正数负数教案(通用15篇)

格式:DOC 上传日期:2023-11-20 19:16:06
正数负数教案(通用15篇)
时间:2023-11-20 19:16:06     小编:HT书生

教案的申报和备案工作是教师教学管理和质量监控的重要环节。教案应该考虑到学生的兴趣和能力,使教学更加生动有趣。以下是一些经验丰富的教师编写的教案案例,供大家学习参考。

正数负数教案篇一

正数、负数什恶魔学习不可少的一门课,下面就是相关的练习题,请看:

一、填空题。

1.如果+5c表示比零度高+5c,那么比零度低7c记作_______c.

2.如果-60元表示支出60元,那么+100元表示______________.

3.下列各数-0.05-+120-4.10-8。

5.-(+6)是_______的相反数,-(-7)是_______的相反数.[。

6.按规律填数1,-2,3,-4,5,____,_____,...。

二、选择题。

7.把向东记作“-”,向西记作“+”,下列说法正确的是.

a.-10米表示向西10米b.+10米表示向东10米。

c.向西行10米表示向东行-10米d.向东行10米也可以记作+10米。

8.温度上升6c,再上升-3c的意义是().

a.温度先上升6c,再上升3cb.温度先上升-6c,再上升-3c。

c.温度先上升6c,再下降3cd.无法确定。

9.不具有相反意义的量是().

a.妈妈的月工资收入是1000元,每月生活所用500元。

b.5000个产品中有20个不合格产品。

c.x疆白天气温零上25c,晚上的气温零下2c。

d.商场运进雪碧100箱,卖出80箱。

10.下列说法正确的是().

b.一对互为相反数的.两个数的和等于其中一个数的两倍。

c.符号不同的两个数都是互为相反数d.任何数都有相反数。

11.下面两个数互为相反数的是().

a.和0.2b.和-0.333c.-2.75和d.9和-(-9)。

12.-不是负数,那么().

a.是正数b.不是负数c.是负数d.不是正数。

综合训练。

三、解答题。

13.下列是非典时期10个同学的体温测量结果,以36.9为标准体温,请用正负数的形式表示这些同学的体温与标准体温之间的关系。(高出标准体温的部分用正数表示,低于标准体温的部分用负数表示。)。

李明36.5张华36.8李丽37.3刘芳38.5魏红36。

张力37.2张伟36.7杨明37肖燕38孙芳36.6。

姓名李明张华李丽刘芳魏红张力张伟杨明肖燕孙芳。

是否标准-0.4。

14.下面是光明小学和红光小学环保知识竞赛得分情况。(答对了加分,答错了扣分。)。

得分情况题目。

学校第一题(20分)第二题(20分)第三题(30分)第四题(15分)第五题(15分)。

(1).-20表示________________;+15表示______________。

(2).从上表中,你能得到哪些信息?

参考答案。

1.-7。

2.收入100元。

3.

5.6;-7;

6.-6;7;

14.(1)光明小学第二题答错了;.光明小学第五题答对了,红光小学第四题答错了。

(2)略。

15.答案不唯一。

16.948085918284。

正数负数教案篇二

1、在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题和现象。

2、在具体的情境中,认、读、写负数,同时渗透“对应”和“集合”的数学思想。

3、培养学生获取信息,并进行分析的意识和能力。

4、进行德育渗透,培养学生科学精神和民族自豪感。

正数负数教案篇三

3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

教学难点正确区分两种不同意义的量。

知识重点两种相反意义的量。

教学过程(师生活动)设计理念。

设置情境。

活中仅有这些“以前学过的数”够用了吗?下面的例子。

仅供参考.

学生活动:思考,交流。

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)。

密性,但对于学生来说,更多。

地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴。

趣,所以创设如下的问题情境,以尽量贴近学生的实际.

这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

分析问题。

这些问题都必须要求学生理解.

教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.

强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.

问题4:请同学们举出用正数和负数表示的例子.

问题5:你是怎样理解“正整数”“负整数,,squo;squo;正分数”和“负分数”的呢?请举例说明.

能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性。

正数负数教案篇四

3、体验数学发展的一个重要原因是生活实际的需要;激发学生学习数学的兴趣。

重点深化对正负数概念的理解。

难点正确理解和表示指定方向变化的量,表示相反意义的量。

通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们。

温度计上的-2,0,3分别表示是么意义?

(1)、一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。

(2)、20xx年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家20xx年商品进出口总额的增长率。

正数负数教案篇五

在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。

使学生经历数学化,符号化的过程,体会负数产生的必要性。

感受正、负数和生活的密切联系,享受创造性学习的乐趣.

正数负数教案篇六

补充练习2:判断下列说法对错:

a.向南走-60米表示向西走60米()。

b.节约50元与浪费-30元是互为相反意义的量()。

c.快与慢表示具有相反意义的量()。

d.+15米就是表示向东走15米()。

e.黑色与白色表示具有相反意义的量()。

f.向北4.5米和向南8米是具有相反意义的量()。

补充练习3:用正负数表示下列具有相反意义的量。

(1)温度上升3℃和下降5℃。

(2)盈利5万元和亏损8千元。

(3)运进50箱与运出100箱。

(4)向东10米与向西6米。

1、课本p7第1、2、3.

2、下面各数哪些是正数?哪些是负数?

3、如果一个物体沿东西方向运动,若规定向西为负,向东为正,

(1)向东运动5米和向西运动10米各怎样表示?

(2)-30米和50米各表示什么?(3)物体原地不动怎样表示?

4、说出下列每句话的意义。

(1)小明在围棋比赛中输了-5盘。(2)今晚的气温升高了-3℃。

(3)电梯下降了-4层。(4)李华体重增加了-2公斤。

正数负数教案篇七

1.正确理解正,负数及零的意义,会用正,负数表示具有相反意义的量,能简单说出正数和负数的意义。

2.借助生活中的实例理解正数,负数的意义,体会负数引入的必要性和有理数应用的广泛性。

3.通过有理数的学习,培养抽象思维能力、归纳与概括能力。

体会负数的意义,两种相反意义的量。

1.创设情境,引入新知。

教师展示教科书图1.1-1并提出问题1:哪位同学知道这些图片介绍的是什么内容?学生回答,教师补充说明数的产生与日常生活,生产实践的关系,感受数随着社会的发展而发展的必要行。

设计意图】:使学生感受数的产生和发展离不开生活和生产的需要。

问题2:请同学们阅读本章的.引言,你能回答其中的问题吗?

学生思考并解释。

2.观察感知,理解概念。

问题3:根据小学的知识,你能指出上述例子中哪些是正数,哪些是负数吗?

学生给出正确答案后,教师给出正,负数的定义,大于0的数叫做正数,在正数前加上符号“-”的数叫做负数。

问题4:阅读课本第二页倒数第二段,你能举例说明什么叫一个数的符号吗?

学生阅读举例,只要学生说出与课本不同的实例并说明它们的符号就表明他们看懂了这段话。

教师补充:有时,为了明确表达意义,在正数前也加上“+”号,正数的符号是“+”,负数的符号是“-”,0既不是正数也不是负数。

3.例题示范,学会应用。

课本例题,

提问:你是怎么理解例的?

设计意图】通过具体问题情境,使学生学会正数与负数是具有相反意义的量的方法,通过师生合作突破用正数,负数表示指定方向变化的量这一难点,通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词。

选定一方用正数表示,另一方就用负数表示。

实际问题中,有时需要描述指定方向变化的量,如:本例中,进出口总额减少64%,表示为增长-64%,这就是说增长量是一个负数实际上是减少了,也可以说成“负增长”。

当数据没有变化时,增长率为0。

设计意图】引导学生及时总结、提炼出可以指导解答其他同类问题的一般性结论。

4.巩固概念,学以致用。

练习:第三页练习1,2。

设计意图】巩固性练习,同时检验用正数,负数表示具有相反意义的量的掌握情况。

5.归纳小结。

回顾本节课内容。

6.布置作业。

习题1.1第1.2.4题。

正数负数教案篇八

2、请你把下面句子中的量用“+”或“-”的数表示出来。

教师根据学生的回答,归纳总结,同时板书课题及正、负数的概念。

教师让多个学生自由发言。

四、应用迁移,巩固提高。

(出示幻灯片四)。

1、如图是一个正方体纸盒的展开图,请把-11,12,11,-2,-12,2分别填入六个正方形,使得按虚线折成的正方体后,对面上的两个数互为相反数。

2、请你在下面的圈中填上适合的数,使得圈内的数依次为整数集、有理数集、正数集、分数集、负数集。

教师参与学生的讨论,启发、鼓励学生的动手尝试,对学生的答案给予鼓励性评价。在讲台上展示不同学生的答案。

五、学习总结:

提问:今天你获得了哪些知识?

教师参与互动,并给予鼓励性评价。

教师简要点评:今天我们学习了有理数的意义和两种分类的方法及相反数的概念,我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法。

1、课堂检测。

2、生活中,我们也常常对事物进行分类,请你举例说明。

学生同桌讨论、交流,自由发言。

学生踊跃发言,相互补充。

学生观察思考,分组讨论,尝试归纳。

学生进一步讨论、交流、总结、归纳。

学生观察思考,小组讨论,交流发现和概括出“相反数”

学生抢答。

1、3题学生抢答,尽量照顾不同层次的学生参与的积极性;

2题学生讨论、交流选代表回答。

1题学生可动手实际操作。

同桌或小组讨论合作研究完成。

学生相互交流自己的收获和体会。

综合考查。

学以致用。

对所学过的数作了梳理和回顾,自由发言激发了学生学习的热情和求知欲。

为有理数的.分类作准备。

培养了学生观察、思考、总结、归纳的能力,同时培养学生对数分类讨论的观点。

通过再分类培养学生树立对立与统一的思考方法,对学生进行辩证唯物主义教育。

培养学生观察能力,合作探究意识,总结、归纳的能力和语言表达能力。

在练习中进一步巩固相反数的概念。

巩固所说的知识。

通过练习培养学生的动手操作能力和团结协作的精神,有助于提高学生运用所学知识解决实际问题的能力。

锻炼学生的语言表达能力和归纳概括能力。

考查学生对本节知识的掌握情况,锻炼学生综合运用知识,独立解决问题的能力。

附板书设计:

1、有理数的两种分类:

(1)(2)。

教学反思:

本节课通过情境教学导入新课,并且在教学过程中,教师扮演的是组织者、引导者、合作者的角色,学生成为了学习的主人,主动去观察、讨论、交流、总结、归纳,体现了新课程理念,但在整个的教学过程中还缺乏与实际生活的联系,教师在此方面还须努力挖掘这方面的素材,让学生真正体会到数学知识于生活,又反作用于生活。

正数负数教案篇九

2、理解正、负数表示一对具有相反意义的量,并会表示。

会用正、负数表示相反意义的量。

用正、负数表示实际生活中具有相反意义的量。

体会正、负数在实际生活中的意义。

用正、负数表示实际生活中具有相反意义的量。

1、比比看谁快:

(2)把下列各数写入相应集合里:

-10,6,―7,0,―2.25,―,10%,。

正数集合{}分数集合{}。

2、想一想:

正数负数教案篇十

1.了解负数产生的背景是从实际需要产生的;会判断一个数是正数还是负数。

2.会用正负数表示生活中常用的具有相反意义的量;知道整数、分数的分类。

3.培养学生的数学应用意识,渗透对立统一的辩证思想。

教学重点:了解正数与负数是由实际需要产生的及会用正负数表示生活中常用的具有相反意义的量。

教学难点:了解正数与负数是由实际需要产生的及会用正负数表示生活中常用的具有相反意义的量。

一.自主学习(导学部分)。

1.在中国地形图上,可以看到有一座世界最高峰----珠穆朗玛峰,图上标有8848;还有一个吐鲁番盆地,图上标有-155(单位:米)。这种数通常称为海拔高度,它是相对于海平面来说的。你知道海平面的高度通常用什么数表示吗?请说出图中所示的数8848和-155表示的实际意义。

2.你看过电视或听过广播中的天气预报吗?中国地形图上的温度阅读。(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温25c,10c,零下10c,零下30c。

为书写方便,将测量气温写成25,10,―10,―30。

3.让学生回忆我们已经学了哪些数?它们是怎样产生和发展起来的?

在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,为了表示没有,引入了数0;有时分配、测量的结果不是整数,需要用分数(小数)表示。总之,数是为了满足生产和生活的需要而产生、发展起来的。

二.合作、探究、展示。

号读作负,如117.3,读作负五,号是不可以省略的.

+号读作正.如,读作正三分之二,+可以省略不写.

2.议一议。

有位同学说一个数如果不是正数,必定就是负数.你认为这句话对吗?为什么?

4.例1指出下列各数中的正数、负数:

+7,-9,,-4.5,998,,0。

练一练:课本p13、23。

5.相反意义的量:

你能举出几对日常生活中具有相反意义的.量吗?

例2(1)如果向北8千米记作+8千米,那么向南走5千米记作什么?

(2)如果运进粮食3t记作+3,那么4t表示什么?

练习:课本p13/23。

6.统称为整数。

统称为分数。

三.巩固练习。

1.比0大的数叫做______;比0小的数叫做_______;。

3.数3,-0.2,1,0,中,负数有个,正数有个.

4.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数。

(1)、1,-1,1,-1,1,-1,1,-1,,,,

(2)、1,-2,3,-4,5,-6,7,-8,,,,

5.小莉说:一个数,不是正数,必是负数。小明说:带有-号的数就是负数,带有+号的数就是正数。你认为他们的说法正确吗?谈谈你的看法。

四.课堂小结。

五.布置作业。

六.预习指导。

正数负数教案篇十一

2、理解正、负数表示一对具有相反意义的量,并会表示。

会用正、负数表示相反意义的量。

用正、负数表示实际生活中具有相反意义的量。

体会正、负数在实际生活中的意义。

用正、负数表示实际生活中具有相反意义的量

1、比比看谁快:

(2) 把下列各数写入相应集合里:

-10, 6, ―7, 0, ―2.25, ― , 10%,

正整数集合{ } 负整数集合{ }

正数集合 { } 分数集合 { }

负数集合 { }

2、想一想:

正数负数教案篇十二

(第1课时)

知识与技能:使学生了解正数与负数是从实际需要中产生的;

情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力

负数的引入和意义

创设情景,生活实例引入,观察猜想,合作探究

(一)、从学生原有的认知结构提出问题

学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.

为了表示一个人、两只手、……,我们用到整数1,2,……

为了表示半小时、四元八角七分、……,我们需用到分数1/2和小数4.87、……

为了表示“没有人”、“没有羊”、……我们要用到0.

但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.

(二)、师生共同研究形成正负数概念

某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.

它们是具有相反意义的两个量.

现实生活中,像这样的相反意义的量还有很多.

例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155 米,“高于”和“低于”其意义是相反的.

又如,某仓库昨天运进货物 吨,今天运出货物 吨,“运进”和“运出”,其意义是相反的.

同学们能举例子吗?

学生回答后,教师提出:怎样区别相反意义的量才好呢?

现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量筒明地表示出来了.

让学生用同样的方法表示出前面例子中具有相反意义的量:

高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;

运进纲物 吨,记作+ ;运出货物 吨,记作- .

教师讲解:什么叫做正数?什么叫做负数.

(三)、运用举例 变式练习

例1 所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:

-11,4,8,+73,-2,7, , ,-8,12, - ;

正数集合 负数集合

课堂练习

任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:

正数集合:{ …},

负数集合:{ …}

1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度

3.在下列各数中,哪些是正数?哪些是负数?

-16,0,004,+ ,- , 25,8,-3,6,-4,9651,-0,1.

4.如果-50元表示支出50元,那么+200元表示什么?

7.一物体可以左右移动,设向右为正,问:

(1)向左移动12米应记作什么?(2)“记作8米”表明什么?

1.1.2正数和负数

1、知识技能:进一步理解正、负数及零的意义,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量。

2、数学思考:体会数学符号与对应的思想。

3、情感态度:师生合作,联系实际。培养学生的想象能力、理论联系实际的能 力、分析解决问题的能力,培养学生良好的个性品质和学习习惯。

教学重点:进一步理解正、负数及零表示的量的意义

教学难点:理解负数及零表示的量的意义

习题引入:

1.给出一组数,请学生说说哪些是正数、负数。

2.学生举例说明正、负数在实际中的应用。

【例1】

1、各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜。

2、分小组完成,用卷尺或皮尺量桌子的高度、桌面的长度和宽度,并将它们表示出来。(超出1米的部分用正数表示,不足1米的部分用负数表示。)

【例2】

1 .一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个 月的体重的增长值。

在学生已初步掌握新知识的前提下,由问题1 、2提高学生综合解决实际问题的能力

2.课堂练习: p5. 4 5

这堂课我们学习了那些知识?你能说一说吗?

教师引导学生回忆本节课所学内容。学生回忆、交流。教师和学生一起补充完善。教师要努力使学生自己回忆、总结、梳理所学的知识,将所学的知识与以前学过的知识进行紧密联结,完善认知结构。

p5 7 、8题

正数负数教案篇十三

3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;

4.培养学生逐步树立分类讨论的思想;

5.通过本节课的教学,渗透对立统一的辩证思想。

本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。

正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。

关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。

1.正数、负数和零的概念

正数负数零

象1、2.5、48等大于零的数叫正数

象-1、-2.5,-48等小于零的数叫负数0叫做零,0既不是正数也不是负数

2.有理数的分类

这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.

为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。

1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。例如:

一定是负数吗?答案是不一定。因为字母可以表示任意的数,若表示正数时,是负数;当表示0时,就在0的前面加一个负号,仍是0,0不分正负;当表示负数时,就不是负数了,它是一个正数,这些下节将进一步研究。

3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。

4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。

正数负数教案篇十四

情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力。

负数的引入和意义。

创设情景,生活实例引入,观察猜想,合作探究。

(一)、从学生原有的认知结构提出问题。

学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.

为了表示一个人、两只手、,我们用到整数1,2,

为了表示半小时、四元八角七分、,我们需用到分数1/2和小数4.87、

为了表示没有人、没有羊、我们要用到0.

但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.

(二)、师生共同研究形成正负数概念。

某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.

它们是具有相反意义的两个量.

现实生活中,像这样的相反意义的量还有很多.

例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,高于和低于其意义是相反的.

又如,某仓库昨天运进货物吨,今天运出货物吨,运进和运出,其意义是相反的.

同学们能举例子吗?

学生回答后,教师提出:怎样区别相反意义的.量才好呢?

现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上+或-号,就把两个相反意义的量筒明地表示出来了.

让学生用同样的方法表示出前面例子中具有相反意义的量:

高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;。

运进纲物吨,记作+;运出货物吨,记作-.

教师讲解:什么叫做正数?什么叫做负数.

(三)、运用举例变式练习。

例1所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:

-11,4,8,+73,-2,7,,,-8,12,-;。

课堂练习。

任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:

正数集合:{},

负数集合:{}。

1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度。

3.在下列各数中,哪些是正数?哪些是负数?

-16,0,004,+,-,,25,8,-3,6,-4,9651,-0,1.

4.如果-50元表示支出50元,那么+200元表示什么?

7.一物体可以左右移动,设向右为正,问:

(1)向左移动12米应记作什么?(2)记作8米表明什么?

正数负数教案篇十五

3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

正确区分两种不同意义的量。

知识重点

两种相反意义的量

设计理念

设置情境

引入课题

上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考。

学生活动:思考,交流

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数)。

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“—”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际。

这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

探究新知

这些问题都必须要求学生理解。

教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。

这阶段主要是让学生学会正数和负数的表示。

强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量。这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维。

问题4:请同学们举出用正数和负数表示的例子。

问题5:你是怎样理解“正整数”“负整数’’正分数”和“负分数”的呢?请举例说明。

能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性。

【本文地址:http://www.xuefen.com.cn/zuowen/13783470.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档