比的基本性质和化简比说课稿(通用15篇)

格式:DOC 上传日期:2023-11-06 16:23:22
比的基本性质和化简比说课稿(通用15篇)
时间:2023-11-06 16:23:22     小编:笔砚

总结能够帮助我们发现自身的优势和不足,有利于个人成长和职业发展。总结的语言要简练明了,清晰流畅,让读者易于理解和接受。通过总结,我们可以学习他人的成功经验,加快自己的成长速度。

比的基本性质和化简比说课稿篇一

本周学校举行关于数学学科的联片教研活动,活动主题是“在数学阅读中体验和掌握数学思想方法”,我有幸聆听冯老师执教的六年级数学上册《比的基本性质》,主要有以下收获:

1、本次活动紧扣活动主题,尝试践行落实数学课程中的阅读教学,注重在课堂教学中向学生渗透一定的数学思想方法。冯老师的课堂教学体现了对应思想、类比思想、转化思想。

2、紧扣教材重难点,精心设计教学环节,教学语言精炼,引导恰到好处。

3、练习设计独具匠心,从名称就可见一斑如“服从命令听指挥”、“擦亮眼睛辨真伪”、“众人划桨开大船”

尤其是对于比的基本性质中的关键词如“同时”、“相同的数”、“0除外”等都是通过习题判断来引导学生知道出错的原因,找出理由,从而加深对比的基本性质关键词的理解,这种形式比对这几个词进行单纯的强调效果要好得多。

比的基本性质和化简比说课稿篇二

张老师的课,给我感受最深的就是教学语言的准确性、严密性,无可挑剔,对学生的启发、点拨恰到好处,与学生的交流亲切自然,驾驭课堂的能力让人佩服。尽管是一堂旧教材的课,但在沈老师设计的课堂中,却让人欣喜的发现新的课程标准中的新理念,为旧教材与新理念的有机结合作了一个很好的典范作用。下面就这节课谈谈自己的体会。

《分数的基本性质》是小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。

(1)坚持以本为本的原则,把教材中的陈述性教学为猜想与验证性发现。

(2)把总结式教学为学生自我发现、自我总结的探究性学习。

(3)以教师的主导地位转化为学生为主体的学生探究性学习。

调动了学生的知识积累,使学生学的轻松、愉快,同时感悟了知识的形成过程。这节课以“商不变的性质”复习引入,通过一组练习题充分复习了“被除数和除数同时扩大或缩小相同倍数,商不变。”

在新授过程中,沈老师没有单一地把今天所要学习的内容直接出示给学生,而是把一种静态的数学知识变为一种让学生在一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。整个课堂创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。

在这一过程中,学生不仅学得快乐,而且每个学生的个性也充分得到了发展,为学生的长远发展奠定了良好的基础。沈老师设计的练习题的也是由浅入深,形式多样。既复习了新知识,并让学生在练习中有所提升,组织学生自己讨论寻求解决的办法,体现了自主学习。

比的基本性质和化简比说课稿篇三

11月25日,我有幸听了曾小豆名师工作室成员张xx老师的一堂复习课。张老师展示的是《圆的基本性质复习课》。

课上,张老师以“转”和“折”两个角度引出圆的旋转不变性和轴对称性。并以圆的`旋转性为出发点将弦与圆周角的问题抛出,让学生思考多种求解方法,从而简单的复习圆心角、弧、弦心距、圆周角、弦等知识点的联系以及垂径定理的运用。在老师的引导下,进一步加深了对圆的基本性质的了解和认识。

本节课,张老师设计的综合型较强的圆与动点问题,是本节课的亮点所在,在给定的条件下,老师先让学生尝试性的出题,然后学生自己解决,课堂效果较好,学生乐学其中。最后老师出手,将难题抛出,学生独立思考并分析解决。整堂课,思路清晰,内容循序渐进,符合学生的认知水平。另外,张老师的将圆的知识结构化,问题设计又充分体现着综合性,结合富有新意的板书,使人印象深刻。

比的基本性质和化简比说课稿篇四

《分数的基本性质》是小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习通分、约分、比的基本性质的基础,而通分、约分又是分数计算的基础,因此,理解分数的基本性质显得尤为重要。本节课与传统的概念教学相比,有很大的改进,体现了新的教学理念,主要表现在以下几个方面:

《数学课程标准》指出:“教师是数学学习的组织者、引导者与合作者。”

在本节课中,李老师很好的为我们诠释了这句话。:老师为学生提供了有趣的故事情境以及大量的数学素材,让学生去观察、感悟,及时精辟的启发点拨,加上极具亲和力的自然交流。这些都体面了教师是数学学习的组织者、引导者与合作者。从中也看出李老师那种超强的课堂驾驭能力。

兴趣的是最好的老师,李老师充分的利用这一点,以一个精彩的智力故事:和尚分饼引入新课,直接为教学服务,给人以开门见山的感觉,给学生制造悬念,并引导学生自主探究、小组合作交流,在变与不变中发现规律、总结规律。

在练习这一环节,李老师精心设计了由浅入深的题目,既巩固了新知有发展了学生的能力。不管多么完美的课堂,总会留有小小的遗憾,这也是我们不断探究的动力。在本节课中老师出示第二组分数时,如果让学生动手操作,既锻炼了学生的能力,又可从中感知分数的基本性质。

李老师的课,给我感受最深的就是教学语言的准确性、严密性,无可挑剔,对学生的启发、点拨恰到好处,与学生的交流亲切自然,驾驭课堂的能力让人佩服。尽管是一堂旧教材的课,但在李老师设计的课堂中,却让人欣喜的发现新的课程标准中的新理念,为旧教材与新理念的有机结合作了一个很好的典范作用。下面就这节课谈谈自己的'体会。

这节课充分运用知识的迁移,调动了学生的知识积累,使学生学的轻松、愉快,同时感悟了知识的形成过程。这节课以“商不变的性质”复习引入,通过一组练习题充分复习了“被除数和除数同时扩大或缩小相同倍数,商不变。”

想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。在这一过程中,学生不仅学得快乐,而且每个学生的个性也充分得到了发展,为学生的长远发展奠定了良好的基础。李老师老师设计的练习题的也是由浅入深,形式多样。既复习了新知识,并让学生在练习中有所提升,组织学生自己讨论寻求解决的办法,体现了自主学习。

比的基本性质和化简比说课稿篇五

本课题属于“物质构成的奥秘”主题中的原子、分子部分,教学内容是上海教育出版社《化学(九年级第一学期)》的第二单元“构成物质的微粒”中有关微粒的基本性质的部分。本课中的微粒知识要为第二单元物质的量和质量守恒定律等教学内容奠定基础,更是为了构建全面的、科学的微粒观做好准备。

本节课的教学希望引导学生从变化的、不一样的角度看世界,通过常见的化学实验、实验现象去推理背后的性质,通过事物现象看本质,进一步提升学生的思考、分析、思辨的能力。为今后学习水的性质,如水的缔合性质,水溶液、乳浊液的知识打下伏笔,从微观角度来理解物理、化学变化,用微观理论来指导学习物质的转化。

学生已经在科学课中认识到了微观粒子的存在,在上海教育出版社《科学(七年级第二学期)》第十一章“从宇宙到粒子”的第二节物质的粒子模型中,学习过物质的粒子构成相关内容。因此本节课在这些前概念的基础上,进一步认识微粒的一些基本性质。

同时学生具有一定化学用语及实验仪器的使用基础,但是在实验的过程中,却很少从自身思考过“想观察什么、能观察什么、怎么观察”,而往往都是照方抓药,教师怎么布置就怎么做,教师说要观察什么就看什么,有时候即使观察到不一样的现象也很快被当成实验失误而忽略过去,学生的思维往往停留在低阶思维活动。

布卢姆把教学目标分成六个等级,低阶思维活动三个等级:识记:背诵、默写;理解:用自己的话解释;应用:直接套用。高阶思维活动三个等级:分析:辨析、判断、推论;评价:讲自己的观点;创新思维活动:创思、创意、创作。教学目标对大多数的课来说还基本停留在低阶思维活动中。因此本节课中对于“微粒间的间隙”的这个教学环节中,并不是事先划好体积的标线,教师混合后提问:“我们来看看有什么变化?”。而是让学生自己去辨析,混合酒精与水后我们能观察到什么现象,有什么方法来观察,让学生体会到观察的角度、使用的仪器不同会得到不同的推断结论。

由于初中的学生并没有进行选拔考试,同校学生之间的差异往往较大,粗放的教学以所有学生为对象,只求完成任务,不顾学生差异,所以教学质量只维持在一般水平。精细的教学关注每位学生的学习,采用差异教学对策,应对每位学生不同的需求。就要进行分层教学,学校分层、班内分层、教学分层、递进教学等,但在学校没有进行分层化的时候,要在实验教学过程中完成分层教学,光靠一位教师很难完成,差异教学对策除了分层递进教学中对不同学生设置不同的教学目标,本校首先尝试在实验教学过程中引入第二位教师即“双师制”开展实验教学活动,在学生的实验活动中在同一班级采用分组学习、复式教学之外,教师共同参与到学生小组交流、实验操作等等活动中去。以便教师更好地点拨,开展辨析、判断、评价、建构等活动,对学生的认知与思维进行修补或完善,从中培养智能。

以“知识与技能”为主的教学目标,是短周期目标,在教学结束时可以检查其达成度;而“过程与方法”、“情感态度与价值观”是长周期目标,需要由课堂里的“情绪体验”、“高阶思维活动”量的积累到质的变化的过程,所以要在课堂里伴随教学内容体现与关注,因此在本堂课中采用以上的教学设计方法,但要有明显效果是需要一段时间体验、积累的结果。

1、通过高锰酸钾与水混合的实验,掌握微粒的性质“动”、“小”的特点,同时能根据对比实验得出温度的变化对“动”的影响。

2、通过对酒精与水的混合实验的辨析,得出微粒的其他性质“间隙”,根据学生情况选择性拓展“微粒间的作用力”。

3、从微观层面认识物质的构成,为今后进一步从本质上认识物质的变化打下基础。

4、通过小组间的交流,分析不同的观察角度、观察的方法在化学实验过程的作用,增强化学实验探究能力、体验化学实验过程。

从现象明显的实验开始观察,学生回忆起科学课学过的微粒知识,认识微粒的存在。通过实验现象得出微粒在不停运动,并推测微粒很小。感悟设计不同的实验能帮助理解不同的性质。

从一堆手到其中一只手,再到不断被放大的手部皮肤,学生惊讶于照片中微观世界有别于宏观世界的景象,激发了学生学习微粒性质的积极性。

科学家探索微观世界的过程。

马赫质疑原子存在的精神。

介绍原子有多小。

人们看见原子到可以移动原子。

人类探索微观世界的历史是曲折的,感受科学家严谨、执着的科学精神,体验现代科学创造的惊喜,学生对化学学科的认识逐渐清晰,尊重之情油然而生。

通过形象的类比、生动的语言表述体会微粒到底有多小。

——微粒间存在间隙。

学生2人一组利用实验仪器,设计实验来证明。

实验中,发现还能产生哪些思考?

由实验引发的其他思考。

课后讨论及习题布置。

引入“双师制”加强师生交流,及时点拨、反馈实验中出现的问题。通过学生的自主实验打开思路,切身体会合适的实验仪器及实验方法对科学观察的重要性,学生在实验、发现、思考中体会探索化学奥秘的艰辛与快乐。

比的基本性质和化简比说课稿篇六

宋贺彩科长和王丽老师的《分数的基本性质》两节课各有特色,下面就这两节课谈谈自己的体会。宋科长的课,给我感受最深的就是教学语言的准确性、严密性,无可挑剔,对学生的启发、点拨恰到好处,与学生的交流亲切自然,驾驭课堂的能力让人佩服。这节课充分运用知识的迁移,调动了学生的知识积累,使学生学的轻松、愉快,同时感悟了知识的形成过程。这节课以“商不变的性质”复习引入,通过一组填空题充分复习了“被除数和除数同时扩大或缩小相同倍数,商不变。”再根据分数与除法德关系,引导学生把除法算式改写成分数的形式,从而概括出分数的基本性质。练习题的设计也是由浅入深,尤其是分数大小的比较中,“分子分母都不相同的怎样比较大小”时,让学生自己讨论寻求解决的办法,体现了自主学习。王丽老师的《分数的基本性质》一节课,充分体现了新的课程标准与新理念,给我的感受也很深刻。首先这节课的引入设计得很好,从学生的兴趣出发,通过孙悟空给猴子们分甘蔗,大猴子分得每根甘蔗的1/2,小猴子分得每根甘蔗的2/4,劳猴子分得每根甘蔗的3/6,小猴子说分得不公平,由此组织学生展开讨论,这样一下子就吸引了学生的'注意力,激发了学生学习积极性和兴趣。学生自己通过合作学习探讨得出:

1/2=2/4=3/6之后又引导学生去发现这些分数之间的变化规律,从而得出分数的基本性质,并强调了“同时”、“相同的数”、“0除外”等关键处。练习题的设计也是形式多样,尤其是“小游戏”,老师说分母,学生说分子或老师说分子,学生说分母;“连续写出多个相等的分数”等都是从学生的兴趣出发,调动了学生的多向思维,效果也不错。

听了李老师的一节“分数的基本性质”的数学课,给我留下了深刻的印象。

是数学学习的方法,从而激励学生进一步地主动学习,我认为这是本节课一大亮点。

但是,我感觉本课教学中,验证得还不够透彻,部分同学还有疑虑。如果能让每位学生在自己准备的纸上画一画、折一折、或剪一剪,通过动手操作来验证自己的猜想是否正确,从而培养学生的动手能力,以及观察问题解决问题的能力。

沈老师的课,给我感受最深的就是教学语言的准确性、严密性,无可挑剔,对学生的启发、点拨恰到好处,与学生的交流亲切自然,驾驭课堂的能力让人佩服。尽管是一堂旧教材的课,但在沈老师设计的课堂中,却让人欣喜的发现新的课程标准中的新理念,为旧教材与新理念的有机结合作了一个很好的典范作用。下面就这节课谈谈自己的体会。

1.教材简析《分数的基本性质》是小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。

2、教材处理。

(1)坚持以本为本的原则,把教材中的陈述性教学为猜想与验证性发现。

(2)把总结式教学为学生自我发现、自我总结的探究性学习。

(3)以教师的主导地位转化为学生为主体的学生探究性学习。

3、教学过程这节课充分运用知识的迁移,调动了学生的知识积累,使学生学的轻松、愉快,同时感悟了知识的形成过程。这节课以“商不变的性质”复习引入,通过一组练习题充分复习了“被除数和除数同时扩大或缩小相同倍数,商不变。”

在新授过程中,沈老师没有单一地把今天所要学习的内容直接出示给学生,而是把一种静态的数学知识变为一种让学生在一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。整个课堂创设了一种“猜想——验证——反思”的教学模式,以“猜想”

贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。在这一过程中,学生不仅学得快乐,而且每个学生的个性也充分得到了发展,为学生的长远发展奠定了良好的基础。沈老师设计的练习题的也是由浅入深,形式多样。既复习了新知识,并让学生在练习中有所提升,组织学生自己讨论寻求解决的办法,体现了自主学习。

比的基本性质和化简比说课稿篇七

5.深入理解分数的基本性质。

师:什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。(学生讨论后发言)

齐读分数的基本性质,并用波浪线表出关键的词。

生甲:我觉得零除外这个词很重要。

生乙:我觉得同时相同这两个词很重要。

师:想一想为什么要加上零除外?不加行不行?

让学生结合以前学过的商不变的性质讨论,为什么加零除外。

教师小结:以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。(边讲边板书。)

三、应用

1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。

2.学生练习课本例题2,两名学生在黑板上做。

3.学生自己小结方法。

4.按规律写出一组相等的分数。

四、总结

这节课大家有什么收获?

比的基本性质和化简比说课稿篇八

这节课充分运用知识的迁移,调动了学生的知识积累,使学生学的轻松、愉快,同时感悟了知识的形成过程。这节课以“商不变的性质”复习引入,通过一组练习题充分复习了“被除数和除数同时扩大或缩小相同倍数,商不变。”

在新授过程中,莫老师没有单一地把今天所要学习的内容直接出示给学生,而是把一种静态的数学知识变为一种让学生在一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。整个课堂创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。在这一过程中,学生不仅学得快乐,而且每个学生的个性也充分得到了发展,为学生的长远发展奠定了良好的基础。

莫老师老师设计的练习题的也是由浅入深,形式多样。既复习了新知识,并让学生在练习中有所提升,组织学生自己讨论寻求解决的办法,体现了自主学习。

比的基本性质和化简比说课稿篇九

1.使学生掌握整除、约数和倍数、质数和合数等概念,知道它们之间的联系和区别。掌握能被2、5、3整除的数的特征。会分解质因数。会求最大公约数和最小公倍数。

2.使学生在理解的基础上掌握分数、小数的基本性质。

一、数的整除。

1.整除的意义:

教师:。想一想.“什么叫做整除?”指名回答,

教师进一步强调:。“整除中说的数是什么数?”(整数。)。

“商是什么数?”(整数。)“有没有余数?”(没有余数:)。

教师:“什么叫除尽?”。“两数相除.余数是0。)。

“整除和除尽有什么联系和区别?”指名回答。教师根据学生的回答,整理出下表:

教师:“可以看出整除是除尽的一种特殊情况。”

2.能被2、5、3整除的数的特征。

教师:“我们已经学过能被2、5、3整除的数的特征。同学们还记得吗冲指名说一说。然后提问:

“能被2、5整除的数,在判别方法上有什么共同的地方?”(都根据个位数进行判别。)。

“能被3整除的数。在判别方法上与能被2、5整除的数有什么不同?”(根据各个数值上的数之和进行判别。)。

教师:“什么叫做奇数?什么叫做偶数:”

“根据什么来判断—一个数是奇数还是偶数?”

3.约数和倍数:

教师:“据整除的概念可以得到约数和倍数的概念:什么叫做约数?什么叫做倍数?”指名就一说。(如果a能被b整除。a就叫做b的倍数。b就叫做a的约数。)为了使学生进一步明确约数和倍数是相互依存的,教师可以接着提问:

“能说6是约数.15是倍数吗:应该怎么说?”

教师说明:在研究约数和倍数时.我们所说的数一般只指自然数,不包括0。

教师:“一个数的约数的'个数是怎样的:”(有限的。)。

“其中最小的约数是什么数:最大约数是什么数?”(1.这个数本身。)。

“一个数的倍数的个数是怎样的:”(无限的。)。

“其中最小的倍数是什么数?”(这个数本身。)。

做练习十九的第:题。让学生直接做在书上。教帅可以说明做的方法:在含有约数2的数”下面写“2”,在3的倍数下面写“3”。在能被5整除的数下面写“5”,然后再进行判断。集体订正。

4.质数和合数。

教师指名说一说质数、合数的概念。可有意识地让学习有困难的学生说,其他同学进行补充。

教师:“怎样判断——个数是质数还是合数?”(检查这个数约数的个数.或查质数表。)指名说—说30以内有哪些质数。

让学生进行判断:—个自然数如果不是质数,那么一定是合数。学生判断后,教师说明:1既不是质数.也不是合数。

5.分解质因数。

指名说一说质因数、分解质因数的含义。

做练习十九的第5题。学生独立解答。教师巡视.集体订正。

6。公约数、最大公约数和公倍数、最小公倍数。

(1)复习概念。

教师:“什么叫做公约数?什么叫做最大公约数?”(几个数公有的约数,叫做这几个数的公约数;其中最大的—个叫做这几个数的最大公约数。)“怎样求几个数的最大公约数?”让学生举例说明。

“什么叫做公倍数?什么叫做最小公倍数?怎样求几个数的最小公倍数?”让学生举例说明。

教师:“什么样的数叫做互质数/(公约数只有l的两个数叫做互质数,)。

“质数和互质数有什么区别:”(质数足一个数。只有1和它本身两个约数;互质数是两个数.只有公约数1。)。

“两个不同的质数一定互质吗?”(两个不同的质数—定互质。)。

“互质的两个数一定都是质数吗?”(不一定,如4和9互质,4,9都是合数。)。

(2)课堂练习。

做练习十九的第1题、先让学生独立判断,集体订正时。让学生说—说判断的理由。

做练习十九的第4题。学生独立解答。教师巡视,集体订正。

教师根据前面的教学.整理出教科书第86页的概念联系图。也可以把该图变化成如下形式。

比的基本性质和化简比说课稿篇十

比的基本性质的学习是学生在理解了比和分数、除法的关系以及掌握了商不变的性质和分数基本性质的基础上来学习的。我先通过让学生回忆商不变性质和分数的基本性质,让侯根据上节课学习的比的意义里比,除法和分数的关系让学生推导比的基本性质,比的前项和后项同时乘或除以一个相同的数(零除外),比值不变。在这个过程中,培养了学生只是迁移和总结归纳的能力。

在讲解化简比的时候,还是让学生回忆分数的基本性质,我们知道,一般情况都要用分数的最简形式表示结果,那么比是否也有最简形式呢?然后学生展开交流,小组合作,令我以外的是学生讨论的结果竟然是那么的恰当,节省我很多讲授的时间,也就给练习更多的时间。但是学生在总结上语言还是不够简练,需要教师的引导。

在教学过程中对学生的能力还是把控不够,不敢放手让学生探讨,教师扮演的角色时间过于多,教师的语言组织能力还需加强,在各个环节的衔接上有些欠缺,备课时多学情还没备到位。

比的基本性质和化简比说课稿篇十一

听了靳老师的这节课后,对比冯老师的同课异构课,我认为两节课是各有千秋,都起到了很好的教学效果。

1、用学生喜闻乐见的生活实例引入数学。

本节课的导入是采用了我们都认识的国旗,它的长和宽的比入手,激发学生的联想,从而很好的引入了新课的教学。有新意。

2、本课的教学程序和冯老师的不同之处是采用了举例子的方法。靳老师从三个比值相等的式子1:2=2:4=3:6中,引导学生从左往右,从右往左依次观察前项和后项的变化,从而得到比的基本性质,自然流畅,符合规律的形成过程,学生也容易接受,而且教师也提示了关键词,通过判断题巩固了新知的教学。

3、注重练习题的设计,使学生积极主动的学在教学中教师能抓住学生的心理特点,设计一些学生容易进入陷阱的题目,在这些小陷阱中,让学生愉快地掌握知识,突破重点和难点。例如:当学生得出比的基本性质这一规律时,及时出示了判断题,在学习化简比后也是先判断再分类化简比。

4、板书设计简洁明了,概括性强。

5、学生的参与度高。

建议:增加动笔的训练。本节课学生是说得多,做的少。

比的基本性质和化简比说课稿篇十二

难点本节例2。

方法讲练结合教学。

用具。

教学过程集体备课稿个案补充。

一.利用书本图5-1和5-2发现等式的两个基本性质。

等式的`基本性质1等式的两边同时加上(或减去)同一个数或式,所得结果仍是等式若则。

1.书本117做一做。

2.书本118课内练习1。

3.课本117页例1。

三.会依据等式的基本性质将方程变形,求出方程的解。

1.书本118页例2。

2.书本119页作业题3,4。

教学反思。

教学改进。

比的基本性质和化简比说课稿篇十三

自主学习、合作探究。

学生自主活动材料。

一、前置自学(自学课本7-8页内容,并完成下列问题)。

1.判断下列约分是否正确:

(1)=(2)=(3)=0。

2.通分。

和、和。

明确:(1)分式的通分与分数的通分类似;。

分式通分的依据——。

(2)最简公分母的确定:(1)系数取最小公倍数;(2)字母取所有不同字母;(3)所有字母的最高次幂。特别强调,当分母是多项式时,应先将各分母分解因式,在确定最简公分母。

二、合作探究。

1、下列分式的`最简公分母是()?

(1)(2)。

(3)(4)。

2、通分:

(1);(2);(3)。

三、拓展提升。

通分:

(1)和(2)和。

(3)和(4)和。

四、当堂反馈。

1.不改变分式的值,把分式中分子、分母各项系数化成整数为________.

2.分式的最简公分母是_________.

3.通分:

(1)、

(2)、

(3)、

4.某人骑自行车匀速爬上一个斜坡后立即匀速下坡回到出发点,若上坡速度为v1,下坡速度为v2,求他上、下坡的平均速度为()。

(1)(2)(3)(4)。

5.已知,求分式的值。

比的基本性质和化简比说课稿篇十四

教材第50、第51页的内容及练习十一的第4~8题。

教学目标。

1、根据除法中商不变的规律和分数的基本性质,利用知识的迁移,使学生领悟并理解比的基本性质。

2、通过学生的自主探讨,掌握化简比的方法并会化简比。

3、初步渗透事物是普遍联系的辩证唯物主义观点。

重点难点。

重点:理解比的基本性质,推导化简比的方法,正确化简比。

难点:正确化简比。

教具学具。

练习题投影片。

教学过程。

一导入。

1、比与分数、除法的关系。

如果学生有困难,可以先完成下表。填表后再说一说比与分数、除法有怎样的关系。

老师:请大家回忆一下,分数有什么性质?商不变有什么规律?它们的内容分别是什么?

(指名学生发言)。

二教学实施。

1、猜想。

老师:比和分数、除法的关系相当密切,那么,在比中有没有类似的性质呢?如果有,请同学们猜想一下,可能会是怎样的。

汇报时,让学生说说猜想的根据,老师也可引导学生在“分数的基本性质”上进行替换。

引导学生用语言表述,比的前项相当于分数的分子,后项相当于分母,分数的分子和分母同时乘或除以相同的数(0除外),分数的'大小不变。因此,比的前项和后项同时乘或除以相同的数(0除外),比值不变。或者比的前项相当于除法中的被除数,后项相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。因此,比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、验证。

以小组为单位,讨论、验证一下刚才的猜想是否正确。

学生汇报。

3、小结。

经过同学们的验证,我们知道这个猜想是正确的,并且经过补充使它更完整了,在比中确实存在这种性质。

4、化简比。

出示例1(1)。

老师整理情境中的信息:“神舟”五号搭载了两面联合国旗,一面长15cm,宽10cm,另一面长180cm,宽120cm,问题是求这两面联合国旗长和宽的最简单的整数比分别是多少。

学生反复读几遍。

提问:你怎样理解“最简单的整数比”这个概念?

学生讨论,指名回答,达成共识,最简单的整数比必须是一个比,它的前项和后项都是整数,而且前项和后项应该是互质数。

15∶10=(15÷5)∶(10÷5)=3∶2。

180∶120=(180÷60)∶(120÷60)=3∶2。

出示例1(2)。

学生尝试把下面各比化成最简单的整数比。

老师强调:不管选择哪种方法,最后的结果都应该是一个最简单的整数比,而不是一个数。

5、反馈练习。

(1)完成教材第51页的“做一做”,集体订正。

(2)完成教材第53页练习十一的第4题。

提问:题目要求你怎么理解?什么叫后项是100的比?后项是100,前项要怎么办?

(3)完成教材第53页练习十一的第5题。

(4)完成教材第53页练习十一的第6~8题。

让学生说明理由,注意思维的逻辑性和语言的条理性。

三课堂作业新设计。

1、把下面各比化成最简单的整数比。

四思维训练参考答案。

课堂作业新设计。

1、6∶73∶13∶85∶67∶54∶14∶510∶1。

2、(1)4∶5(2)3∶2(3)7∶4(4)5∶2。

思维训练。

板书设计。

比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

化简比:前项和后项只有公因数1的比,叫做最简单的整数比。把比化简成最简。

单的整数比,叫做化简比。

备课参考教材与学情分析。

比的基本性质是在学生学习了比的意义,比与分数、除法的关系,商不变的规律和分数基本性质的基础上进行教学的。教材联系学过的除法中商不变的规律和分数基本性质,通过“想一想”启发学生找出比中有什么相应的性质,然后概括出比的基本性质,应用这个性质可以把比化成最简单的整数比。学生在以前的学习中,已经掌握了商不变的规律和分数的基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想―验证―应用,让学生理解比的基本性质,应用性质化简比。

课堂设计说明。

我们知道,比与分数、除法只是形式上的不同,实质上它们是可以互相转化的。教学时,我们先回顾比与分数、除法的关系,复习商不变的规律和分数的基本性质。引导学生想一想:比会不会也有自己的性质,启发他们用举例的方法验证自己的猜想。最后总结出比的基本性质。

根据比的基本性质将比化简,可以使这两个数量之间的关系更加简单、明了,便于学生分析一些事物现象。

比的基本性质和化简比说课稿篇十五

一课是本册教材第六单元的一个内容。这部内容是学生在学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。而约分、通分又是分数四则计算重要基础,因此,理解分数大小不变规律我觉得非常的重要。

本节课,我认为探索分数大小不变的规律是难点,运用这个规律来解决一些实际的问题是重点。那么在课堂中如何来体现这两方面,首先我以故事导入,来激发学生的学习兴趣。我设计了老和尚给三个小和尚分饼的故事,结果看似不公,实则相同,让学生做裁判评一评,这样,学生学习数学的兴趣必然提高,等学生理解并掌握了分数的基本性质后,学生就明白了。这样,不仅使教学结构更加完整,前后呼应,同时也提高了学生理解和应用分数的基本性质来解决实际问题的能力。教学中采取小组合作学习的形式,提高学生学习的主动性。整堂课我让学生充分展开讨论,课堂气氛非常的活跃,学生学习数学的兴趣十分浓厚。在巩固提高环节,我课前就设计好了题型变化的练习题。注意到了练习题难度的层次性,这样学生的解题能力和思维能力都得到了培养。

总体来说,本节课突出了分数的基本性质的归纳和理解,学生能较好地理解性质中的关键词“同时”、“相同的数”和“0除外”,对分子分母的变化特点能抓住关键,发现变化的规律。

【本文地址:http://www.xuefen.com.cn/zuowen/8419886.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档