编写教案需要注意语言简洁明了、逻辑严密、条理清晰的原则。教案的编写还要注意培养学生的实践能力和创新思维。这些教案范例涵盖了不同学科、不同年级的教学内容,具有很好的启发性和示范作用。
中职直线与圆的位置关系教案篇一
尊敬的各位评委,亲爱的各位同行,大家好!今天我的说课内容是人教版九年级上册第二十四章第二节第二课时的直线与圆的位置关系。下面我将以教什么、怎么样教、为什么这样教为思路从教材分析、学情分析、教学目标、学法教法、教学过程和板书设计六个方面对本课进行说明。
一、教材分析。
教材的地位和作用。
圆在平面几何中占有重要地位,它被安排在初中数学第二十四章,属于一个提高阶段。而直线和圆的位置关系又是本章的一个中心内容。从知识体系上看:它有着承上启下的作用,既是对点与圆的位置关系的延续与提高,又是后面学习切线的性质和判定、圆和圆的位置关系及高中继续学习几何知识的基础。从数学思想方法层面上看:它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质。
二、学情分析。
在此之前学生已经学习了点和圆的位置关系,对圆有了一定的感性和理性认识,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。加之九年级学生好奇心强,活泼好动,注意力易分散,认知水平大都停留在表面现象,对亲身体验的事物容易激发求知的渴望,因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。
三、教学目标:
根据学生已有的认知基础及本课的教材的地位、作用,结合数学课程标准我将确定如下的教学目标:
(2)通过观察、实验、合作交流等数学活动使学生了解探索问题的一般方法;
陪养学生观察、分析和概括的能力;
(4)体会事物间的相互渗透,感受数学思维的严谨性,并在合作学习中体验成功的喜悦。
教学的重难点:
中职直线与圆的位置关系教案篇二
20xx.11.17早上第二节授课班级:初三、1班授课教师:
过程与方法目标:
2.通过例题教学,培养学生灵活运用知识的解决能力。
情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。
利用多媒体放映落日的动画,初中数学教案《数学教案-直线和圆的位置关系(公开课)》。引导学生从公共点个数和圆心到直线的.距离两方面体会直线和圆的不同位置关系。
学生看投影并思考问题。
调动学生积极主动参与数学活动中.。
探究新知。
1、通过观察直线和圆的公共点个数得出直线和圆相离、相交、相切的定义。
布置作业。
1、课本第101页7.3a组第2、3题。
2、课余时间,留心观察周围事物,找出直线和圆相交,相切,相离的实例,说给大家听。
中职直线与圆的位置关系教案篇三
1、圆的定义:
到定点的距离等于定长的点的集合。
在圆内、在圆上、在圆外(由点和圆心的距离与圆的半径大小来确定)。
3、弦、直径、孤、弓形、半圆、同心圆、等圆、等孤等概念。
等弧一定要强调要在同圆或等圆中;半圆不包括直径。
4、过三点的圆(三角形的外心)。
经过三角形三个顶点的圆叫三角形外接圆;外接圆的圆心叫三角形的外心;三角形的外心是三条边中垂线的交点,到三个顶点距离相等;直角三角形外心在斜边上、锐角三角心外心在三角形内、钝角三角形外心在三角形外。
5、垂径定理及其推论:
定理及推论1:直线过圆心、垂直弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧这五要素中用其中两个要素做条件就能推导出其它三个要素都成立。若用过圆心、平分弦做条件时要强调被平分的弦不是直径。
推论2:平行弦所夹的弧相等。
6、圆心角、弦、弦心距、弧的关系:
圆心角、弧、弦、弦心距之间的相等关系必须要在同圆或等圆中才能成立;
弧的度数就等于它所对圆心角的度数。
7、圆周角定理及推论:
圆周角的定义:顶点在圆上,角的两边都与圆相交。
圆周角的定理:圆周角等于同弧所对圆心角的一半。
推论1、在同圆或等圆中,同弧或等弧所对的圆周角相等,圆周角相等,它所对的弧也相等。
推论2:直径和半圆所对的'圆周角等于90度,90度的圆周角所对的弦是直径,所对的弧是半圆。
推论3、三角形一边的中线等于这一边的一半时,这个三角形是直角三角形。
8、圆内接四边形:
定义:四个顶点都在圆上的四边形。
定理:圆内接四边形对角互补。
推论:圆内接四边形的外角等于它的内对角。
相交、相切、相离(由公共点个数或圆心到直线距离和圆的半径大小来确定)。
10、切线的判定和性质:
定义:与圆只有一个公共点的直线。
判定定理:经过半径的外端且垂直于半径的直线是圆的切线。
性质定理:经过切点的半径必垂直于切线。
推论1:经过切点且垂直于切线的直线必经过圆心。
推论2:经过圆心且垂直于切线的直线必经过切点。
11、三角形内切圆:
定义:与三角形三边都相切的圆叫三角形内切圆、内切圆的圆心叫三角形内心。内心是三角形三条角平分线的交点,到三角形三边距离相等。
12、切线长定理:
定理:圆外一点到圆的两条切线的长相等,这个点与圆心的连线要平分两条切线的夹角。
(圆内切四边形对边相加相等)。
13、弦切角:
定义:一条边是圆的切线,顶点是切点,另一条边与圆相交的角;
定理:弦切角等于它所夹弧对的圆周角。
推论:两个弦切角所夹的弧相等,这两个弦切角相等。
14、和圆有关的比例线段:
相交弦定理及推论、切割线定理及推论。
中职直线与圆的位置关系教案篇四
:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。
:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想。
二、教学重、难点。
难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用。
三、教学设计。
问 题。
设计意图。
师生活动。
2.图形中的圆与直线的位置都是一样的吗?
师:让学生之间进行讨论、交流,引导学生观察图形,导入新课.
生:看图,并说出自己的看法.
师:引导学生利用类比、归纳的思想,总结直线与圆的位置关系的种类,进一步深化“数形结合”的数学思想.
问 题。
设计意图。
师生活动。
使学生回忆初中的数学知识,培养抽象概括能力.
师:引导学生从几何的角度说明判断方法和通过直线与圆的方程说明判断方法.
生:利用图形,寻找两种方法的数学思想.
师:指导学生阅读教科书上的例1.
生:阅读科书上的例1,并完成教科书第128页的练习题2.
师;分析例1,并展示解答过程;启发学生概括判断直线与圆的位置关系的基本步骤,注意给学生留有总结思考的时间.
生:交流自己总结的步骤.
师:展示解题步骤.
7.通过学习教科书上的例2,你能说明例2中体现出来的数学思想方法吗?
进一步深化“数形结合”的数学思想.
师:指导学生阅读并完成教科书上的例2,启发学生利用“数形结合”的数学思想解决问题.
问 题。
设计意图。
师生活动。
8.通过例2的学习,你发现了什么?
明确弦长的运算方法.
师:引导并启发学生探索直线与圆的相交弦的求法.
生:通过分析、抽象、归纳,得出相交弦长的运算方法.
9.完成教科书第128页的练习题1、2、3、4.
师:引导学生完成练习题.
生:互相讨论、交流,完成练习题.
10.课堂小结:
教师提出下列问题让学生思考:
作业:习题4.2a组:1、3.
中职直线与圆的位置关系教案篇五
教学目标:
1.使学生理解直线和圆的相交、相切、相离的概念。
2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。
3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。
重点难点:
2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。
教学过程:
一.复习引入。
(目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系)。
二.定义、性质和判定。
1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。
(1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。
(2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。
(3)直线和圆没有公共点时,叫做直线和圆相离。
中职直线与圆的位置关系教案篇六
本节课由蔡**老师执教,主要有三部分组成。首先前面两个问题通过复习前几课学过的点到直线的距离公式以及两条直线的位置关系的判定,为下面例子中判断直线与圆的位置关系作好铺垫。紧接着通过回顾直线与圆的三种位置关系引入新课,并结合图形深入探究每种关系中圆心到直线的距离d与圆的半径r的大小关系以及交点个数的情况。再通过例题的讲解与练习的训练去总结直线和圆的位置关系所反映出来的数量关系。最后师生对本节课知识点进行共同小结,完成本节课的整体教学内容。
听了这节课之后,我认为本节课的整体思路清晰、流畅,结构合理,重点突出,较好地完成了本节课的教学目标。在引导学生归纳出直线与圆的`位置关系的数量关系后再进行相关的例题讲解和习题训练,确保了学生对本节课重点知识的掌握。不过,个人认为本节课还是有一些值得探讨的问题:1、例1是对本节课所学知识的应用,是本节课的重点及难点,应该着重分析这块。学生对带有绝对值符号的c的范围并不能很好地理解,因涉及先前学过的内容,可举个适当小例子帮助学生回顾,如:,则的范围是什么等等。2、个人觉得练习一中判断直线与圆的位置关系时,圆心到直线的距离计算得d=,让学生求k的范围难度太大。本来学生才刚掌握点到直线的距离公式,还不能很好熟练的运用,现在式子中又有绝对值又有根号求k的范围,学生的积极性很容易被打压,应当换个适当难度的,及时提高学生的积极性,培养他们的兴趣。3、应让学生多动手、动口回答问题,及时巩固所学知识。
本节课是在直线和直线的基础上进一步学习的内容,也是后面学习直线与圆的方程的应用的基础,起着承上启下的作用,而且三种位置关系的研究方法和思路基本一直,都是从研究位置关系开始进而研究位置关系而发生的数量关系,教师可以用类比的教学方式使学生掌握这种学习方法。其实,一堂课的教学很大程度上受教学细节的影响,比如:语言的描述是否准确,是否及时对学生进行表扬等。每次听完课,我都会拿自己进行比较,看看还有哪些自己没做到的,或是没注意的,然后多多实践,尽量充实自己,收获不少啊。
中职直线与圆的位置关系教案篇七
5、过程与方法。
理解直线和圆的三种位置关系,感受直线和圆的位置与它们的方程所组成的二元二次方程组的解的对应关系;体验通过比较圆心到直线的距离和半径之间的大小及通过方程组的解的个数判断直线与圆的位置关系,能用直线和圆的方程解决一些条件下圆的切线问题;领会数形结合的数学思想方法,提高发现问题、分析问题、解决问题的能力。
6、情感态度与价值观。
通过对本节课知识的探究活动,加深学生对解析法解决几何问题的认识,从而领悟其中所蕴涵的数学思想,体验探索中成功的喜悦,激发学习热情,养成良好的学习习惯和品质。
教法学法为了实现上述教学目标,本节课采取以下教学方法:
(1)恰当的利用多媒体课件,通过学生熟悉的实际生活问题引入课题,拉近数学与现实的距离,激发学生的问题意识和求知欲,调动学生主体参与的积极性。
(2)采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,站在学生思维的最近发展区上启发诱导。
(3)在整个数学教学过程中,既要体现学生的主体地位,更要强调教师的主导地位,在科学讲授的同时教会学生清晰的思维和严谨的推理。
在学法上注重以下几点:
(2)在用代数法解决直线与圆的位置关系时,要能够明确运算方向,把握关键步骤,正确的处理较为复杂数据。
课堂结构设计:
整个教学过程是四步组成,自主学习,合作探究,老师辅导、课堂展示。共分为八个环节,复习、独立训练、相互探讨、老师参与、形成结论、课堂展示、评价(互评师评)、反思。
教学过程设计:
通过问题情境,激发学生的学习兴趣,使学生找到要学的与以学知识之间的联系;问题串的设置可让学生主动参与到学习中来;在判断方法的形成与应用的探究中,师生的相互沟通调动学生的积极性,培养团队精神;知识的生成和问题的解决,培养学生独立思考的能力,激发学生的创新思维;通过练习检测学生对知识的掌握情况;根据学生在课堂小结中的表现和课后作业情况,查缺补漏,以便调控教学。
回顾反思,拓展延伸:
中职直线与圆的位置关系教案篇八
杨跟上。
一:教材:
人教版九年义务教育九年级数学上册二:学情分析。
初三学生已经具备一定的独立思考和探索能力,并能在探索过程中形成自己的观点,能在倾听别人意见的过程中逐渐完善自己的想法,因此本节课设计了探究活动,给学生提供探索与交流的空间,体现知识的形成过程。
三教学目标(知识,技能,情感态度、价值观)。
1、知识与技能。
能综合运用以前的数学知识解决与本节有关的实际问题。
3.情感态度与价值观。
(1)通过和点与圆的位置关系的类比,学习直线与圆的位置关系,培养学生类比的思维方法。
(2)培养学生的相互合作精神四:教学重点与难点:
五:教学方法:
启发探究。
六、教学环境及资源准备。
1、教学环境:学校多媒体教室。2.教学资源。
(1).教师多媒体课件,(2)学生准备硬币或其他类似圆的用具。
1、自主学习策略:通过提出问题让学生思考,帮助学生学会探索直线与圆的位置关系关系。
2、合作探究策略:通过学生动手操作与相互交流,激发学生学习兴趣,让学生在轻松愉快的教学气氛下之下掌握直线与圆的位置关系。
3、理论联系实际策略;通过学生综合运用数学知识解决直线与圆的位置关系的实际问题,培养学生利用知识解决实际问题的能力。
教学流程:
一.复习回顾,导入新课。
由点和圆的位置关系设计了两个问题,让学生独立思考,然后回答问题,为下面做准备。
二:合作交流,探求新知。
第一步,学生对直线与圆的公共点个数变化情况的探索。
通过学生动手操作和探索,然后相互交流,并画出图形,得出直线与圆的公共点个数的变化情况。
第二步,师生共同归纳出直线与圆相交、相切等有关概念。
1.设圆o的半径为r,圆心o到直线的距离为d,那么直线与圆在不同的位置关系下,d与r有什么样的数量关系?请你分别画出图形,认真观察和分析图形,类比点和圆的位置关系,看看d和r什么数量关系。
我设计了两个问题,使学生学会通过计算圆心到直线的距离,来判断直线与圆的位置关系。四:巩固提高:
在本节的教学中,我设计了两个练习、一个作业加以巩固,使学生能更好的掌握本节内容。
中职直线与圆的位置关系教案篇九
b.会根据直线和圆的方程用代数法和几何法判断直线与圆的位置关系;
c.掌握直线和圆的位置关系判定的应用,会求已知圆的交线和切线方程。
(2)能力目标
让学生通过观察,分析,总结归纳出根据直线与圆的方程来判断直线与圆的位置关系的方法,培养学生分析问题解决问题的能力,让学生对坐标法有进一步的了解,并能用参数法、数形结合的方法去分析、解决相应的数学问题,同时训练学生数学思维,培养学生寻求一题多解的能力。
(3)情感目标
通过学生自己动手实验和探索,培养学生动手能力和发现问题的能力;通过师生互动,生生互动的教学活动过程,形成学生的体验性认识,体会成功的愉悦,提高数学学习的兴趣,树立学好数学的信心,培养锲而不舍的钻研精神和合作交流的科学态度。
重点:直线和圆的三种位置关系
难点:直线和圆的三种位置关系的性质和判定的应用
教学方法:问题探究式、启发式引导、参与式探究、互动式讨论
学习方法:自主探究、观察发现、合作交流、归纳总结。
教学手段:借助多媒体动态演示,构建学生探究式学习的教学环境。
1、创设情景、引入新课;
2、引导启发、探索新知;
3、讲练结合、巩固新知;
4、知识拓展、深化提高;
5、小结新知,画龙点睛
6、布置作业,复习巩固;
重新阅读课本本节相关内容并预习下一节课内容。
直线与圆的位置关系是高考的考点之一,是在学生已有的平面几何知识基础上进行教学,以点与圆的位置关系上升为直线与圆的位置关系,从简单到复杂,从几何特征到代数问题(坐标法)的教学过程,它应用比较广泛,同时也为后面圆和圆的位置关系作了铺垫,对后面的解题及相关数学问题的解决将起到重要的作用,且本节是直线与圆锥曲线位置关系的基础,故要求学生充分掌握。
针对上述情况,我精心设计教学过程,借助多媒体动态演示直线和圆的位置关系,直观形象地展示了直线与圆的位置关系,化抽象为具体,以便学生更好的.理解他们之间的关系及其几何特征,再引导学生把几何形式的结论转化为代数形式;教学过程中采用问题探究式、参与式探究、互动式讨论等教学方法,为学生自主探究、合作交流构建一个好的平台;分层次设置例题,让全体学生都得到提升;讲解例题时应用启发式引导教学方法,不断训练学生数学思维,借助图象分析题意,加深学生对数形结合思想了解;新课结束后,引导学生小结本课内容,培养学生归纳总结的能力。
中职直线与圆的位置关系教案篇十
已知直线都是正数)与圆相切,则以为三边长的三角形是________三角形.
三、解答题。
当为何值时,直线与圆有两个公共点?有一个公共点?无公共点?
四、填空题。
若直线与圆相切,则实数的值等于________.
圆心为且与直线相切的圆的方程为________.
直线与圆相切,则实数等于________.
直线与圆相切,则________.
过点作圆的切线,且直线与平行,则与间的距离是________.
过点,作圆的切线,则切线的条数为________条.
过点的圆与直线相切于点,则圆的方程为________.
五、解答题。
过点作圆的切线,求此切线的方程.。
圆与直线相切于点,且与直线也相切,求圆的方程.。
六、填空题。
由直线上的一点向圆引切线,则切线长的最小值为_____________.
七、解答题。
求满足下列条件的圆的切线方程:
(1)经过点;
(2)斜率为;
(3)过点.。
已知圆的方程为,求过的圆的切线方程.。
八、填空题。
直线被圆截得的弦长等于________.
直线被圆截得的弦长等于________.
直线被圆所截得的弦长为________.
圆截直线所得弦的长度为4,则实数的值是________.
设直线与圆相交于两点,若,则圆的面积为________.
直线被圆截得的弦长为________.
直线被圆所截得的弦长为________.
圆心坐标为的圆在直线上截得的弦长为,那么这个圆的方程为________.
过点的直线被圆截得的弦长为,则直线的斜率为________.
过原点的直线与圆相交所得弦的长为2,则该直线的方程为________.
九、解答题。
圆心在直线上,圆过点,且截直线所得弦长为,求圆的方程.。
十、填空题。
过点作圆的弦,其中最短弦的长为________.
十一、解答题。
已知圆,直线.
(1)求证:对,直线与圆总有两个不同的交点;
(2)若直线与圆交于两点,当时,求的值.。
设圆上的点关于直线的对称点仍在圆上,且直线被圆截得的弦长为,求圆的方程.。
已知圆,直线.。
证明:不论取什么实数,直线与圆恒交于两点。
求直线被圆截得的弦长最小时的方程,并求此时的弦长。
十二、填空题。
圆上到直线的距离等于1的点有________个.
在平面直角坐标系中,已知圆上有且仅有四个点到直线的距离为1,则实数的取值范围是________.
设圆上有且仅有两个点到直线的距离等于1,则圆半径的取值范围是________.
直线与曲线有且只有一个公共点,则b的取值范围是_________。
若直线与圆恒有两个交点,则实数的取值范围为________.
已知点满足,则的取值范围是________.
若过点的直线与曲线有公共点,则直线的斜率的取值范围为。
中职直线与圆的位置关系教案篇十一
教学目标:
1)知识目标:
a、知道直线和圆相交、相切、相离的定义。
b、根据定义来判断直线和圆的位置关系,会根据直线和圆相切的定义画出已知圆的切线。
c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。
2)能力目标:
让学生通过观察、看图、填表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。
中职直线与圆的位置关系教案篇十二
教学要求:能够从日常生活实例中抽象出数学中所说的平面理解平面的无限延展性;正确地用图形和符号表示点、直线、平面以及它们之间的关系;初步掌握文字语言、图形语言与符号语言三种语言之间的`转化;理解可以作为推理依据的三条公理.
教学重点:理解三条公理,能用三种语言分别表示.
教学难点:理解三条公理。
教学重点:掌握平行公理与等角定理.
教学难点:理解异面直线的定义与所成角。
教学要求:了解直线与平面的三种位置关系,理解直线在平面外的概念,了解平面与平面的两种位置关系.
教学重点:掌握线面、面面位置关系的图形语言与符号语言.
教学难点:理解各种位置关系的概念.
中职直线与圆的位置关系教案篇十三
重点:的性质和判定。因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究的基础。
难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解。
3.教法建议。
本节内容需要一个课时。
(2)在中,以“形”归纳“数”,以“数”判断“形”为主线,开展在组织下,以学生为主体,活动式.
第12页。
中职直线与圆的位置关系教案篇十四
从教学以来,我一直不断的学习和研究如何使学生在数学课堂中高效的学习,在探索过程中我发现教师要想让学生学好数学,必须高度重视学生的主动参与课堂学习,让学生亲身体验学习知识的过程,引导学生在发现问题、分析问题、解决问题的同时,培养学生的自主学习能力和创新意识。《直线与圆的位置关系》是高中学习中一个重要的内容,下面我详细总结一下我讲的这节课。
首先从实际生活出发,引用古诗句“海上升明月,天涯共此时”及海上日出的多媒体展示,引导学生回忆直线和圆的位置关系及判定方法,通过对已有研究方法的揭示,增强学生运用迁移方法研究新问题的意识;接着借助多媒体引出三个问题,让学生运用初中的知识判断一下直线和圆的位置关系,巩固学生初中所学内容更好的为本节课的学习打下基础,从而引导学生揭示出直线与圆的位置关系与公共点的个数之间存在着对应关系的本质特征;最后,引入轮船遇到台风的实际问题,让学生体会源自生活的数学,思考解决实际问题的方法,在数与形的相互转化过程中思考问题。
在我的引导下,提示学生先用初中所学内容解决轮船遇台风问题,学生很轻易的把这个问题解决了,紧接着我又趁热打铁,提出一般的`三角形中这个方法是否可以,由此得到由高中知识解决直线与圆的位置关系的方法:几何法,代数法。为此,我以问题为导向,以探究问题的方式引导学生自学自悟,为学生提供了自主合作探究的舞台,让学生思维在数学中自由翱翔。通过一系列问题学生不仅加深了对判定直线与圆的位置关系的方法的理解,更重要的是使学生学会运用联想、化归、数形结合等思想方法去研究问题,促进学生在学会数学的过程中顺利地向会学数学的方向发展。
为了提高学生的学习兴趣,让学生有目的的去学,提高学生的学习能力,这节课设置了大量问题,使学生充分地实践与探索,不断地归纳与总结,引导学生发现规律、拓展思路。在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化。
适量的练习、课后作业及时巩固了学生的学习,学生需通过动手动脑来完成,使学生对知识点的学习由课内延伸到课外。
当然,这节课有成功之处,也有很多不足,比如,尽管准备的很充分,但是还是有点紧张;虽然我在设计本节课时是想体现学生自主探究的原则,但是在一些问题提出之后,没有给予学生足够的时间思考,限制了学生的思维。此外,对学生引导的语言概括及对学生及时性鼓励的不是太好,学生的积极性及配合并不高。
在今后的教学中,我会继续不断的学习,提高自己的教学水平,真正让学生学会数学、学好数学,使学生的各项能力在数学学习中得到更好的发展和提高,我相信在将来的教学中,我会做得越来越好,真正成为一名合格的教师。
中职直线与圆的位置关系教案篇十五
薛老师执教的高三文科复习课:《直线与圆的位置关系》,首先从一个引例出发,让学生尝试作图和验证,得出知识要点,继而在此基础上继续研究直线方程和轨迹等问题。例题只有一个,但小题很多,题题递进,环环相扣,在此环节上教师以学生训练为主,教师讲授和引导为辅,共同完成本节课的整体教学内容。
我听了薛老师的这节课认为本节课设计高度重视学生的主动参与、亲自操作,让学生从中去体验学习知识的过程,同时,也注重培养学生的自主学习能力和创新意识。整体看来这节课的优点很多,很值得我去学习。
总结起来,大概有以下几个特点。
(一)注重一个“渗透”——德育渗透。
在数学教学中,我们常常把德育教育与辩证唯物主义、爱国主义情怀联系在一起,借助古今中外数学史不惜把数学课上成政治课,却成为一堂蹩脚的课。其实,通过数学问题的发生和解决过程的教学,培养与锻炼学生知难而进的坚强意志,败而不馁的心理素质,一丝不苟的学习品质,勤于思考的良好学风,勇于探索的创新精神,实事求是的科学态度,这也是是德育教育,更是数学本质上的德育教育。本课薛老师把这种德育教育渗透到教学的每一个环节,力求“润物细无声”。当学生解题遇到困难时,教师能给予耐心的引导。但,在课堂上,处理第(3)小题第二问时,有一名男生利用圆的定义很巧妙地给出了轨迹方程,薛老师可能没有很好地把握表扬的机会,而是询问学生有否最后算出答案,显得有些匆促。
(二)坚持两个“原则”
1、例题设计注重分层教学,坚持面向全体学生的原则。
题目母体来源于学生现有教辅书《全品》,却在原题基础上进行了分层递进的改编,让不同的学生都有不同的收获。以学生的最近发展区为指向,充分尊重了学生现有的认知水平和个性差异,为不同层次的学生采用适合自己个性的方法进行学习创造了条件。
2、教学过程授人以渔,坚持以学生发展为本的原则。
让学生深刻经历:通过作图和求解基本例题回忆知识结构——通过尝试深化知识内容——通过递进扩展知识联系,教会学生研究的方法,而不是结果。
(三)落实三个“容量”——知识量、活动量和思维量。
本节课所选内容以解析几何为平台,却可以集函数性质、图像、方程、不等式于一体,例题只有一题,但以此展开的小题却逐层递进和推进,容量大,难度高。可喜的是,薛老师通过合理运用现代技术和整合例题,成功地丰富了知识量;加强探索与过程教学,有效地落实了思维量;突出学生板演与探究教学,巧妙地增加了活动量,值得借鉴。
(四)实现四个“转变”——学生角色从被动到主动;教师角色从传授到指导;学习理念从封闭到开放;学习形式从单一到多元。
本课初步实现了“四个转变”是由于采用了探究式的教学策略,为学生提供开放性的学习内容、开放性的教育资源和开放性的教学形式。特别是向学生提供了更多的机会和时间,让学生尝试和探究、合作和交流、归纳和总结,最大限度地提高学生学习活动的自由度,促使学生思维空间的充分开放。
(五)培养五种“能力”——应用能力、探究能力、反思与提问能力、交流合作能力和创新能力。
本课从引入开始,充分放手让学生动脑、动口、动手,使研究问题得以逐个深入,难点得以一个个突破,能力得以一点点培养。事实上,解析几何复习课,重在数形结合,重在几何性质,重在静动结合,课堂贵在“生动”,所谓“生动”,是指“生”出“动”。要树立生本意识,立足学生“可动”;设置问题探究,引领学生“会动”;课前充分预设,不怕学生“乱动”;及时表扬肯定,激励学生“愿动”。
但是我认为这节课也有一些值得探讨的问题:
第一、老师讲的还是太多。听说杜郎口中学要求老师每节课讲课时间不能超过10分钟,否则是不合格的。一堂课,就只有40分钟,老师讲多了,学生自然就参与少了。这样的后果就会导致学生具体体验时间不够,同时规范操作和演练也不够。
第二、在学生回答引入题时,假设直线方程时,学生没有考虑到斜率是否存在的情况,这时,老师没有及时进行补充和纠正。一个很明显的后果就是导致在(2)问的板演中,学生解答出错。
第三,学生板演时没有很好地结合图像进行解题,这时,老师应该要适时引导学生作好草图。凸显解题时要从宏观到微观,从直觉到精确,从定性到定量分析。
第四,本节课最大的特色就是很好的整合了例题,以一题可以扫遍所有的直线与圆的有关知识点,这是一种复习习惯和策略。教师在这个点上应该要向学生强调,引导学生今后复习也应该有意识地进行整合和提升,做到既“重复”,又“学习”,这才是复习。
第五,本节课还有一个线索,就是前面的题目基本上能借助几何性质进行解题,而最后一问必须采用解析几何的思路,就是用代数的方法解题,这实际上要求老师要进行总结,告诉学生直线与圆的位置关系解题时,先考虑几何性质,再借助代数方法解决,这不仅是一般的解题思路,也为后面的直线与椭圆的位置关系埋下伏笔。
总之,这是一堂原生态的高三复习课,让我获益匪浅。以上仅是一家之言,在此权当抛砖引玉,谢谢大家!
中职直线与圆的位置关系教案篇十六
本节课,我先让学生在课前自行完成教学案中“课前预习与导学”这一部分,情况良好。上课后先信息反馈进行评讲,然后引导学生回忆了点与圆的位置关系及如何用数量关系来判断点与圆的位置关系。接着以《海上日出》图创设情景,从而引出课题:直线和圆的位置关系。然后由学生平移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由小“练习”进行应用,最后通过“例题”“课堂检测”去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:
1、在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
2、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在小练习之后我及时地进行总结归纳方法,让学生在以后解决实际问题过程中能一下子找到切入点,培养学生解决实际问题的能力。
同时,我也感觉到本节课的教学有不妥之处,主要有以下三点:
1、学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。讲得过多,学生被动的接受,思考得不够,对概念的理解不是很深刻。可以改为让学生类比点与圆的位置关系下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2、对于我们学生的情况,初三的教学始终没有摆脱灌输式教学,尽管课上也让学生自主操作、思考,但老师讲的太多,没有给予学生足够的探索、交流的时间,势必会影响到部分学生的思维,限制了学生的发展。所以,我们也要学会该“放手时就放手”,大胆地让学生去思考,也许会有意外的收获。
3、对教材的把握,对学生的实情,在备课时都要考虑。在选题时不仅要照顾到基础薄弱的同学,也要照顾到基础好些的同学,适时选做。对于有些题可以适当地进行变式训练,拓展灵活运用,活跃学生的思维。
总之,在今后的数学教学中还有很多需要我学习和掌握的东西,希望能和学生们一起共同进步,真正成为一名合格的数学教师。
中职直线与圆的位置关系教案篇十七
新课程指出:学生是学习的主体,是发展的主体。在课堂教学中,教师要将课堂的主动权让给学生,作为教师应以“探究过程,探究方法,探究结果,运用结果”为主线安排教学进程,应高度重视学生的主动参与、亲自研究、动手操作,让学生从中去体验学习知识的过程,引导学生在发现问题、分析问题、解决问题的同时,培养学生的自主学习能力和创新意识。
在《直线和圆的位置关系》这节课中,我首先由生活中的情景——日落引入,让学生发现地平线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后由学生平移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。
1.由日落的三张照片(太阳与地平线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。
2.在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
3.新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生被动的接受,对概念的理解不是很深刻,可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2.虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。
3.对“做一做”的处理不够,这一环节是对探究的成绩与效果的探索与检验,重在帮助学生掌握方法,我在讲解“做一做”时,没有充分展示解题思路,没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,巩固和扩大知识,吸收、内化知识。
总之,新课程的课堂教学要让学生作为课堂教学的主体参与到课堂教学过程中来,充分展现自己的个性,施展自己的才华,使学生在参与和体验的过程中真正成为学习的主人,养成勇于探索、敢于实践的个性品质。与此同时,教师还要为学生的学习创造探究的环境,营造探究的氛围,促进探究的`开展,把握探究的深度,评价探究的效果。
中职直线与圆的位置关系教案篇十八
一、课程目标分析:
《普通高中数学课程标准》指出:在平面解析几何初步的教学中,教师应帮助学生经历如下过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
二、教材分析:
1、教材的地位和作用:
《直线与圆的位置关系》这一节内容出现在必修2的第二章《平面解析几何初步》的第二节《圆与圆的方程》的第三小节的位置。就整套教材而言,《平面解析几何初步》一章的教学主要是让学生体会到用代数方法处理几何问题的思想,为选修教材中的《圆锥曲线与方程》一章打好基础。它是前两节《直线与直线方程》和《圆与圆的方程》的综合应用,也为后一小节《圆与圆的位置关系》提供研究方法的一个重要示例,是整个《平面解析几何初步》章节的重要内容,起着贯穿始终、应用反馈的重要作用,而且是贯彻“用代数方法处理几何问题”思想和“数形结合”方法的重要的反映内容和工具。在本章中的作用非常重要。
2、教材重点、难点。
中职直线与圆的位置关系教案篇十九
这节课,我由生活中的情景——日落引入,让学生发现地平线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后由学生平移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:
1。由日落引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到数学无处不在,无时不有。
2。在探索直线和圆位置关系所对应的数量关系时,让学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
3。新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
“国培计划”初中数学——陈晓峰(江西省宁都五中)。
节课的教学,我认为成功之处有以下几点:
1.由日落的三张照片(太阳与地平线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。
2.在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
3.新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:
1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生被动的接受,对概念的理解不是很深刻,可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2.虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。
中职直线与圆的位置关系教案篇二十
三、目的分析:
1、知识目标:
2、能力目标:
要使学生体会用代数方法处理几何问题的思路和“数形结合”的思想方法。
四、教法分析:
1、教学方法:启发式讲授法、演示法、辅导法。
2、教材处理:
(1)例题1(1)(2)用两种不同的办法求解,让学生自己体会这两种方法。
通过老师引导和让学生自己探索解决,反馈学生的解决情况。
(2)增加一个过一点求圆的切线方程的题型,帮助学生增加对直线与圆的认识。
3、学法指导:本节课的学法是继续指导学生把新问题转化为已有知识解决的化归思想。
4、教具:多媒体电脑、投影仪、自做多媒体。
五、过程分析:
教学。
环节。
教学内容。
设计意图。
新课引入。
1、学生观察日出照片,把观察到的情况用自己的语言说出来,抽象出几何图形,在学生回答的基础上,通过多媒体演示圆与直线的三种位置关系。让学生感受到数学产生于生活,与生活密切相关,并能使学生更好的直观感受直线和圆的三种位置关系。然后引入本节课的课题。
2、在上一章,我们在学习了直线的方程后,研究了点和直线、直线与直线的位置关系,本章我们已经学习了圆的方程,现在我们要研究直线与圆以及圆与圆的位置关系。
1数学产生于生活,与生活密切相关。
2、以实际问题引入有利于激发学生学习数学的兴趣,有利于扩展学生的视野。
新课讲解。
一、知识点拨:
答:把圆心到直线的距离d和半径r比较大小:
中职直线与圆的位置关系教案篇二十一
《直线和圆的位置关系的复习》一课的教学,可以说非常成功。教学设计充分体现了新的教学理念,重点突出、层次清楚、构思新颖,整个教学过程教师采用多样化的呈现方式为学生搭建参与探究的平台,高度重视学生的主动参与,有意识地为学生创设了良好的数学交流情境。注意学生的情感与态度,知识与技能的形成和发展,使每个学生都有表现的机会和获得成功的体验。
由于本节课综合性强,涉及到的知识面广,对学生的能力水平要求高。教师结合本节课的教学目标,突出重点,突破难点。采用教师启发引导,学生合作交流的方式来组织本节课的教学。注重解题思路分析和方法引导,善于引导学生寻找图形中的数量关系,选用适当的知识和方法正确解答问题。
在学习知识的同时,注意数学思想方法的渗透。在教学中,数学知识是一条明线,数学思想方法是一条暗线。崔老师在引导学生学习的同时,教给学生思考方法、学习方法和解决问题的方法,为学生未来发展服务,让学生在脑海里留下数学意识,长期下去,学生将终身受用。
板书条理分明,布局合理,文字与图形完美结合,板书设计不仅让学生对直线和圆的位置关系图形的特征一目了然,而且也便于揭示它们之间的区别和联系。体现了板书的形式美和简洁美,真正使板书起到了画龙点睛的作用。
充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使题意理解更清楚,结论更准确。
教师教态自然,语言清晰,数学语言表述准确,操作演示熟练,提问率高,体现素质教育面向全体学生的要求。
教师注意培养学生的自信心,在教学过程的设计上体现了层次性和梯度性。防止学生对一些问题出现畏惧情绪,鼓励学生敢于知难而进,让学生树立战胜困难的勇气和决心。例题的设计,按照由易到难的顺序呈现,关于直线和圆的复习教学中能利用一个图形提出尽可能多的问题,并尽可能的覆盖到圆的大多数知识,尽可能的加强知识间的横纵的联系,尽可能渗透多种数学思想和方法,最大限度的榨取它的利用价值,达到了一线串珠的目的。体现了综合性例题的大容量、大综合的特点,非常有效地达成本节课的教学目标。
中职直线与圆的位置关系教案篇二十二
3、教学方法与手段:
教学方法:问题探究式、启发式引导、参与式探究、互动式讨论。
学习方法:自主探究、观察发现、合作交流、归纳总结。
教学手段:借助多媒体动态演示,构建学生探究式学习的教学环境。
4、教学过程:
1、创设情景、引入新课;2、引导启发、探索新知;3、讲练结合、巩固新知;
4、知识拓展、深化提高5、小结新知,画龙点睛6、布置作业,复习巩固。
环节。
重新阅读课本本节相关内容并预习下一节课内容。
直线与圆的位置关系是高考的考点之一,是在学生已有的平面几何知识基础上进行教学,以点与圆的位置关系上升为直线与圆的位置关系,从简单到复杂,从几何特征到代数问题(坐标法)的'教学过程,它应用比较广泛,同时也为后面圆和圆的位置关系作了铺垫,对后面的解题及相关数学问题的解决将起到重要的作用,且本节是直线与圆锥曲线位置关系的基础,故要求学生充分掌握。
针对上述情况,我精心设计教学过程,借助多媒体动态演示直线和圆的位置关系,直观形象地展示了直线与圆的位置关系,化抽象为具体,以便学生更好的理解他们之间的关系及其几何特征,再引导学生把几何形式的结论转化为代数形式;教学过程中采用问题探究式、参与式探究、互动式讨论等教学方法,为学生自主探究、合作交流构建一个好的平台;分层次设置例题与练习,让全体学生都得到提升;讲解例题时应用启发式引导教学方法,不断训练学生数学思维,借助图象分析题意,加深学生对数形结合思想了解;新课结束后,引导学生小结本课内容,培养学生归纳总结的能力。
【本文地址:http://www.xuefen.com.cn/zuowen/11876952.html】