)。
5.已知,求分式的值。
比的基本性质说课稿篇十一
教材第50、第51页的内容及练习十一的第4~8题。
教学目标。
1、根据除法中商不变的规律和分数的基本性质,利用知识的迁移,使学生领悟并理解比的基本性质。
2、通过学生的自主探讨,掌握化简比的方法并会化简比。
3、初步渗透事物是普遍联系的辩证唯物主义观点。
重点难点。
重点:理解比的基本性质,推导化简比的方法,正确化简比。
难点:正确化简比。
教具学具。
练习题投影片。
教学过程。
一导入。
1、比与分数、除法的关系。
如果学生有困难,可以先完成下表。填表后再说一说比与分数、除法有怎样的关系。
老师:请大家回忆一下,分数有什么性质?商不变有什么规律?它们的内容分别是什么?
(指名学生发言)。
二教学实施。
1、猜想。
老师:比和分数、除法的关系相当密切,那么,在比中有没有类似的性质呢?如果有,请同学们猜想一下,可能会是怎样的。
汇报时,让学生说说猜想的根据,老师也可引导学生在“分数的基本性质”上进行替换。
引导学生用语言表述,比的前项相当于分数的分子,后项相当于分母,分数的分子和分母同时乘或除以相同的数(0除外),分数的'大小不变。因此,比的前项和后项同时乘或除以相同的数(0除外),比值不变。或者比的前项相当于除法中的被除数,后项相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。因此,比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、验证。
以小组为单位,讨论、验证一下刚才的猜想是否正确。
学生汇报。
3、小结。
经过同学们的验证,我们知道这个猜想是正确的,并且经过补充使它更完整了,在比中确实存在这种性质。
4、化简比。
出示例1(1)。
老师整理情境中的信息:“神舟”五号搭载了两面联合国旗,一面长15cm,宽10cm,另一面长180cm,宽120cm,问题是求这两面联合国旗长和宽的最简单的整数比分别是多少。
学生反复读几遍。
提问:你怎样理解“最简单的整数比”这个概念?
学生讨论,指名回答,达成共识,最简单的整数比必须是一个比,它的前项和后项都是整数,而且前项和后项应该是互质数。
15∶10=(15÷5)∶(10÷5)=3∶2。
180∶120=(180÷60)∶(120÷60)=3∶2。
出示例1(2)。
学生尝试把下面各比化成最简单的整数比。
老师强调:不管选择哪种方法,最后的结果都应该是一个最简单的整数比,而不是一个数。
5、反馈练习。
(1)完成教材第51页的“做一做”,集体订正。
(2)完成教材第53页练习十一的第4题。
提问:题目要求你怎么理解?什么叫后项是100的比?后项是100,前项要怎么办?
(3)完成教材第53页练习十一的第5题。
(4)完成教材第53页练习十一的第6~8题。
让学生说明理由,注意思维的逻辑性和语言的条理性。
三课堂作业新设计。
1、把下面各比化成最简单的整数比。
四思维训练参考答案。
课堂作业新设计。
1、6∶73∶13∶85∶67∶54∶14∶510∶1。
2、(1)4∶5(2)3∶2(3)7∶4(4)5∶2。
思维训练。
板书设计。
比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
化简比:前项和后项只有公因数1的比,叫做最简单的整数比。把比化简成最简。
单的整数比,叫做化简比。
备课参考教材与学情分析。
比的基本性质是在学生学习了比的意义,比与分数、除法的关系,商不变的规律和分数基本性质的基础上进行教学的。教材联系学过的除法中商不变的规律和分数基本性质,通过“想一想”启发学生找出比中有什么相应的性质,然后概括出比的基本性质,应用这个性质可以把比化成最简单的整数比。学生在以前的学习中,已经掌握了商不变的规律和分数的基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想―验证―应用,让学生理解比的基本性质,应用性质化简比。
课堂设计说明。
我们知道,比与分数、除法只是形式上的不同,实质上它们是可以互相转化的。教学时,我们先回顾比与分数、除法的关系,复习商不变的规律和分数的基本性质。引导学生想一想:比会不会也有自己的性质,启发他们用举例的方法验证自己的猜想。最后总结出比的基本性质。
根据比的基本性质将比化简,可以使这两个数量之间的关系更加简单、明了,便于学生分析一些事物现象。
比的基本性质说课稿篇十二
一、学习目标:
二、教学过程:
(一)温故知新(考考你的眼力)判断下面的方程是不是一元一次方程?不是的请说明理由。
1、2+x=52、x+y=23、x2+y=5。
4、1+2=35、x2–3=26、3x–2x=3。
由小组合作完成,请一个同学起来点评。
(二)情景导入。
1、看下面一组式子,请你添上适当的数或者式子,保证等式还成立。
1+2=32x+3x=5x。
1+2+____=3+____2x+3x+_____=5x+___。
1+2-____=3-____2x+3x-_____=5x-___。
再换一个数或者式子试试。同桌交流一下答案。
归纳发现规律:由此你发现等式有什么性质?
2、再看一组式子:请你添上适当的`数使等式还成立。
8=8x=x。
换一个数试试:小组交流:看看你添的数和其他同学一样吗?
归纳发现规律:由此你又发现了等式有什么性质?
用数学符号表示:(1)若________=__________(________)。
则__________=____________。
(2)若_________=__________(________)。
则_________=____________。
(三)拓展延伸你会用等式的性质来解决以下问题吗?试试看!
2、从x=y能得到吗?理由是:______________________。
比的基本性质说课稿篇十三
教学内容:课本第57页的内容及例1,完成“做一做”题和练习十四的第5~9题。
教学目的:使学生理解比的基本性质,掌握化简比的方法。
教学过程 :
一、复习。
1.除法中的商不变规律是什么?
3.比与除法有什么关系?
4.比与分数有什么关系?
二、新授。
我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。
问:
引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。
问:(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。
2.教学化简比。
出示例1:把下面各比化成最简单的整数比。
(1) 。
问:(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)。
(2)。
导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)。
化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。
(3)。
问:(启发学生说出:可根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)。
或
3.小结:
问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?
三、巩固练习。
1.完成“做一做”的题目。
让学生说一说化简的方法。
2.练习十四第5、7、8题。
3.练习十四第9题。
提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)。
四、作业 。
1.练习十四第6、10题。
2.一列火车15小时行驶1200千米。
(1) 写出行驶的路程和时间的比,并化成最简单的整数比。
(2) 求出这个比的比值,再说出这个比值的含义是什么?
比的基本性质说课稿篇十四
第十三课时:
教学内容:课本第57页的内容及例1,完成“做一做”题和练习十四的第5~9题。
教学目的:使学生理解,掌握化简比的方法。
教学过程 :
一、复习。
1.除法中的商不变规律是什么?
3.比与除法有什么关系?
4.比与分数有什么关系?
二、新授。
1.教学。
我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。
问:
引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是。
问:(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。
2.教学化简比。
利用,我们可以把比化成最简单的整数比。
出示例1:把下面各比化成最简单的整数比。
(1) 。
问:(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据把前、后项同时除以它们最大公约数7)。
(2)。
导学生说出:要根据,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)。
化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。
(3)。
问:(启发学生说出:可根据,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)。
或
3.小结:
问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?
三、巩固练习。
1.完成“做一做”的题目。
让学生说一说化简的方法。
2.练习十四第5、7、8题。
3.练习十四第9题。
提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)。
四、作业 。
1.练习十四第6、10题。
2.一列火车15小时行驶1200千米。
(1) 写出行驶的路程和时间的比,并化成最简单的整数比。
(2) 求出这个比的比值,再说出这个比值的含义是什么?
比的基本性质说课稿篇十五
着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
学生已经清楚理解分数的好处,明确分数与除法的关系,商不变
性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
综合分析课程标准要求及学生实际,我确定本节教学目标如下:
1.理解和掌握分数的基本性质,并会运用分数的基本性质把不同
的分数化成分母(或分子)相同而大小不变的.分数。
2.初步养成观察、比较、抽象概括的逻辑思维潜力,并且在自主探究中正确认识和理解变与不变的辩证关系。
3.受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。
根据本节课的教学目标,思考到学生已有的知识、生活经验和认
知特点,结合教材资料,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。透过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
本节课的教学过程我分五个部分进行
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问
题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”能够细化为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较潜力。
环节二:呈现问题,引导观察
这一环节主要呈现给学生这样一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察潜力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括潜力。
就应强调的是,无论学生说的多么好,教师最后的总结和确认是不可缺少的。
以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。
比的基本性质说课稿篇十六
《分数的基本性质》这一课是课改版小学数学教材第十册的教学内容,学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种变与不变中发现规律。
2、知识间的联系:
七册:商不变性质十册:分数的基本性质十二册:比的基本性质。
同时《分数的基本性质》也是学生学习分数加减法的基础。所以,本节课的教学内容具有比较重要的地位。
二、指导思想与设计理念。
新的课程标准提出:教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。
根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,本课让学生经历:旧知唤醒(复习商不变性质与分数与除法的关系)新知猜想(分数中是否有类似的性质,如果有,是一个什么样的性质?)实践探究(看图分类)得出结论(研究卡)深化认识(对结论的理解,尝试练习,理解其中的变与不变,能用字母来表示式子)练习提高(基本题、综合题、加深题)数学建模(用字母来表示分数的基本性质)建立联系(分数的基本性质与商不变性质的联系)。让学生对于分数的基本性质能在数学的层面上有一个较为完整、清晰与明确的掌握。
三、学情分析。
前测:(问卷形式)。
问题1:你知道分数的基本性质吗?你是怎样理解的,试着举例说明。
2:试着做一做下面这些题比较大小:
4/7○2/71/2○2/43/5○9/15。
分析:暂无。
结论:暂无。
四、教学目标及重难点。
教学目标:
1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。
2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。
3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。
教学重点:
解决策略:通过让学生经历猜想验证得出结论实践练习这样的学习过程,掌握知识的要点:什么是同时?方法是:乘或除以,要点:相同的数(0除外),最终:分数的大小不变。
教学难点:
解决策略:通过初步建立数学模型,使学生对分数的基本性质这个结论能够摆脱表象的依赖,即对具体事物或图例,从而从而成熟地思考、理解。
五、教法学法:
教法:树立以以学生发展为本、以学定教的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。
学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。
六、教学过程。
一、迁移旧知.提出猜想。
1回忆旧知。
活动:猜信封。通过猜信封中的数或算式,引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:
被除数除数=。
通过谁能说一道与23商一样的除法算式?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:。
被除数和除数同时乘或除以相同的数(零除外),商不变。
2、提出猜想:
既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
二、验证猜想,建构新知。
环节1、看图分类。
下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。
通过动手操作,使学生不仅明白它们相等,渗透它们是因为什么而相等的为后面的实验做好准备,避免学生出现盲目行动,同时也是为学生探究方法的多元化创造条件。
环节2、讨论方法。
师:你是怎么判断它们相等的?
师:它们相等,用算式可以怎么表示?
1/2=2/4=4/8。
通过让学生表述怎么判断它们相等的锻炼学生的表达能力。
3、研究规律。
利用研究卡进行研究。
确定的研究对象。
分子和分母同时乘上或者。
除以一个相同的数。
得到的分数。
研究对象与得到的分数相等吗?
相等()不相等()。
猜想是否成立?
成立()不成立()。
充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
第二层:教师通过追问和简单的练习重点处理分数基本性质的关键词,渗透变与不变的数学思想。
师:为什么要0除外?
师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)。
师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)。
师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)。
环节4、质疑完善。
3/4=3()/4()。
师:括号中可以填哪些数?
预设:可以填无数个数。
师:如果只用一个数来表示,填什么数好?
预设:字母。
师:这个字母有什么特殊要求吗?(0除外)。
得到一个初级的数学模型。3/4=3x/4x(x0)。
让学生打开课本进行阅读、内化,并想一想还有什么问题吗?
通过这个环节的练习,进行第一次数学建构。
三、练习升华。
通过以下练习进一步巩固分数的基本性质,使学生初步利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。
2、把5/6和1/4都化为分母为12而大小不变的分数。
3、把2/3和3/4都化为分子为6而大小不变的分数。
4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?
5、和哪一个分数大,你能讲出判断的依据吗?
四、总结延伸。
师:这节课学了什么?
师:如果一个分数为a/b,你能用一个式子来表示分数的基本性质吗?
a/b=ax/4x(x0)或a/b=ax/4x(x0)。
在这个环节中,数学的模型才真正的建立。模型一方面便于学生记忆,便于学生理解意义,而且数学化地表示数学也是高年级学生所必备的。
五、作业p87-1、2。
板书设计。
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
68。
34。
1216。
比的基本性质说课稿篇十七
难点本节例2。
方法讲练结合教学。
用具。
教学过程集体备课稿个案补充。
一.利用书本图5-1和5-2发现等式的两个基本性质。
等式的`基本性质1等式的两边同时加上(或减去)同一个数或式,所得结果仍是等式若则。
1.书本117做一做。
2.书本118课内练习1。
3.课本117页例1。
三.会依据等式的基本性质将方程变形,求出方程的解。
1.书本118页例2。
2.书本119页作业题3,4。
教学反思。
教学改进。
比的基本性质说课稿篇十八
大家上午好!
我说课的内容是:人教版小学数学课标教材五年级下册75页—76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。
本节的内容属于概念教学。《分数基本性质》在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
综合分析课程标准要求及学生实际,我确定本节教学目标如下:
1.理解和掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。
2.初步养成观察、比较、抽象概括的逻辑思维能力,并且在自主探究中正确认识和理解变与不变的辩证关系。
3.受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。
根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合了教材内容,本一课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过了观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
本一节课的教学过程我分五个部分进行:
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问。
题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”可以细化成为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较能力。
环节二:呈现问题,引导观察
这一环节主要是呈现给学生这样的一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的`观察能力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。
应该强调的是,无论学生说的多么好,教师最后的总结和确认是不可缺少的。
以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。
比的基本性质说课稿篇十九
这节课充分运用知识的迁移,调动了学生的知识积累,使学生学的轻松、愉快,同时感悟了知识的形成过程。这节课以“商不变的性质”复习引入,通过一组练习题充分复习了“被除数和除数同时扩大或缩小相同倍数,商不变。”
在新授过程中,莫老师没有单一地把今天所要学习的内容直接出示给学生,而是把一种静态的数学知识变为一种让学生在一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。整个课堂创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。在这一过程中,学生不仅学得快乐,而且每个学生的个性也充分得到了发展,为学生的长远发展奠定了良好的基础。
莫老师老师设计的练习题的也是由浅入深,形式多样。既复习了新知识,并让学生在练习中有所提升,组织学生自己讨论寻求解决的办法,体现了自主学习。
【本文地址:http://www.xuefen.com.cn/zuowen/10585006.html】